Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Circular RNAs (circRNAs) play important regulatory roles in the progression of gastric cancer (GC), but the exact mechanisms governing their regulation remain incompletely understood. Prior studies typically used back-spliced junctions (BSJs) to represent a range of circRNA isoforms, overlooking the prevalence of alternative splicing (AS) events within circRNAs, which could lead to unreliable or even incorrect conclusions in subsequent analyses, hindering our comprehension of the specific functions of circRNAs in GC.

Objective

This study aimed to explore the potential functional roles of the dysregulated circRNA transcripts in GC and provide new biomarkers and effective novel therapeutic strategies for GC treatment.

Methods

RNA-seq data with rRNA depletion and RNase R treatment was employed to characterize the expression profiles of circRNAs in GC, and RNA-seq data only with rRNA depletion was employed to identify differentially expressed mRNAs in GC. Based on the full-sequence information and accurate isoform-level quantification of circRNA transcripts calculated by the CircAST tool, we performed a series of bioinformatic analyses. A circRNA-miRNA-hub gene regulatory network was constructed to reveal the circRNA-mediated regulation of competing endogenous RNAs in GC, and then the protein-protein interaction (PPI) network was built to identify hub genes.

Results

A total of 18,398 circular transcripts were successfully reconstructed in the samples. Herein, 351 upregulated and 177 downregulated circRNA transcripts were identified. Functional enrichment analysis revealed that their parental genes were strongly associated with GC. After several screening steps, 19 dysregulated circRNA transcripts, 40 related miRNAs, and 65 target genes (mRNAs) were selected to construct the ceRNA network. Through PPI analysis, five hub genes (COL5A2, PDGFRB, SPARC, COL1A2, and COL4A1) were excavated. All these hub genes may play vital roles in gastric cancer cell proliferation and invasion.

Conclusion

Our study revealed a comprehensive profile of full-length circRNA transcripts in GC, which could provide potential prognostic biomarkers and targets for GC treatment. The results would be helpful for further studies on the biological roles of circRNAs in GC and offer new mechanistic insights into the pathogenesis of GC.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936346422240930081839
2024-10-07
2025-04-19
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. ThriftA.P. El-SeragH.B. Burden of gastric cancer.Clin. Gastroenterol. Hepatol.202018353454210.1016/j.cgh.2019.07.04531362118
    [Google Scholar]
  3. TangS. DaramS.R. WuR. BhaijeeF. Pathogenesis, diagnosis, and management of gastric ischemia.Clin. Gastroenterol. Hepatol.2014122246252.e110.1016/j.cgh.2013.07.02523920033
    [Google Scholar]
  4. TanP. YeohK.G. Genetics and molecular pathogenesis of gastric adenocarcinoma.Gastroenterology2015149511531162.e310.1053/j.gastro.2015.05.05926073375
    [Google Scholar]
  5. UemuraN. OkamotoS. YamamotoS. MatsumuraN. YamaguchiS. YamakidoM. TaniyamaK. SasakiN. SchlemperR.J. Helicobacter pylori infection and the development of gastric cancer.N. Engl. J. Med.20013451178478910.1056/NEJMoa00199911556297
