Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

The specialized metabolism of the members of class Actinomycetes served as one of the deepest sources of compounds for the pharmaceutical industry. Within this class species of genus stand out as the most diverse and prolific producers of novel scaffolds. At some point at the end of the 20th century, chemical-microbiological screening of actinomycetes seemed to largely sample their specialized metabolism chemical space. Contrary to traditional discovery methods that directly focus on the molecule or its bioactivity, the availability of sequenced actinomycete genomes opens the door for novel biosynthetic gene clusters (BGC) for specialized metabolism. The genome-based approaches reveal the striking richness and diversity of BGCs, to which the “pre-genome” discovery paradigm was myopic. In most cases, small molecules encoded within these BGCs remain unknown, and finding efficient ways to probe such unexplored BGCs becomes one of the pressing issues of current biotechnology. Here, the focus is on the biology of pleiotropic transcriptional factor (TF) AdpA, whose gene is invariably present in genomes. The review will portray how this TF impacts the morphogenesis and metabolism of and how it can be exploited to discover novel natural products.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501322358240824115255
2024-09-01
2024-11-26
Loading full text...

Full text loading...

References

  1. Antimicrobial resistance in the age of COVID-19.Nat. Microbiol.20205677910.1038/s41564‑020‑0739‑432433531
    [Google Scholar]
  2. CarpouronJ.E. de HoogS. GentekakiE. HydeK.D. Emerging animal-associated fungal diseases.J. Fungi (Basel)20228661110.3390/jof806061135736094
    [Google Scholar]
  3. BoL. SunH. LiY.D. ZhuJ. WurpelJ.N.D. LinH. ChenZ.S. Combating antimicrobial resistance: The silent war.Front. Pharmacol.202415134775010.3389/fphar.2024.134775038420197
    [Google Scholar]
  4. ButlerM.S. HendersonI.R. CaponR.J. BlaskovichM.A.T. Antibiotics in the clinical pipeline as of December 2022.J. Antibiot. (Tokyo)202376843147310.1038/s41429‑023‑00629‑837291465
    [Google Scholar]
  5. Ribeiro da CunhaB. FonsecaL.P. CaladoC.R.C. Antibiotic discovery: Where have we come from, where do we go?Antibiotics (Basel)2019824510.3390/antibiotics802004531022923
    [Google Scholar]
  6. GratiaA. DathS. Bacteriolytic properties of certain molds.Compt Rend Soc Biol19249114421443
    [Google Scholar]
  7. WelschM. Bacteriostatic and bacteriolytic properties of actinomycetes.J. Bacteriol.194244557158810.1128/jb.44.5.571‑588.194216560596
    [Google Scholar]
  8. LandwehrW. WolfC. WinkJ. Actinobacteria and myxobacteria – Two of the most important bacterial resources for novel antibiotics.Curr. Top. Microbiol. Immunol.201639827330210.1007/82_2016_50327704272
    [Google Scholar]
  9. WaleschS. BirkelbachJ. JézéquelG. HaecklF.P.J. HegemannJ.D. HesterkampT. HirschA.K.H. HammannP. MüllerR. Fighting antibiotic resistance—strategies and (pre)clinical developments to find new antibacterials.EMBO Rep.2023241e5603310.15252/embr.20225603336533629
    [Google Scholar]
  10. KautsarS.A. BlinK. ShawS. WeberT. MedemaM.H. BiG-FAM: The biosynthetic gene cluster families database.Nucleic Acids Res.202149D1D490D49710.1093/nar/gkaa81233010170
