Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

Breast Cancer (BC) is a significant cause of high mortality amongst women globally and probably will remain a disease posing challenges about its detectability. Advancements in medical imaging technology have improved the accuracy and efficiency of breast cancer classification. However, tumor features' complexity and imaging data variability still pose challenges.

Methods

This study proposes the Ensemble Residual-VGG-16 model as a novel combination of the Deep Residual Network (DRN) and VGG-16 architecture. This model is purposely engineered with maximal precision for the task of breast cancer diagnosis based on mammography images. We assessed its performance by accuracy, recall, precision, and the F1-Score. All these metrics indicated the high performance of this Residual-VGG-16 model. The diagnostic residual-VGG16 performed exceptionally well with an accuracy of 99.6%, precision of 99.4%, recall of 99.7%, F1 score of 98.6%, and Mean Intersection over Union (MIoU) of 99.8% with MIAS datasets.

Results

Similarly, the INBreast dataset achieved an accuracy of 93.8%, a precision of 94.2%, a recall of 94.5%, and an F1-score of 93.4%.

Conclusion

The proposed model is a significant advancement in breast cancer diagnosis, with high accuracy and potential as an automated grading.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936333380240816053223
2024-10-28
2025-04-04
Loading full text...

Full text loading...

References

  1. MadariagaB. MondscheinS. TorresS. Breast cancer trends in Chile: Incidence and mortality rates (2007-2018).PLOS Glob. Public Health202446132210.1371/journal.pgph.000132238935632
    [Google Scholar]
  2. BigattiS.M. WeathersT. HayesL. DaggyJ. Challenges experienced by black women with breast cancer during active treatment: Relationship to treatment adherence.J. Racial Ethn. Health Disparities202411151652710.1007/s40615‑023‑01537‑136811760
    [Google Scholar]
  3. ObeaguE.I. ObeaguG.U. Breast cancer: A review of risk factors and diagnosis.Medicine202410333690510.1097/MD.000000000003690538241592
    [Google Scholar]
  4. DyrskjotL. HanselD.E. EfstathiouJ.A. KnowlesM.A. GalskyM.D. TeohJ. TheodorescuD. Bladder cancer.Nat. Rev. Dis. Primers2023915810.1038/s41572‑023‑00468‑937884563
    [Google Scholar]
  5. IlićI. Multifocality, multicentricity, and bilaterality of breast cancer. In: Breast Cancer - Evolving Challenges and Next Frontiers.IntechOpen2021
    [Google Scholar]
  6. AwotundeJ.B. PanigrahiR. KhandelwalB. Breast cancer diagnosis based on hybrid rule-based feature selection with deep learning algorithm.Res. Biomed. Eng.202339111512710.1007/s42600‑022‑00255‑7
    [Google Scholar]
  7. TaheriM. OmranpourH. Breast cancer prediction by ensemble meta-feature space generator based on deep neural network.Biomed. Signal Process. Control20248710538210.1016/j.bspc.2023.105382
    [Google Scholar]
  8. AliM. MaqsoodF. LiuS. Enhancing breast cancer diagnosis with channel-wise attention mechanisms in deep learning.Comput. Mater. Continua20237732699271410.32604/cmc.2023.045310
    [Google Scholar]
  9. MandairD. Reis-FilhoJ.S. AshworthA. Biological insights and novel biomarker discovery through deep learning approaches in breast cancer histopathology.NPJ Breast Cancer2023912110.1038/s41523‑023‑00518‑137024522
    [Google Scholar]
  10. NissarI. AlamS. MasoodS. KashifM. MOB-CBAM: A dual channel attention-based deep learning generalizable model for breast cancer molecular subtypes prediction using mammograms.Comput. Methods Programs Biomed.202424810812110.1016/j.cmpb.2024.10812138531147
    [Google Scholar]
  11. ZiyambeB. YahyaA. MushiriT. TariqM.U. AbbasQ. BabarM. AlbathanM. AsimM. HussainA. JabbarS. A deep learning framework for the prediction and diagnosis of ovarian cancer in pre- and post menopausal women.Diagnostics202313101010.3390/diagnostics1310170337238188
    [Google Scholar]
  12. WheelerS.B. RocqueG. BaschE. Benefits of breast cancer screening and treatment on mortality.JAMA2024331319920010.1001/jama.2023.2673038227044
    [Google Scholar]
  13. TaylorD.B. BurrowsS. SaundersC.M. ParizelP.M. IvesA. Contrast-enhanced mammography (CEM) versus MRI for breast cancer staging: detection of additional malignant lesions not seen on conventional imaging.Eur. Radiol. Exp.202371810.1186/s41747‑022‑00318‑536781808
    [Google Scholar]
  14. RehmanN. U. Edge of discovery: Enhancing breast tumor MRI analysis with boundary-driven deep learning.Biomed. Signal Process. Control20249510629110.1016/j.bspc.2024.106291
    [Google Scholar]
  15. ShenL. HeM. Optimal breast tumor diagnosis using discrete wavelet transform and deep belief network based on improved sunflower optimization method.Biomed. Signal Process. Control20206010195310.1016/j.bspc.2020.101953
    [Google Scholar]
  16. BiradarN. PatilR.S. Automated mammogram breast cancer detection using the optimized combination of convolutional and recurrent neural network.Evol. Intell.20211441459147410.1007/s12065‑020‑00403‑x
    [Google Scholar]
  17. MohantyF. RupS. Automated diagnosis of breast cancer using parameter optimized kernel extreme learning machine.Biomed. Signal Process. Control20206210210810.1016/j.bspc.2020.102108
    [Google Scholar]