    [Google Scholar]
  6. SitarzR. SkieruchaM. MielkoJ. OfferhausJ. MaciejewskiR. PolkowskiW. Gastric cancer: Epidemiology, prevention, classification, and treatment.Cancer Manag. Res.20181023924810.2147/CMAR.S14961929445300
    [Google Scholar]
  7. AjaniJ.A. LeeJ. SanoT. JanjigianY.Y. FanD. SongS. Gastric adenocarcinoma.Nat. Rev. Dis. Primers2017311703610.1038/nrdp.2017.3628569272
    [Google Scholar]
  8. SeeneevassenL. BessèdeE. MégraudF. LehoursP. DubusP. VaronC. Gastric cancer: Advances in carcinogenesis research and new therapeutic strategies.Int. J. Mol. Sci.2021227341810.3390/ijms2207341833810350
    [Google Scholar]
  9. KungC.H. Jestin HannanC. LinderG. JohanssonJ. NilssonM. HedbergJ. LindbladM. Impact of surgical resection rate on survival in gastric cancer: Nationwide study.BJS Open202152zraa01710.1093/bjsopen/zraa01733688944
    [Google Scholar]
  10. GuanW.L. HeY. XuR.H. Gastric cancer treatment: Recent progress and future perspectives.J. Hematol. Oncol.20231615710.1186/s13045‑023‑01451‑337245017
    [Google Scholar]
  11. QiuH. CaoS. XuR. Cancer incidence, mortality, and burden in China: a time‐trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020.Cancer Commun.202141101037104810.1002/cac2.1219734288593
    [Google Scholar]
  12. ChanW.L. YunH.K.B. CheungE.E. LiuM. HouL.Y. LamK.O. WongI.Y.H. ChiuW.H.K. LawS. KwongD. Association of sarcopenia with severe chemotherapy toxicities and survival in patients with advanced gastric cancer.Oncologist2024oyae12310.1093/oncolo/oyae12338885304
    [Google Scholar]
  13. Janiczek-PolewskaM. SzylbergŁ. MalickiJ. MarszałekA. Role of interleukins and new perspectives in mechanisms of resistance to chemotherapy in gastric cancer.Biomedicines2022107160010.3390/biomedicines1007160035884907
    [Google Scholar]
  14. JanjigianY.Y. KawazoeA. YañezP. LiN. LonardiS. KolesnikO. BarajasO. BaiY. ShenL. TangY. WyrwiczL.S. XuJ. ShitaraK. QinS. Van CutsemE. TaberneroJ. LiL. ShahS. BhagiaP. ChungH.C. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer.Nature2021600789072773010.1038/s41586‑021‑04161‑334912120
    [Google Scholar]
  15. HuangS.C. NgK.F. YehT.S. ChengC.T. LinJ.S. LiuY.J. ChuangH.C. ChenT.C. Subtraction of Epstein–Barr virus and microsatellite instability genotypes from the Lauren histotypes: Combined molecular and histologic subtyping with clinicopathological and prognostic significance validated in a cohort of 1,248 cases.Int. J. Cancer2019145123218323010.1002/ijc.3221530771224
    [Google Scholar]
  16. KimS.T. CristescuR. BassA.J. KimK.M. OdegaardJ.I. KimK. LiuX.Q. SherX. JungH. LeeM. LeeS. ParkS.H. ParkJ.O. ParkY.S. LimH.Y. LeeH. ChoiM. TalasazA. KangP.S. ChengJ. LobodaA. LeeJ. KangW.K. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer.Nat. Med.20182491449145810.1038/s41591‑018‑0101‑z30013197
    [Google Scholar]
  17. ShangQ. YangZ. JiaR. GeS. The novel roles of circRNAs in human cancer.Mol. Cancer2019181610.1186/s12943‑018‑0934‑630626395
    [Google Scholar]
  18. CocquerelleC. MascrezB. HétuinD. BailleulB. Mis-splicing yields circular RNA molecules.FASEB J.19937115516010.1096/fasebj.7.1.76785597678559