    [Google Scholar]
  11. GavriilidouA. KautsarSA. ZaburannyiN. KrugD. MüllerR. MedemaMH. ZiemertN. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes.Nat Microbiol20227572673510.1038/s41564‑022‑01110‑2
    [Google Scholar]
  12. PyeC.R. BertinM.J. LokeyR.S. GerwickW.H. LiningtonR.G. Retrospective analysis of natural products provides insights for future discovery trends.Proc. Natl. Acad. Sci. USA2017114225601560610.1073/pnas.161468011428461474
    [Google Scholar]
  13. LiuZ. ZhaoY. HuangC. LuoY. Recent advances in silent gene cluster activation in Streptomyces. Front. Bioeng. Biotechnol.2021963223010.3389/fbioe.2021.63223033681170
    [Google Scholar]
  14. van BergeijkD.A. TerlouwB.R. MedemaM.H. van WezelG.P. Ecology and genomics of actinobacteria: New concepts for natural product discovery.Nat. Rev. Microbiol.2020181054655810.1038/s41579‑020‑0379‑y32483324
    [Google Scholar]
  15. ArakawaK. Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp.Antonie van Leeuwenhoek2018111574375110.1007/s10482‑018‑1052‑629476430
    [Google Scholar]
  16. BaltzR.H. Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes.J. Ind. Microbiol. Biotechnol.2016432-334337010.1007/s10295‑015‑1682‑x26364200
    [Google Scholar]
  17. OstashB. Pleiotropic regulatory genes as a tool for Streptomyces strains bioprospecting and improvement.Curr. Biotechnol.2021101183110.2174/2211550110666210217105112
    [Google Scholar]
  18. OchiK. From microbial differentiation to ribosome engineering.Biosci. Biotechnol. Biochem.20077161373138610.1271/bbb.7000717587668
    [Google Scholar]
  19. OchiK. Insights into microbial cryptic gene activation and strain improvement: Principle, application and technical aspects.J. Antibiot. (Tokyo)2017701254010.1038/ja.2016.8227381522
    [Google Scholar]
  20. LeeY. HwangS. KimW. KimJ.H. PalssonB.O. ChoB.K. CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces.J. Ind. Microbiol. Biotechnol.202451kuae00910.1093/jimb/kuae00938439699
    [Google Scholar]
  21. OstashB. Regulatory Genes of AdpA Subfamily in Streptomyces: Function and Evolution: Biology of AdpA Regulators in Streptomyces201810.2478/9783110627770.
    [Google Scholar]
  22. OhnishiY. KameyamaS. OnakaH. HorinouchiS. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus : Identification of a target gene of the A-factor receptor.Mol. Microbiol.199934110211110.1046/j.1365‑2958.1999.01579.x10540289
    [Google Scholar]
  23. YaoM.D. OhtsukaJ. NagataK. MiyazonoK. ZhiY. OhnishiY. TanokuraM. Complex structure of the DNA-binding domain of AdpA, the global transcription factor in Streptomyces griseus, and a target duplex DNA reveals the structural basis of its tolerant DNA sequence specificity.J. Biol. Chem.201328843310193102910.1074/jbc.M113.47361124019524
    [Google Scholar]
  24. RabykM. YushchukO. RokytskyyI. AnisimovaM. OstashB. Genomic insights into evolution of AdpA family master regulators of morphological differentiation and secondary metabolism in Streptomyces. J. Mol. Evol.2018863-420421510.1007/s00239‑018‑9834‑z29536136
    [Google Scholar]
  25. YushchukO. OstashI. VlasiukI. GrenT. LuzhetskyyA. KalinowskiJ. FedorenkoV. OstashB. Heterologous AdpA transcription factors enhance landomycin production in Streptomyces cyanogenus S136 under a broad range of growth conditions.Appl. Microbiol. Biotechnol.2018102198419842810.1007/s00253‑018‑9249‑130056513
