Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Background

In this study, filamentous fungi from iron mining soils in the Amazon were isolated and identified as , , , , , and .

Objective

The objective of this study was to evaluate the isolated strains for radial growth rate (VCR) on solid media and liquid in the presence of metals.

Methods

All these strains showed adaptive behavior in the presence of metals (Fe2+, Mn2+, and Cr3+), but not significantly compared to controls.

Results

The strain was selected to evaluate its growth capacity in solid and liquid media, enriched with 1, 10, and 20 mg/L of iron, chromium, and manganese, respectively.

Conclusion

strain showed tolerance to the concentrations of the metals studied. Therefore, we can suggest that this characteristic of metal tolerance (Fe2+, Mn2+, and Cr3+) exhibited by fungi isolated from Amazonian environments may indicate the potential for bioremediating areas polluted by heavy metals.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501320119240730060458
2024-09-01
2025-02-17
Loading full text...

Full text loading...

References

  1. RahmanZ. SinghV.P. Bioremediation of toxic heavy metals (THMs) contaminated sites: Concepts, applications and challenges.Environ. Sci. Pollut. Res. Int.20202722275632758110.1007/s11356‑020‑08903‑032418096
    [Google Scholar]
  2. PratushA. KumarA. HuZ. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: A review.Int. Microbiol.20182139710610.1007/s10123‑018‑0012‑330810952
    [Google Scholar]
  3. TangW. ShanB. ZhangH. ZhangW. ZhaoY. DingY. RongN. ZhuX. Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China.Sci. Rep.201441715210.1038/srep0715225412580
    [Google Scholar]
  4. WangJ. FengX. AndersonC.W.N. XingY. ShangL. Remediation of mercury contaminated sites – A review.J. Hazard. Mater.2012221-22211810.1016/j.jhazmat.2012.04.03522579459
    [Google Scholar]
  5. HassanA. PariatambyA. OssaiI.C. AhmedA. MudaM.A. WenT.Z. HamidF.S. Bioaugmentation-assisted bioremediation and kinetics modelling of heavy metal-polluted landfill soil.Int. J. Environ. Sci. Technol.20221976729675410.1007/s13762‑021‑03626‑2
    [Google Scholar]
  6. TufailM.A. IltafJ. ZaheerT. TariqL. AmirM.B. FatimaR. AsbatA. KabeerT. FahadM. NaeemH. ShoukatU. NoorH. AwaisM. UmarW. AyyubM. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review.Sci. Total Environ.2022850May15796110.1016/j.scitotenv.2022.15796135963399
    [Google Scholar]
  7. RaoJ.V.B. VengammaB. NaveenT. NaveenV. Lead encephalopathy in adults.J. Neurosci. Rural Pract.20145216116310.4103/0976‑3147.13166524966557
    [Google Scholar]
  8. MannaK. DebnathB. SinghW.S. Sources and toxicological effects of lead on human health.Indian J. Med. Spec.20191026610.4103/INJMS.INJMS_30_18
    [Google Scholar]
  9. RosalesE. PazosM. Ángeles SanrománM. Feasibility of solid-state fermentation using spent fungi-substrate in the biodegradation of PAHs.Clean201341661061510.1002/clen.201100305
    [Google Scholar]
  10. LiuS.H. ZengG.M. NiuQ.Y. LiuY. ZhouL. JiangL.H. TanX. XuP. ZhangC. ChengM. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.Bioresour. Technol.2017224253310.1016/j.biortech.2016.11.09527916498
    [Google Scholar]
  11. SinghR.K. TripathiR. RanjanA. SrivastavaA.K. Fungi as Potential Candidates for Bioremediation.Elsevier Inc.201910.1016/B978‑0‑12‑818095‑2.00009‑6
    [Google Scholar]
  12. LiaquatF. MunisM.F.H. HaroonU. ArifS. SaqibS. ZamanW. KhanA.R. ShiJ. CheS. LiuQ. Evaluation of metal tolerance of fungal strains isolated from contaminated mining soil of Nanjing, China.Biology202091246910.3390/biology912046933333787
    [Google Scholar]
  13. RajaM. PraveenaG. WilliamS.J. Isolation and identification of fungi from soil in loyola college campus, Chennai, India.Int. J. Curr. Microbiol. Appl. Sci.2017621789179510.20546/ijcmas.2017.602.200
    [Google Scholar]
  14. PelozatoM. HugenC. CamposM.L. De AlmeidaJ.A. SilveiraB. MiquellutiD.J. De SouzaM.C. Comparison between Cadmium, Copper and Zinc extraction methods from santa catarina soils derived from basalt and granite-migmatite.Rev. Agroveter Sci.2011101
    [Google Scholar]
  15. KaziT.G. JamaliM.K. ArainM.B. AfridiH.I. JalbaniN. SarfrazR.A. AnsariR. Evaluation of an ultrasonic acid digestion procedure for total heavy metals determination in environmental and biological samples.J. Hazard. Mater.20091612-31391139810.1016/j.jhazmat.2008.04.10318539386
    [Google Scholar]