    [Google Scholar]
  19. MemczakS. JensM. ElefsiniotiA. TortiF. KruegerJ. RybakA. MaierL. MackowiakS.D. GregersenL.H. MunschauerM. LoewerA. ZieboldU. LandthalerM. KocksC. le NobleF. RajewskyN. Circular RNAs are a large class of animal RNAs with regulatory potency.Nature2013495744133333810.1038/nature1192823446348
    [Google Scholar]
  20. QuS. YangX. LiX. WangJ. GaoY. ShangR. SunW. DouK. LiH. Circular RNA: A new star of noncoding RNAs.Cancer Lett.2015365214114810.1016/j.canlet.2015.06.00326052092
    [Google Scholar]
  21. HansenT.B. JensenT.I. ClausenB.H. BramsenJ.B. FinsenB. DamgaardC.K. KjemsJ. Natural RNA circles function as efficient microRNA sponges.Nature2013495744138438810.1038/nature1199323446346
    [Google Scholar]
  22. Ashwal-FlussR. MeyerM. PamudurtiN.R. IvanovA. BartokO. HananM. EvantalN. MemczakS. RajewskyN. KadenerS. circRNA biogenesis competes with pre-mRNA splicing.Mol. Cell2014561556610.1016/j.molcel.2014.08.01925242144
    [Google Scholar]
  23. LiZ. HuangC. BaoC. ChenL. LinM. WangX. ZhongG. YuB. HuW. DaiL. ZhuP. ChangZ. WuQ. ZhaoY. JiaY. XuP. LiuH. ShanG. Exon-intron circular RNAs regulate transcription in the nucleus.Nat. Struct. Mol. Biol.201522325626410.1038/nsmb.295925664725
    [Google Scholar]
  24. MeyerK.D. PatilD.P. ZhouJ. ZinovievA. SkabkinM.A. ElementoO. PestovaT.V. QianS.B. JaffreyS.R. 5′ UTR m(6)A promotes cap-Independent translation.Cell20151634999101010.1016/j.cell.2015.10.01226593424
    [Google Scholar]
  25. ZhouJ. WanJ. GaoX. ZhangX. JaffreyS.R. QianS.B. Dynamic m6A mRNA methylation directs translational control of heat shock response.Nature2015526757459159410.1038/nature1537726458103
    [Google Scholar]
  26. KristensenL.S. AndersenM.S. StagstedL.V.W. EbbesenK.K. HansenT.B. KjemsJ. The biogenesis, biology and characterization of circular RNAs.Nat. Rev. Genet.2019201167569110.1038/s41576‑019‑0158‑731395983
    [Google Scholar]
  27. BarrettS.P. SalzmanJ. Circular RNAs: Analysis, expression and potential functions.Development2016143111838184710.1242/dev.12807427246710
    [Google Scholar]
  28. Rybak-WolfA. StottmeisterC. GlažarP. JensM. PinoN. GiustiS. HananM. BehmM. BartokO. Ashwal-FlussR. HerzogM. SchreyerL. PapavasileiouP. IvanovA. ÖhmanM. RefojoD. KadenerS. RajewskyN. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically Expressed.Mol. Cell201558587088510.1016/j.molcel.2015.03.02725921068
    [Google Scholar]
  29. ZhangH. JiangL. SunD. HouJ. JiZ. CircRNA: A novel type of biomarker for cancer.Breast Cancer20182511710.1007/s12282‑017‑0793‑928721656
    [Google Scholar]
  30. DingL. ZhaoY. DangS. WangY. LiX. YuX. LiZ. WeiJ. LiuM. LiG. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4.Mol. Cancer20191814510.1186/s12943‑019‑1006‑230922402
    [Google Scholar]
  31. ZhuZ. RongZ. LuoZ. YuZ. ZhangJ. QiuZ. HuangC. Circular RNA circNHSL1 promotes gastric cancer progression through the miR-1306-3p/SIX1/vimentin axis.Mol. Cancer201918112610.1186/s12943‑019‑1054‑731438963
    [Google Scholar]
  32. ZhangJ. LiuH. HouL. WangG. ZhangR. HuangY. ChenX. ZhuJ. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression.Mol. Cancer201716115110.1186/s12943‑017‑0719‑328893265