    [Google Scholar]
  26. GuoS. LengT. SunX. ZhengJ. LiR. ChenJ. HuF. LiuF. HuaQ. Global Regulator AdpA_1075 regulates morphological differentiation and ansamitocin production in Actinosynnema pretiosum subsp. auranticum. Bioengineering (Basel)202291171910.3390/bioengineering911071936421120
    [Google Scholar]
  27. OhnishiY. YamazakiH. KatoJ. TomonoA. HorinouchiS. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol. Biochem.200569343143910.1271/bbb.69.43115784968
    [Google Scholar]
  28. LuT. WuX. CaoQ. XiaY. XunL. LiuH. Sulfane sulfur posttranslationally modifies the global regulator AdpA to influence actinorhodin production and morphological differentiation of Streptomyces coelicolor. MBio2022133e03862-2110.1128/mbio.03862‑2135467418
    [Google Scholar]
  29. PłachetkaM. KrawiecM. Zakrzewska-CzerwińskaJ. WolańskiM. AdpA positively regulates morphological differentiation and chloramphenicol biosynthesis in Streptomyces venezuelae. Microbiol. Spectr.202193e01981-2110.1128/Spectrum.01981‑2134878326
    [Google Scholar]
  30. XuD. KimT.J. ParkZ.Y. LeeS.K. YangS.H. KwonH.J. SuhJ.W. A DNA-binding factor, ArfA, interacts with the bldH promoter and affects undecylprodigiosin production in Streptomyces lividans. Biochem. Biophys. Res. Commun.2009379231932310.1016/j.bbrc.2008.12.05219103157
    [Google Scholar]
  31. KatoJ. OhnishiY. HorinouchiS. Autorepression of AdpA of the AraC/XylS family, a key transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. J. Mol. Biol.20053501122610.1016/j.jmb.2005.04.05815907934
    [Google Scholar]
  32. WolańskiM. DonczewR. Kois-OstrowskaA. MasiewiczP. JakimowiczD. Zakrzewska-CzerwińskaJ. The level of AdpA directly affects expression of developmental genes in Streptomyces coelicolor. J. Bacteriol.2011193226358636510.1128/JB.05734‑1121926228
    [Google Scholar]
  33. ZachariaV.M. RaY. SueC. AlcalaE. ReasoJ.N. RuzinS.E. TraxlerM.F. Genetic network architecture and environmental cues drive spatial organization of phenotypic division of labor in Streptomyces coelicolor. MBio2021123e00794-2110.1128/mBio.00794‑2134006658
    [Google Scholar]
  34. XuW. HuangJ. LinR. ShiJ. CohenS.N. Regulation of morphological differentiation in S. coelicolor by RNase III (AbsB) cleavage of mRNA encoding the AdpA transcription factor.Mol. Microbiol.201075378179110.1111/j.1365‑2958.2009.07023.x20059679
    [Google Scholar]
  35. ŠetinováD. ŠmídováK. PohlP. MusićI. BobekJ. RNase III-Binding-mRNAs revealed novel complementary transcripts in Streptomyces. Front. Microbiol.20188269310.3389/fmicb.2017.0269329379487
    [Google Scholar]
  36. LeskiwB.K. MahR. LawlorE.J. ChaterK.F. Accumulation of bldA-specified tRNA is temporally regulated in Streptomyces coelicolor A3(2).J. Bacteriol.199317571995200510.1128/jb.175.7.1995‑2005.19938458842
    [Google Scholar]
  37. PetterssonB.M.F. KirsebomL.A. tRNA accumulation and suppression of the bldA phenotype during development in Streptomyces coelicolor.Mol. Microbiol.20117961602161410.1111/j.1365‑2958.2011.07543.x21244529
    [Google Scholar]
  38. HigoA. HorinouchiS. OhnishiY. Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus .Mol Microbiol201181616072210.1111/j.1365‑2958.2011.07795.x.