  16. SenaI.S. FerreiraA.M. MarinhoV.H. E HolandaF.H. BorgesS.F. de SouzaA.A. de Carvalho R KogaR. LimaA.L. FlorentinoA.C. FerreiraI.M. Euterpe oleracea mart (Açaizeiro) from the Brazilian amazon: A novel font of fungi for lipase production.Microorganisms20221012239410.3390/microorganisms1012239436557647
    [Google Scholar]
  17. AamirS. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods.Plant Pathol. Quar. J. Fungal Biol.201552748110.5943/ppq/5/2/6
    [Google Scholar]
  18. ThompsonJ.D. GibsonT.J. PlewniakF. JeanmouginF. HigginsD.G. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools.Oxford University Press199725
    [Google Scholar]
  19. TamuraK. StecherG. PetersonD. FilipskiA. KumarS. MEGA6: Molecular evolutionary genetics analysis version 6.0.Mol. Biol. Evol.201330122725272910.1093/molbev/mst19724132122
    [Google Scholar]
  20. KimuraM. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.J. Mol. Evol.198016111120
    [Google Scholar]
  21. SaitouN. NeiM. The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol. Biol. Evol.19874440642510.1093/oxfordjournals.molbev.a040454
    [Google Scholar]
  22. MousaviS.M. DjafarianK. MojtahedA. VarkanehH.K. Shab-BidarS. The effect of zinc supplementation on plasma C-reactive protein concentrations: A systematic review and meta-analysis of randomized controlled trials.Eur. J. Pharmacol.2018834101610.1016/j.ejphar.2018.07.01930012497
    [Google Scholar]
  23. PerroneG. SuscaA. CozziG. EhrlichK. VargaJ. FrisvadJ.C. MeijerM. NoonimP. MahakamchanakulW. SamsonR.A. Biodiversity of aspergillus species in some important agricultural products.Stud Mycol200759536610.3114/sim.2007.59.07
    [Google Scholar]
  24. FrostegårdÅ. TunlidA. BååthE. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals.Appl. Environ. Microbiol.199359113605361710.1128/aem.59.11.3605‑3617.199316349080
    [Google Scholar]
  25. BaldrianP. Interactions of heavy metals with white-rot fungi.Enzyme Microb. Technol.2003321789110.1016/S0141‑0229(02)00245‑4
    [Google Scholar]
  26. SardroodB.P. GoltapehE.M. VarmaA. An introduction to bioremediation.Fungi as Bioremediators. GoltapehE.M. DaneshY.R. VarmaA. Berlin, HeidelbergSpringer Berlin Heidelberg201332710.1007/978‑3‑642‑33811‑3_1
    [Google Scholar]
  27. SharmaK.R. GiriR. SharmaR.K. Efficient bioremediation of metal containing industrial wastewater using white rot fungi.Int. J. Environ. Sci. Technol.202320194395010.1007/s13762‑022‑03914‑5
    [Google Scholar]
  28. CollaL.M. PrimazA.L. de LimaM. BertolinT.E. CostaJ.A.V. Isolation and selection of fungi for bioremediation from soil contaminated with triazine herbicides.Sci. Agrotechnol.200832
    [Google Scholar]
  29. AyangbenroA. S. BabalolaO. O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents.Int. J. Environ. Res. Public Health201710.3390/ijerph14010094
    [Google Scholar]
  30. PriyankaS.K.D. DwivediS.K. Fungi mediated detoxification of heavy metals: Insights on mechanisms, influencing factors and recent developments.J. Water Process Eng.20235310380010.1016/j.jwpe.2023.103800
    [Google Scholar]
  31. YilmazN. López-QuinteroC.A. Vasco-PalaciosA.M. FrisvadJ.C. TheelenB. BoekhoutT. SamsonR.A. HoubrakenJ. Four novel Talaromyces species isolated from leaf litter from Colombian Amazon rain forests.Mycol. Prog.20161510-111041105610.1007/s11557‑016‑1227‑3
    [Google Scholar]
  32. MolelekoaT.B.J. AugustynW. RegnierT. da SilvaL.S. Chemical characterization and toxicity evaluation of fungal pigments for potential application in food, phamarceutical and agricultural industries.Saudi J. Biol. Sci.202330510363010.1016/j.sjbs.2023.10363037113475
    [Google Scholar]
  33. FontesD.I. BezerraT.S. de FreitasE.P.B. de OliveiraM.N. SilvaS.C. SilvaS.Y.S. AlbinoU.B. SantosD.A. Production of cellulases from Amazonian fungi and their application in babassu cellulose hydrolysis.Int. Biodeterior. Biodegradation202318210563110.1016/j.ibiod.2023.105631
    [Google Scholar]
  34. FaridianL. BaharloueiJ. Fallah NosratabadA. Kari Dolat AbadH. An exploratory research on the adoption of different phosphate-solubilizing fungi for production of phosphate biofertilizers.Geomicrobiol. J.202340549350010.1080/01490451.2023.2196288
    [Google Scholar]
  35. NkunaR. MatamboT. Determining the metabolic processes of metal-tolerant fungi isolated from mine tailings for bioleaching.Minerals202414323510.3390/min14030235
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501320119240730060458
Loading
/content/journals/cbiot/10.2174/0122115501320119240730060458
Loading

Data & Media loading...

Supplements

Supplementary data associated with this study can be found in the online version of the article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test