Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Background

The drumstick tree, Lam. (family Moringaceae), is known as a magical plant due to its broad pharmacological activities. Traditionally, the leaves of this plant are used for anti-inflammatory action. However, the compounds in leaves and their mechanism that show anti-arthritic potential are unknown.

Methods

In this study, a preliminary phytochemical investigation of leaves ethanolic extract was conducted using qualitative analysis followed by Gas Chromatography-Mass Spectrometry (GC-MS) analysis to determine the constituents in the extracts.

Results

The results indicated the presence of various phytochemical compounds (about 316). Out of these, about 16 compounds were identified that covered 54.63% of the total ethanolic extract. A molecular docking study was further performed using selected two compounds . 3, 7, 11, 15-tetramethylhexadec-2-en-1-ol and neophytadiene and different targets proteins MMP9 (1L6J), PGE2 (1Z9H), TLR-1-TLR-2 (2Z80), COX-II (3NT1 and 5F19), iNOS (3NW2), HtrA1 (3TJO), JAK-1 (4K6Z), MCSF (5LXF) and TLR-4 (5NAO). Later on, an online tool was used to perform ADME/T analysis of the identified compounds. The DPPH and ABTS assay confirmed the strong potential of this extract for antioxidant activity, which correlates with anti-arthritic potential.

Conclusion

Based on molecular docking, the mechanism for these compounds for the anti-arthritic activity of these magical plant leaves was identified. It is concluded from the study that Moringa oleifera leaves ethanolic extract have potential compounds that may be used to develop more effective formulations for better therapeutic exercise against inflammatory diseases like rheumatoid arthritis.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501304728240523052907
2024-09-01
2025-04-23
Loading full text...

Full text loading...