    [Google Scholar]
  39. KoshlaO. YushchukO. OstashI. DacyukY. MyronovskyiM. JägerG. SüssmuthR.D. LuzhetskyyA. ByströmA. KirsebomL.A. OstashB. Gene miaA for post-transcriptional modification of tRNA XXA is important for morphological and metabolic differentiation in Streptomyces.Mol. Microbiol.2019112124926510.1111/mmi.1426631017319
    [Google Scholar]
  40. WangW. JiJ. LiX. WangJ. LiS. PanG. FanK. YangK. Angucyclines as signals modulate the behaviors of Streptomyces coelicolor.Proc. Natl. Acad. Sci. USA2014111155688569310.1073/pnas.132425311124706927
    [Google Scholar]
  41. Den HengstC.D. TranN.T. BibbM.J. ChandraG. LeskiwB.K. ButtnerM.J. Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth.Mol. Microbiol.201078236137910.1111/j.1365‑2958.2010.07338.x20979333
    [Google Scholar]
  42. TschowriN. SchumacherM.A. SchlimpertS. ChinnamN. FindlayK.C. BrennanR.G. ButtnerM.J. Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development.Cell201415851136114710.1016/j.cell.2014.07.02225171413
    [Google Scholar]
  43. WangW. ZhangJ. LiuX. LiD. LiY. TianY. TanH. Identification of a butenolide signaling system that regulates nikkomycin biosynthesis in Streptomyces. J. Biol. Chem.201829352200292004010.1074/jbc.RA118.00566730355730
    [Google Scholar]
  44. AntonovI.V. O’LoughlinS. GorohovskiA.N. O’ConnorP.B.F. BaranovP.V. AtkinsJ.F. Streptomyces rare codon UUA: from features associated with 2 adpA related locations to candidate phage regulatory translational bypassing.RNA Biol.202320192694210.1080/15476286.2023.227081237968863
    [Google Scholar]
  45. ShinSK. XuD. KwonHJ. SuhJW. S-adenosylmethionine activates adpA transcription and promotes streptomycin biosynthesis in Streptomyces griseus .FEMS Microbiol Lett2006259153910.1111/j.1574‑6968.2006.00246.x.
    [Google Scholar]
  46. ShigiN. Recent advances in our understanding of the biosynthesis of sulfur modifications in tRNAs.Front. Microbiol.20189267910.3389/fmicb.2018.0267930450093
    [Google Scholar]
  47. EsakovaO.A. GroveT.L. YennawarN.H. ArcinasA.J. WangB. KrebsC. AlmoS.C. BookerS.J. Structural basis for tRNA methylthiolation by the radical SAM enzyme MiaB.Nature2021597787756657010.1038/s41586‑021‑03904‑634526715
    [Google Scholar]
  48. TakanoE. TaoM. LongF. BibbM.J. WangL. LiW. ButtnerM.J. BibbM.J. DengZ.X. ChaterK.F. A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor.Mol. Microbiol.200350247548610.1046/j.1365‑2958.2003.03728.x14617172
    [Google Scholar]
  49. NguyenK.T. TenorJ. StettlerH. NguyenL.T. NguyenL.D. ThompsonC.J. Colonial differentiation in Streptomyces coelicolor depends on translation of a specific codon within the adpA gene.J. Bacteriol.2003185247291729610.1128/JB.185.24.7291‑7296.200314645292
    [Google Scholar]
  50. LeeH.N. KimJ.S. KimP. LeeH.S. KimE.S. Repression of antibiotic downregulator WblA by AdpA in Streptomyces coelicolor. Appl. Environ. Microbiol.201379134159416310.1128/AEM.00546‑1323603676
    [Google Scholar]
  51. McCormickJ.R. FlärdhK. Signals and regulators that govern Streptomyces development.FEMS Microbiol. Rev.201236120623110.1111/j.1574‑6976.2011.00317.x22092088
    [Google Scholar]
  52. HiranoS. KatoJ. OhnishiY. HorinouchiS. Control of the Streptomyces Subtilisin inhibitor gene by AdpA in the A-factor regulatory cascade in Streptomyces griseus. J. Bacteriol.2006188176207621610.1128/JB.00662‑0616923887
    [Google Scholar]
  53. WuY. KangQ. ZhangL.L. BaiL. subtilisin-involved morphology engineering for improved antibiotic production in actinomycetes.Biomolecules202010685110.3390/biom1006085132503302