    [Google Scholar]
  33. GuoJ.U. AgarwalV. GuoH. BartelD.P. Expanded identification and characterization of mammalian circular RNAs.Genome Biol.201415740910.1186/s13059‑014‑0409‑z25070500
    [Google Scholar]
  34. WuJ. LiY. WangC. CuiY. XuT. WangC. WangX. ShaJ. JiangB. WangK. HuZ. GuoX. SongX. CircAST: Full-length assembly and quantification of alternatively spliced isoforms in circular RNAs.Genom. Proteom. Bioinform.201917552253410.1016/j.gpb.2019.03.00432007626
    [Google Scholar]
  35. ZhengY. JiP. ChenS. HouL. ZhaoF. Reconstruction of full-length circular RNAs enables isoform-level quantification.Genome Med.2019111210.1186/s13073‑019‑0614‑130660194
    [Google Scholar]
  36. HossainM.T. ZhangJ. RezaM.S. PengY. FengS. WeiY. Reconstruction of full-length circRNA sequences using chimeric alignment information.Int. J. Mol. Sci.20222312677610.3390/ijms2312677635743218
    [Google Scholar]
  37. ZhangJ. ZhangH. JuZ. PengY. PanY. XiW. WeiY. JCcirc: CircRNA full-length sequence assembly through integrated junction contigs.Brief. Bioinform.2023246bbad36310.1093/bib/bbad36337833842
    [Google Scholar]
  38. ZhangY. LiuW. FengW. WangX. LeiT. ChenZ. SongW. Identification of 14 differentially expressed metabolism-related genes as potential targets of gastric cancer by integrated proteomics and transcriptomics.Front. Cell Dev. Biol.20221081624910.3389/fcell.2022.81624935265615
    [Google Scholar]
  39. GaoY. ZhangJ. ZhaoF. Circular RNA identification based on multiple seed matching.Brief. Bioinform.201819580381010.1093/bib/bbx01428334140
    [Google Scholar]
  40. HuangD.W. ShermanB.T. LempickiR.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc.200941445710.1038/nprot.2008.21119131956
    [Google Scholar]
  41. KozomaraA. Griffiths-JonesS. miRBase: Annotating high confidence microRNAs using deep sequencing data.Nucleic Acids Res.201442D1D68D7310.1093/nar/gkt118124275495
    [Google Scholar]
  42. EnrightA.J. JohnB. GaulU. TuschlT. SanderC. MarksD.S. MicroRNA targets in drosophila.Genome Biol.200351R110.1186/gb‑2003‑5‑1‑r114709173
    [Google Scholar]
  43. HuangH.Y. LinY.C.D. CuiS. HuangY. TangY. XuJ. BaoJ. LiY. WenJ. ZuoH. WangW. LiJ. NiJ. RuanY. LiL. ChenY. XieY. ZhuZ. CaiX. ChenX. YaoL. ChenY. LuoY. LuXuS. LuoM. ChiuC.M. MaK. ZhuL. ChengG.J. BaiC. ChiangY.C. WangL. WeiF. LeeT.Y. HuangH.D. miRTarBase update 2022: An informative resource for experimentally validated miRNA–target interactions.Nucleic Acids Res.202250D1D222D23010.1093/nar/gkab107934850920
    [Google Scholar]
  44. LewisB.P. BurgeC.B. BartelD.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.Cell20051201152010.1016/j.cell.2004.12.03515652477
    [Google Scholar]
  45. WongN. WangX. miRDB: An online resource for microRNA target prediction and functional annotations.Nucleic Acids Res.201543D1D146D15210.1093/nar/gku110425378301
    [Google Scholar]
  46. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.123930314597658
    [Google Scholar]
  47. SzklarczykD. MorrisJ.H. CookH. KuhnM. WyderS. SimonovicM. SantosA. DonchevaN.T. RothA. BorkP. JensenL.J. von MeringC. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible.Nucleic Acids Res.201745D1D362D36810.1093/nar/gkw93727924014