References

  1. JiaL. PengX. DengZ. ZhangB. LiH. The structural characterization of polysaccharides from three cultivars of Moringa oleifera Lam. root and their effects on human intestinal microflora.Food Biosci.20235210248210.1016/j.fbio.2023.102482
    [Google Scholar]
  2. WuQ. ZhouH.J. ShengJ. SuL.Y. TianY. Extraction, structural properties, and bioactivities of Moringa (Moringa oleifera Lam.) isothiocyanates: A review.Food Biosci.20245710344710.1016/j.fbio.2023.103447
    [Google Scholar]
  3. BatraG. GortziO. LalasS.I. GalidiA. AlibadeA. NanosG.D. Enhanced antioxidant activity of Capsicum annuum L. and Moringa oleifera L. extracts after encapsulation in microemulsions.Chem. Eng.20171215
    [Google Scholar]
  4. CheraghiM. NamdariM. DaraeeH. NegahdariB. Cardioprotective effect of magnetic hydrogel nanocomposite loaded N,α-L-rhamnopyranosyl vincosamide isolated from Moringa oleifera leaves against doxorubicin-induced cardiac toxicity in rats: In vitro and in vivo studies.J. Microencapsul.2017344335341
    [Google Scholar]
  5. KurtulbaşE. AlbarriR. TorunM. ŞahinS. Encapsulation of Moringa oleifera leaf extract in chitosan-coated alginate microbeads produced by ionic gelation.Food Biosci.20225010215810.1016/j.fbio.2022.102158
    [Google Scholar]
  6. SrivastavaS. PandeyV.K. DashK.K. Dynamic bioactive properties of nutritional superfood Moringa oleifera: A comprehensive review.J. Agric. Food Res.20231410086010.1016/j.jafr.2023.100860
    [Google Scholar]
  7. WangF. LongS. ZhangJ. Antioxidant activities and anti-proliferative effects of Moringa oleifera L. extracts with head and neck cancer.Food Biosci.20203710069110.1016/j.fbio.2020.100691
    [Google Scholar]
  8. GharsallahK. RezigL. RajokaM.S.R. MehwishH.M. AliM.A. ChewS.C. Moringa oleifera: Processing, phytochemical composition, and industrial applications.S. Afr. J. Bot.202316018019310.1016/j.sajb.2023.07.008
    [Google Scholar]
  9. KumarS. BhattacharyaA. TiwariP. SahuP.K. A review of the phytochemical and pharmacological characteristics of Moringa oleifera.J. Pharm. Bioallied Sci.201810418119110.4103/JPBS.JPBS_126_18 30568375
    [Google Scholar]
  10. MezianiS. AissaniA. KhemisI. OomahB.D. ZaidiF. Physicochemical characterization and antibacterial activity of Moringa oleifera Lam leaf powder treated at different temperatures.Bioactive Carbohydrates and Dietary Fibre20233010038910.1016/j.bcdf.2023.100389
    [Google Scholar]
  11. PanS. WuS. WeiY. Exploring the causal relationship between inflammatory cytokines and inflammatory arthritis: A Mendelian randomization study.Cytokine202417315644610.1016/j.cyto.2023.156446 37979213
    [Google Scholar]
  12. KesharwaniD. PaliwalR. SatapathyT. PaulS.D. Rheumatiod arthritis: An updated overview of latest therapy and drug delivery.J. Pharmacopuncture201922421022410.3831/KPI.2019.22.029 31970018
    [Google Scholar]
  13. GermolecD.R. FrawleyR.P. EvansE. Markers of Inflammation.Methods Mol. Biol.2010598537310.1007/978‑1‑60761‑401‑2_5 19967506
    [Google Scholar]
  14. BhallaN. IngleN. PatriS.V. HaranathD. Phytochemical analysis of Moringa Oleifera leaves extracts by GC-MS and free radical scavenging potency for industrial applications.Saudi J. Biol. Sci.202128126915692810.1016/j.sjbs.2021.07.075 34866991
    [Google Scholar]
  15. PaulC. DidiaB. The effects of methanolic extract of Moringa oleifera lam roots on the histology of ovary and female reproductive tract of guinea pigs.J Exp Clin Anat2012111
    [Google Scholar]
  16. GhallooB.A. KhanK.U.R. AhmadS. Phytochemical profiling, in vitro biological activities, and in silico molecular docking studies of dracaena reflexa.Molecules2022273913
    [Google Scholar]
  17. JaiswalD. Kumar RaiP. KumarA. MehtaS. WatalG. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats.J. Ethnopharmacol.2009123339239610.1016/j.jep.2009.03.036 19501271
    [Google Scholar]
  18. RaalA. MeosA. HinrikusT. Dragendorff’s reagent: Historical perspectives and current status of a versatile reagent introduced over 150 years ago at the University of Dorpat, Tartu, Estonia.Pharmazie2020757299306 32635970
    [Google Scholar]
  19. JhaD.K. PandaL. LavanyaP. RamaiahS. AnbarasuA. Detection and confirmation of alkaloids in leaves of Justicia adhatoda and bioinformatics approach to elicit its anti-tuberculosis activity.Appl. Biochem. Biotechnol.2012168598099010.1007/s12010‑012‑9834‑1 22899014
    [Google Scholar]
  20. AuwalM.S. SakaS. MairigaI.A. SandaK.A. ShuaibuA. IbrahimA. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa).Vet. Res. Forum20145295
    [Google Scholar]
  21. EslamiS. EbrahimzadehM.A. BiparvaP. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model.RSC Advances2018846261442615510.1039/C8RA04451A 35541956
    [Google Scholar]
  22. ShaikhJ.R. PatilM.K. Qualitative tests for preliminary phytochemical screening: An overview.Int. J. Chem. Stud.20208260360810.22271/chemi.2020.v8.i2i.8834
    [Google Scholar]
  23. SinghV. KumarR. Study of phytochemical analysis and antioxidant activity of Allium sativum of Bundelkhand region.Int J Life Sci Sci Res2017361451145810.21276/ijlssr.2017.3.6.4
    [Google Scholar]
  24. Sánchez-RangelJ.C. BenavidesJ. HerediaJ.B. Cisneros-ZevallosL. Jacobo-VelázquezD.A. The Folin-Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination.Anal. Methods20135215990599910.1039/c3ay41125g