    [Google Scholar]
  54. AkanumaG. HaraH. OhnishiY. HorinouchiS. Dynamic changes in the extracellular proteome caused by absence of a pleiotropic regulator AdpA in Streptomyces griseus.Mol. Microbiol.200973589891210.1111/j.1365‑2958.2009.06814.x19678896
    [Google Scholar]
  55. GuyetA. GominetM. BenaroudjN. MazodierP. Regulation of the clpP1clpP2 operon by the pleiotropic regulator AdpA in Streptomyces lividans. Arch. Microbiol.20131951283184110.1007/s00203‑013‑0918‑224196782
    [Google Scholar]
  56. LuT. WangQ. CaoQ. XiaY. XunL. LiuH. The pleiotropic regulator AdpA regulates the removal of excessive sulfane sulfur in Streptomyces coelicolor. Antioxidants202312231210.3390/antiox1202031236829871
    [Google Scholar]
  57. ZhuD. HeX. ZhouX. DengZ. Expression of the melC operon in several Streptomyces strains is positively regulated by AdpA, an AraC family transcriptional regulator involved in morphological development in Streptomyces coelicolor. J. Bacteriol.200518793180318710.1128/JB.187.9.3180‑3187.200515838045
    [Google Scholar]
  58. YushchukO. OstashI. MöskerE. VlasiukI. DenekaM. RückertC. BuscheT. FedorenkoV. KalinowskiJ. SüssmuthR.D. OstashB. Eliciting the silent lucensomycin biosynthetic pathway in Streptomyces cyanogenus S136 via manipulation of the global regulatory gene adpA.Sci. Rep.2021111350710.1038/s41598‑021‑82934‑633568768
    [Google Scholar]
  59. TakanoH. AsanoK. BeppuT. UedaK. Role of σH paralogs in intracellular melanin formation and spore development in Streptomyces griseus .Gene20073931-2435210.1016/j.gene.2007.01.02617346906
    [Google Scholar]
  60. KangY. WuW. ZhangF. ChenL. WangR. YeJ. WuH. ZhangH. AdpA lin regulates lincomycin and melanin biosynthesis by modulating precursors flux in Streptomyces lincolnensis.J. Basic Microbiol.202363662263110.1002/jobm.20220069236734183
    [Google Scholar]
  61. HaraH. OhnishiY. HorinouchiS. DNA microarray analysis of global gene regulation by A-factor in Streptomyces griseus. Microbiology (Reading)200915572197221010.1099/mic.0.027862‑019389771
    [Google Scholar]
  62. HigoA. HaraH. HorinouchiS. OhnishiY. Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces, revealed the extent and complexity of the AdpA regulatory network.DNA Res.201219325927410.1093/dnares/dss01022449632
    [Google Scholar]
  63. GuyetA. BenaroudjN. ProuxC. GominetM. CoppéeJ.Y. MazodierP. Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism.BMC Microbiol.20141418110.1186/1471‑2180‑14‑8124694298
    [Google Scholar]
  64. MakitrynskyyR. TsypikO. BechtholdA. Genetic engineering of Streptomyces ghanaensis ATCC14672 for improved production of moenomycins.Microorganisms20211013010.3390/microorganisms1001003035056478
    [Google Scholar]
  65. MakitrynskyyR. OstashB. TsypikO. RebetsY. DoudE. MeredithT. LuzhetskyyA. BechtholdA. WalkerS. FedorenkoV. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin.Open Biol.201331013012110.1098/rsob.13012124153004
    [Google Scholar]
  66. ZhangS. KlementzD. ZhuJ. MakitrynskyyR. Ola PasternakA.R. GüntherS. ZechelD.L. BechtholdA. Genome mining reveals the origin of a bald phenotype and a cryptic nucleocidin gene cluster in Streptomyces asterosporus DSM 41452.J. Biotechnol.2019292233110.1016/j.jbiotec.2018.12.01630641108
    [Google Scholar]
  67. XuJ. ZhangJ. ZhuoJ. LiY. TianY. TanH. Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. J. Biol. Chem.201729248197081972010.1074/jbc.M117.80914528972184
    [Google Scholar]