    [Google Scholar]
  48. ColapricoA. SilvaT.C. OlsenC. GarofanoL. CavaC. GaroliniD. SabedotT.S. MaltaT.M. PagnottaS.M. CastiglioniI. CeccarelliM. BontempiG. NoushmehrH. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data.Nucleic Acids Res.2016448e7110.1093/nar/gkv150726704973
    [Google Scholar]
  49. SamurM.K. RTCGAToolbox: A new tool for exporting TCGA Firehose data.PLoS One201499e10639710.1371/journal.pone.010639725181531
    [Google Scholar]
  50. IvanovA. MemczakS. WylerE. TortiF. PorathH.T. OrejuelaM.R. PiechottaM. LevanonE.Y. LandthalerM. DieterichC. RajewskyN. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals.Cell Rep.201510217017710.1016/j.celrep.2014.12.01925558066
    [Google Scholar]
  51. YuY. ElbleR. Homeostatic signaling by cell-cell junctions and its dysregulation during cancer progression.J. Clin. Med.2016522610.3390/jcm502002626901232
    [Google Scholar]
  52. LiuL. WangH. YuS. GaoX. LiuG. SunD. JiangX. An update on the roles of circRNA-ZFR in human malignant tumors.Front. Cell Dev. Biol.2022980618110.3389/fcell.2021.80618135186956
    [Google Scholar]
  53. ZhouZ.H. JiC.D. XiaoH.L. ZhaoH.B. CuiY.H. BianX.W. Reorganized collagen in the tumor microenvironment of gastric cancer and its association with prognosis.J. Cancer2017881466147610.7150/jca.1846628638462
    [Google Scholar]
  54. AndreuzziE. CapuanoA. PolettoE. PivettaE. FejzaA. FaveroA. DolianaR. CannizzaroR. SpessottoP. MongiatM. Role of extracellular matrix in gastrointestinal cancer-associated angiogenesis.Int. J. Mol. Sci.20202110368610.3390/ijms2110368632456248
    [Google Scholar]
  55. SinghS.S. YapW.N. ArfusoF. KarS. WangC. CaiW. DharmarajanA.M. SethiG. KumarA.P. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine?World J. Gastroenterol.20152143122611227310.3748/wjg.v21.i43.1226126604635
    [Google Scholar]
  56. SalmenaL. PolisenoL. TayY. KatsL. PandolfiP.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?Cell2011146335335810.1016/j.cell.2011.07.01421802130
    [Google Scholar]
  57. WalmaDAC YamadaKM The extracellular matrix in developmentDev Camb Engl20201471010.1242/dev.175596
    [Google Scholar]
  58. SunM. ChenS. AdamsS.M. FlorerJ.B. LiuH. KaoW.W.Y. WenstrupR.J. BirkD.E. Collagen V is a dominant regulator of collagen fibrillogenesis: Dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1 -null mouse model.J. Cell Sci.2011124234096410510.1242/jcs.09136322159420
    [Google Scholar]
  59. ChenH.C. TsengY.K. ShuC.W. WengT.J. LiouH.H. YenL.M. HsiehI.C. WangC.C. WuP.C. ShiueY.L. FuT.Y. TsaiK.W. GerL.P. LiuP.F. Differential clinical significance of COL 5A1 and COL 5A2 in tongue squamous cell carcinoma.J. Oral Pathol. Med.201948646847610.1111/jop.1286130972812
    [Google Scholar]
  60. Chivu-EconomescuM. NeculaL.G. MateiL. DraguD. BleotuC. SoropA. HerleaV. DimaS. PopescuI. DiaconuC.C. Collagen family and other matrix remodeling proteins identified by bioinformatics analysis as hub genes involved in gastric cancer progression and prognosis.Int. J. Mol. Sci.2022236321410.3390/ijms2306321435328635
    [Google Scholar]