    [Google Scholar]
  25. MirM.A. BashirN. AlfaifyA. OteefM.D. GC-MS analysis of Myrtus communis extract and its antibacterial activity against Gram-positive bacteria.BMC Complement. Med. Ther.20202011910.1186/s12906‑020‑2863‑3
    [Google Scholar]
  26. MurugesanK. SenthamaraiT. ChandrashekharV.G. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines.Chem. Soc. Rev.202049176273632810.1039/C9CS00286C 32729851
    [Google Scholar]
  27. KumarN.R. ReddyJ.S. GopikrishnaG. SolomonK.A. GC-MS determination of bioactive constituents of Cycas beddomei cones.Int J Pharm Bio Sci201233344350
    [Google Scholar]
  28. BhardwajM. SaliV.K. ManiS. VasanthiH.R. Neophytadiene from Turbinaria ornata suppresses LPS-induced inflammatory response in RAW 264.7 macrophages and Sprague Dawley rats.Inflammation202043393795010.1007/s10753‑020‑01179‑z 31981060
    [Google Scholar]
  29. PalicR. StojanovicG. AlagicS. NikolicM. LepojevicZ. Chemical composition and antimicrobial activity of the essential oil and CO2 extracts of the oriental tobacco, Prilep.Flavour Fragrance J.200217532332610.1002/ffj.1084
    [Google Scholar]
  30. AttafiI. AlbeishyM. FageehM. AttafiM. AlamirA. Postmortem redistribution of lidocaine after illegal use.FASEB J.202135S1
    [Google Scholar]
  31. ByjuK. VasundharaG. AnuradhaV. NairS.M. KumarN.C. Presence of phytol, a precursor of vitamin E in Chaetomorpha antinnina. Mapana -.J. Sci.2013122576510.12723/mjs.25.6
    [Google Scholar]
  32. RajkumarS. JebanesanA. Mosquitocidal activities of octacosane from Moschosma polystachyum Linn. (lamiaceae).J. Ethnopharmacol.2004901878910.1016/j.jep.2003.09.030 14698514
    [Google Scholar]
  33. KalsumN. SulaemanA. SetiawanB. WibawanI.W. Phytochemical profiles of propolis Trigona spp. from three regions in Indonesia using GC-MS.J. Biol. Agric. Healthc.20166143137
    [Google Scholar]
  34. HuangZ.R. LinY.K. FangJ.Y. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology.Molecules200914154055410.3390/molecules14010540 19169201
    [Google Scholar]
  35. DeoraG.S. BanoI. Preliminary phytochemical screening and GC-MS analysis of methanolic leaf extract of Abutilon pannosum (Forst. F.) Schlect. from Indian Thar desert.J. Pharmacogn. Phytochem.201981894899
    [Google Scholar]
  36. Karabay-YavasogluN.U. SukatarA. OzdemirG. HorzumZ. Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens.Phytother. Res.200721215315610.1002/ptr.2045 17128433
    [Google Scholar]
  37. VermaV.P. KumarS.H. RaniK.V. SehgalN. PrakashO. Compound profiling in methanol extract of Kalanchoe blossfeldiana (Flaming katy) leaves through GC-MS analysis and evaluation of its bioactive properties.Glob J Adv Biol Sci201513849
    [Google Scholar]
  38. MarrufoT. NazzaroF. ManciniE. Chemical composition and biological activity of the essential oil from leaves of Moringa oleifera Lam. cultivated in Mozambique.Molecules2013189109891100010.3390/molecules180910989 24022760
    [Google Scholar]
  39. OdionE.E. OgboruR.O. ObarisiagbonP.A. OboigbaO.J. Bioactive constituents and antiulcer activity of the unripe fruit peel of Musa Paradisiaca L.(Musaceae).Nigerian J Pharm Appl Sci Res20211021320
    [Google Scholar]
  40. NikiE. NoguchiN. Antioxidant action of vitamin E in vivo as assessed from its reaction products with multiple biological oxidants.Free Radic. Res.202155435236310.1080/10715762.2020.1866181 33327809
    [Google Scholar]
  41. BrittainD.R. GyurcsikN.C. McElroyM. HillardS.A. General and arthritis-specific barriers to moderate physical activity in women with arthritis.Womens Health Issues2011211576310.1016/j.whi.2010.07.010 20833069
    [Google Scholar]
  42. DeshmukhR. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system.Mater. Today Commun.20233510587710.1016/j.mtcomm.2023.105877
    [Google Scholar]
  43. ChaudharyA A. FareedM. Rheumatoid arthritis and alternative medicine.Herbal Medicines: A Boon for Healthy Human Life.202223752
    [Google Scholar]
  44. AkhterS. HossainM.W. SultanaS. Ruellia prostrata Poir. activity evaluated by phytoconstituents, antioxidant, anti-inflammatory, antibacterial activity, and in silico molecular functions.J. Saudi Chem. Soc.202226110140110.1016/j.jscs.2021.101401
    [Google Scholar]
  45. GhoshS. DerleA. AhireM. Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera.PLoS One2013812e8252910.1371/journal.pone.0082529 24367520
    [Google Scholar]
  46. PatilA.B. PatilA. ShahS. PatilM. Antioxidant gap and lipid peroxidation in patients with rheumatoid arthritis: Relationship to disease manifestations and activity.Asian Pac. J. Trop. Dis.20122Suppl. 2S592S59510.1016/S2222‑1808(12)60228‑X
    [Google Scholar]
  47. AiyegoroO.A. OkohA.I. Preliminary phytochemical screening and in vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC.BMC Complement. Altern. Med.20101012110.1186/1472‑6882‑10‑21 20470421
    [Google Scholar]
  48. KaragözA. ArtunF.T. ÖzcanG. In vitro evaluation of antioxidant activity of some plant methanol extracts.Biotechnol. Biotechnol. Equip.201529611841189
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501304728240523052907
Loading
/content/journals/cbiot/10.2174/0122115501304728240523052907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test