  68. LiuX. SunX. HeW. TianX. ZhuangY. ChuJ. Dynamic changes of metabolomics and expression of candicidin biosynthesis gene cluster caused by the presence of a pleiotropic regulator AdpA in Streptomyces ZYJ-6.Bioprocess Biosyst. Eng.20194281353136510.1007/s00449‑019‑02135‑431062087
    [Google Scholar]
  69. MaoX.M. LuoS. ZhouR.C. WangF. YuP. SunN. ChenX.X. TangY. LiY.Q. Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA.J. Biol. Chem.2015290127992800110.1074/jbc.M114.60827325648897
    [Google Scholar]
  70. ChenQ. ZhuJ. LiX. WenY. Transcriptional regulator DasR represses daptomycin production through both direct and cascade mechanisms in Streptomyces roseosporus. Antibiotics (Basel)2022118106510.3390/antibiotics1108106536009934
    [Google Scholar]
  71. KangY. WangY. HouB. WangR. YeJ. ZhuX. WuH. ZhangH. AdpAlin, a pleiotropic transcriptional regulator, is involved in the cascade regulation of lincomycin biosynthesis in Streptomyces lincolnensis. Front. Microbiol.201910242810.3389/fmicb.2019.0242831708899
    [Google Scholar]
  72. YuP. BuQ.T. TangY.L. MaoX.M. LiY.Q. Bidirectional regulation of AdpAch in controlling the expression of scnRI and scnRII in the natamycin biosynthesis of Streptomyces chattanoogensis L10.Front. Microbiol.2018931610.3389/fmicb.2018.0031629551998
    [Google Scholar]
  73. BignellD.R.D. FrancisI.M. FyansJ.K. LoriaR. Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies. Mol. Plant Microbe Interact.201427887588510.1094/MPMI‑02‑14‑0037‑R24678834
    [Google Scholar]
  74. HuangR. LiuH. ZhaoW. WangS. WangS. CaiJ. YangC. AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus. Microb. Cell Fact.20222116010.1186/s12934‑022‑01785‑635397580
    [Google Scholar]
  75. López-GarcíaM.T. SantamartaI. LirasP. Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant.Microbiology (Reading)201015682354236510.1099/mic.0.035956‑020447998
    [Google Scholar]
  76. ClaesenJ. BibbM.J. Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350.J. Bacteriol.2011193102510251610.1128/JB.00171‑1121421760
    [Google Scholar]
  77. BuX.L. WengJ.Y. HeB.B. XuM.J. XuJ. A Novel AdpA homologue negatively regulates morphological differentiation in Streptomyces xiamenensis 318.Appl. Environ. Microbiol.2019857e03107-1810.1128/AEM.03107‑1830683747
    [Google Scholar]
  78. HemmerlingF. PielJ. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery.Nat. Rev. Drug Discov.202221535937810.1038/s41573‑022‑00414‑635296832
    [Google Scholar]
  79. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b0128532162523
    [Google Scholar]
  80. KautsarS.A. van der HooftJ.J.J. de RidderD. MedemaM.H. BiG-SLiCE: A highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters.Gigascience2021101giaa15410.1093/gigascience/giaa15433438731
    [Google Scholar]
  81. CovingtonB.C. XuF. SeyedsayamdostM.R. A natural product chemist’s guide to unlocking silent biosynthetic gene clusters.Annu. Rev. Biochem.202190176378810.1146/annurev‑biochem‑081420‑10243233848426
    [Google Scholar]
  82. LaceyH.J. RutledgeP.J. Recently discovered secondary metabolites from Streptomyces species.Molecules202227388710.3390/molecules2703088735164153
    [Google Scholar]
  83. PeplerM.A. ZhangX. Hindra ElliotM.A. Inducing global expression of actinobacterial biosynthetic gene clusters.Methods Mol. Biol.2022248915717110.1007/978‑1‑0716‑2273‑5_935524050
    [Google Scholar]
  84. LeeN. ChoiM. KimW. HwangS. LeeY. KimJ.H. KimG. KimH. ChoS. KimS.C. PalssonB. JangK.S. ChoB.K. Re-classification of Streptomyces venezuelae strains and mining secondary metabolite biosynthetic gene clusters.iScience2021241210341010.1016/j.isci.2021.10341034877485