  61. BerchtoldS. GrünwaldB. KrügerA. ReithmeierA. HählT. ChengT. FeuchtingerA. BornD. ErkanM. KleeffJ. EspositoI. Collagen type V promotes the malignant phenotype of pancreatic ductal adenocarcinoma.Cancer Lett.201535622 Pt B72173210.1016/j.canlet.2014.10.02025449434
    [Google Scholar]
  62. WuJ. LiuJ. WeiX. YuQ. NiuX. TangS. SongL. A feature-based analysis identifies COL1A2 as a regulator in pancreatic cancer.J. Enzyme Inhib. Med. Chem.201934142042810.1080/14756366.2018.148473430734598
    [Google Scholar]
  63. MoriK. EnokidaH. KagaraI. KawakamiK. ChiyomaruT. TataranoS. KawaharaK. NishiyamaK. SekiN. NakagawaM. CpG hypermethylation of collagen type I alpha 2 contributes to proliferation and migration activity of human bladder cancer.Int. J. Oncol.20093461593160219424577
    [Google Scholar]
  64. BonazziV.F. NancarrowD.J. StarkM.S. MoserR.J. BoyleG.M. AoudeL.G. SchmidtC. HaywardN.K. Cross-platform array screening identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as genes frequently silenced by methylation in melanoma.PLoS One2011610e2612110.1371/journal.pone.002612122028813
    [Google Scholar]
  65. MisawaK. KanazawaT. MisawaY. ImaiA. EndoS. HakamadaK. MinetaH. Hypermethylation of collagen α2 (I) gene (COL1A2) is an independent predictor of survival in head and neck cancer.Cancer Biomark.2012-2012103-413514410.3233/CBM‑2012‑024222674299
    [Google Scholar]
  66. JiJ. ZhaoL. BudhuA. ForguesM. JiaH.L. QinL.X. YeQ.H. YuJ. ShiX. TangZ.Y. WangX.W. Let-7g targets collagen type I α2 and inhibits cell migration in hepatocellular carcinoma.J. Hepatol.201052569069710.1016/j.jhep.2009.12.02520338660
    [Google Scholar]
  67. PanZ. LiL. FangQ. ZhangY. HuX. QianY. HuangP. Analysis of dynamic molecular networks for pancreatic ductal adenocarcinoma progression.Cancer Cell Int.201818121410.1186/s12935‑018‑0718‑530598639
    [Google Scholar]
  68. WuY-H. ChangT-H. HuangY-F. HuangH-D. ChouC-Y. COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer.Oncogene201433263432344010.1038/onc.2013.30723934190
    [Google Scholar]
  69. LiJ. DingY. LiA. Identification of COL1A1 and COL1A2 as candidate prognostic factors in gastric cancer.World J. Surg. Oncol.201614129710.1186/s12957‑016‑1056‑527894325
    [Google Scholar]
  70. ZagagliaS. SelchC. NisevicJ.R. MeiD. MichalakZ. Hernandez-HernandezL. KrithikaS. VezyroglouK. VaradkarS.M. PeplerA. BiskupS. LeãoM. GärtnerJ. MerkenschlagerA. JakschM. MøllerR.S. GardellaE. KristiansenB.S. HansenL.K. VariM.S. HelbigK.L. DesaiS. Smith-HicksC.L. Hino-FukuyoN. TalvikT. LaugesaarR. IlvesP. ÕunapK. KörberI. HartliebT. KudernatschM. WinklerP. SchimmelM. HasseA. KnufM. HeinemeyerJ. MakowskiC. GhediaS. SubramanianG.M. StrianoP. ThomasR.H. MicallefC. ThomM. WerringD.J. KlugerG.J. CrossJ.H. GuerriniR. BalestriniS. SisodiyaS.M. Neurologic phenotypes associated with COL4A1 / 2 mutations.Neurology20189122e2078e208810.1212/WNL.000000000000656730413629
    [Google Scholar]
  71. CuiX. ShanT. QiaoL. Collagen type IV alpha 1 (COL4A1) silence hampers the invasion, migration and epithelial–mesenchymal transition (EMT) of gastric cancer cells through blocking Hedgehog signaling pathway.Bioengineered20221348972898110.1080/21655979.2022.205379935297303
    [Google Scholar]
  72. StellerE.J.A. RaatsD.A. KosterJ. RuttenB. GovaertK.M. EmminkB.L. SnoerenN. van HooffS.R. HolstegeF.C.P. MaasC. BorelR.I.H.M. KranenburgO. PDGFRB promotes liver metastasis formation of mesenchymal-like colorectal tumor cells.Neoplasia2013152204IN3010.1593/neo.12172623441134
    [Google Scholar]
  73. KimY. KimE. WuQ. GuryanovaO. HitomiM. LathiaJ.D. SerwanskiD. SloanA.E. WeilR.J. LeeJ. NishiyamaA. BaoS. HjelmelandA.B. RichJ.N. Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity.Genes Dev.201226111247126210.1101/gad.193565.11222661233
    [Google Scholar]
  74. WallmannT. ZhangX.M. WalleriusM. BolinS. JolyA.L. SobockiC. LeissL. JiangY. BerghJ. HollandE.C. EngerP.Ø. AnderssonJ. SwartlingF.J. MileticH. UhrbomL. HarrisR.A. RolnyC. Microglia induce PDGFRB expression in glioma cells to enhance their migratory capacity.iScience20189718310.1016/j.isci.2018.10.01130384135
    [Google Scholar]
  75. HägglöfC. HammarstenP. JosefssonA. StattinP. PaulssonJ. BerghA. ÖstmanA. Stromal PDGFRbeta expression in prostate tumors and non-malignant prostate tissue predicts prostate cancer survival.PLoS One201055e1074710.1371/journal.pone.001074720505768
    [Google Scholar]
  76. Ucaryilmaz MetinC. OzcanG. Comprehensive bioinformatic analysis reveals a cancer-associated fibroblast gene signature as a poor prognostic factor and potential therapeutic target in gastric cancer.BMC Cancer202222169210.1186/s12885‑022‑09736‑535739492
    [Google Scholar]
  77. LiX. OhJ.S. LeeY. LeeE.C. YangM. KwonN. HaT.W. HongD.Y. SongY. KimH.K. SongB.H. ChoiS. LeeM.R. YoonJ. Albumin-binding photosensitizer capable of targeting glioma via the SPARC pathway.Biomater. Res.20232712310.1186/s40824‑023‑00360‑336945032
    [Google Scholar]
  78. RuizE.M. AlhassanS.A. ErramiY. Abd ElmageedZ.Y. FangJ.S. WangG. BrooksM.A. Abi-RachedJ.A. KandilE. ZerfaouiM. A predictive model of adaptive resistance to BRAF/MEK inhibitors in melanoma.Int. J. Mol. Sci.2023249840710.3390/ijms2409840737176114
    [Google Scholar]
  79. BhoopathiP. GondiC.S. GujratiM. DinhD.H. LakkaS.S. SPARC mediates Src-induced disruption of actin cytoskeleton via inactivation of small GTPases Rho–Rac–Cdc42.Cell. Signal.201123121978198710.1016/j.cellsig.2011.07.00821798346
    [Google Scholar]
  80. EnriquezC. CancilaV. FerriR. SulsentiR. FischettiI. MilaniM. OstanoP. GregnaninI. Mello-GrandM. BerrinoE. BregniM. RenneG. TripodoC. ColomboM.P. JachettiE. Castration-induced downregulation of SPARC in stromal cells drives neuroendocrine differentiation of prostate cancer.Cancer Res.202181164257427410.1158/0008‑5472.CAN‑21‑016334185677
    [Google Scholar]
  81. JohnB. NaczkiC. PatelC. GhoneumA. QasemS. SalihZ. SaidN. Regulation of the bi-directional cross-talk between ovarian cancer cells and adipocytes by SPARC.Oncogene201938224366438310.1038/s41388‑019‑0728‑330765860
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936346422240930081839
Loading
/content/journals/cbio/10.2174/0115748936346422240930081839
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Biomarker; ceRNA network; circRNA; endogenous RNAs; full-length transcript; gastric cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test