    [Google Scholar]
  85. Caicedo-MontoyaC. Manzo-RuizM. Ríos-EstepaR. Pan-Genome of the genus Streptomyces and prioritization of biosynthetic gene clusters with potential to produce antibiotic compounds.Front. Microbiol.20211267755810.3389/fmicb.2021.67755834659136
    [Google Scholar]
  86. MartinetL. NaôméA. BaiwirD. De PauwE. MazzucchelliG. RigaliS. On the risks of phylogeny-based strain prioritization for drug discovery: Streptomyces lunaelactis as a case Study.Biomolecules2020107102710.3390/biom1007102732664387
    [Google Scholar]
  87. HugJ.J. BaderC.D. RemškarM. CirnskiK. MüllerR. Concepts and methods to access novel antibiotics from actinomycetes.Antibiotics (Basel)2018724410.3390/antibiotics702004429789481
    [Google Scholar]
  88. BelknapK.C. ParkC.J. BarthB.M. AndamC.P. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria.Sci. Rep.2020101200310.1038/s41598‑020‑58904‑932029878
    [Google Scholar]
  89. PishchanyG. MeversE. Ndousse-FetterS. HorvathD.J.Jr PaludoC.R. Silva-JuniorE.A. KorenS. SkaarE.P. ClardyJ. KolterR. Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen.Proc. Natl. Acad. Sci. USA201811540101241012910.1073/pnas.180761311530228116
    [Google Scholar]
  90. BisacchiG.S. ManchesterJ.I. A new-class antibacterial-almost. lessons in drug discovery and development: A critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA gyrase and topoisomerase IV.ACS Infect. Dis.20151144110.1021/id500013t27620144
    [Google Scholar]
  91. MontielD. KangH.S. ChangF.Y. Charlop-PowersZ. BradyS.F. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.Proc. Natl. Acad. Sci. USA2015112298953895810.1073/pnas.150760611226150486
    [Google Scholar]
  92. YanY. XiaH. The roles of SARP family regulators involved in secondary metabolism in Streptomyces. Front. Microbiol.202415136880910.3389/fmicb.2024.136880938550856
    [Google Scholar]
  93. DuD. KatsuyamaY. OnakaH. FujieM. SatohN. Shin-yaK. OhnishiY. Production of a novel amide- containing polyene by activating a cryptic biosynthetic gene cluster in Streptomyces sp. MSC090213JE08.ChemBioChem201617151464147110.1002/cbic.20160016727311327
    [Google Scholar]
  94. KrauseJ. HandayaniI. BlinK. KulikA. MastY. Disclosing the potential of the SARP-type regulator PapR2 for the activation of antibiotic gene clusters in Streptomycetes.Front. Microbiol.20201122510.3389/fmicb.2020.0022532132989
    [Google Scholar]
  95. QiY. NepalK.K. BlodgettJ.A.V. A comparative metabologenomic approach reveals mechanistic insights into Streptomyces antibiotic crypticity.Proc. Natl. Acad. Sci. USA202111831e210351511810.1073/pnas.210351511834326261
    [Google Scholar]
  96. MelnykS. StepanyshynA. YushchukO. MandlerM. OstashI. KoshlaO. FedorenkoV. KahneD. OstashB. Genetic approaches to improve clorobiocin production in Streptomyces roseochromogenes NRRL 3504.Appl. Microbiol. Biotechnol.202210641543155610.1007/s00253‑022‑11814‑435147743
    [Google Scholar]
  97. TayD.W.P. TanL.L. HengE. ZulkarnainN. ChingK.C. WibowoM. ChinE.J. TanZ.Y.Q. LeongC.Y. NgV.W.P. YangL.K. SeowD.C.S. LimY.W. KohW. KoduruL. KanagasundaramY. NgS.B. LimY.H. WongF.T. Exploring a general multi-pronged activation strategy for natural product discovery in Actinomycetes.Commun. Biol.2024715010.1038/s42003‑023‑05648‑738184720
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501322358240824115255
Loading
/content/journals/cbiot/10.2174/0122115501322358240824115255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test