  18. TingF.F. TanY.J. Convolutional neural network improvement for breast cancer classification.Expert Syst. Appl.201912010311510.1016/j.eswa.2018.11.008
    [Google Scholar]
  19. HousseinE.H. EmamM.M. AliA.A. An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm.Neural Comput. Appl.20223420180151803310.1007/s00521‑022‑07445‑535698722
    [Google Scholar]
  20. MelekoodappattuJ.G. DhasA.S. KandathilB.K. Breast cancer detection in mammogram: Combining modified CNN and texture feature-based approach.J. Ambient Intell. Humaniz. Comput.2023149113971140610.1007/s12652‑022‑03713‑3
    [Google Scholar]
  21. KarthigaR. Diagnosis of breast cancer for modern mammography using artificial intelligence.Math. Comput. Simul.202220231633010.1016/j.matcom.2022.05.038
    [Google Scholar]
  22. TitoriyaA. SachdevaS. Breast cancer histopathology image classification using AlexNet.4th International conference on information systems and computer networks (ISCON)21-22 November 2019, Mathura, India, pp. 708-712.
    [Google Scholar]
  23. HameedZ. ZahiaS. Garcia-ZapirainB. Javier AguirreJ. María VanegasA. Breast cancer histopathology image classification using an ensemble of deep learning models.Sensors202020161610.3390/s2016437332764398
    [Google Scholar]
  24. IsmailN.S. SovuthyC. Breast cancer detection based on deep learning technique.International UNIMAS STEM 12th engineering conference (EnCon)28-29 August 2019, Kuching, Malaysia, pp. 89-92.
    [Google Scholar]
  25. TsaiM-J. TaoY-H. Deep learning technology applied to medical image tissue classification.Diagnostics202212101010.3390/diagnostics1210243036292119
    [Google Scholar]
  26. ThwinS.M. MalebaryS.J. AbulfarajA.W. Attention-based ensemble network for effective breast cancer classification over benchmarks.Technologies2024122210.3390/technologies12020016
    [Google Scholar]
  27. ShuklaP.K. BeheraA.R. A framework for breast cancer prediction and classification using deep learning.IJCVR2024142154169
    [Google Scholar]
  28. SucklingJ. Mammographic Image Analysis Society (MIAS) database v1.21.Apollo - University of Cambridge Repository2015
    [Google Scholar]
  29. MoreiraI.C. AmaralI. DominguesI. CardosoA. CardosoM.J. CardosoJ.S. In breast: Toward a full-field digital mammographic database.Acad. Radiol.201219223624810.1016/j.acra.2011.09.01422078258
    [Google Scholar]
  30. SeelyJ.M. EllisonL.F. BilletteJ-M. ZhangS.X. WilkinsonA.N. Incidence of breast cancer in younger women: A canadian trend analysis.Can. Assoc. Radiol. J.202410.1177/0846537124124642238664982
    [Google Scholar]
  31. SriramG. PraveenaT.R.R. Classification of leukemia and leukemoid using vgg-16 convolutional neural network architecture.Mol. Cell. Biomech.2022191294010.32604/mcb.2022.016966
    [Google Scholar]
  32. AmiriA.F. KichouS. OudiraH. Fault detection and diagnosis of a photovoltaic system based on deep learning using the combination of a convolutional neural network (CNN) and bidirectional gated recurrent unit (Bi-GRU).Sustainability2024163310.3390/su16031012
    [Google Scholar]
  33. MahmoudA. El-SharkawyY.H. Multi-wavelength interference phase imaging for automatic breast cancer detection and delineation using diffuse reflection imaging.Sci. Rep.202414141510.1038/s41598‑023‑50475‑938172105
    [Google Scholar]
  34. TaheriS. GolrizkhatamiZ. Magnification-specific and magnification-independent classification of breast cancer histopathological image using deep learning approaches.Signal Image Video Process.202317258359110.1007/s11760‑022‑02263‑7
    [Google Scholar]
  35. PlataniaR. ShamsS. Automated breast cancer diagnosis using deep learning and region of interest detection (bc-droid).Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics20 August 2017, pp. 536-543.
    [Google Scholar]
  36. RaajR.S. Breast cancer detection and diagnosis using hybrid deep learning architecture.Biomed. Signal Process. Control20238210455810.1016/j.bspc.2022.104558
    [Google Scholar]
  37. AljuaidH. AlturkiN. AlsubaieN. CavallaroL. LiottaA. Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning.Comput. Methods Programs Biomed.202222310695110.1016/j.cmpb.2022.10695135767911
    [Google Scholar]
  38. GaoM. FesslerJ.A. ChanH-P. X-ray source motion blur modeling and deblurring with generative diffusion for digital breast tomosynthesis.Phys. Med. Biol.2024691111500310.1088/1361‑6560/ad40f838640913
    [Google Scholar]
  39. Al-JabbarM. AlshahraniM. SenanE.M. Multi-method diagnosis of histopathological images for early detection of breast cancer based on hybrid and deep learning.Mathematics2023116610.3390/math11061429
    [Google Scholar]
  40. JingX. Automated breast density assessment in MRI using deep learning and radiomics: strategies for reducing inter‐observer variability.J. Magn. Reson. Imaging.20246018091
    [Google Scholar]
  41. JabeenK. KhanM.A. AlhaisoniM. TariqU. ZhangY.D. HamzaA. MickusA. DamaševičiusR. Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion.Sensors2022223310.3390/s2203080735161552
    [Google Scholar]
  42. RagabD.A. AttallahO. SharkasM. RenJ. MarshallS. A framework for breast cancer classification using Multi-DCNNs.Comput. Biol. Med.202113110424510.1016/j.compbiomed.2021.10424533556893
    [Google Scholar]
  43. XuP. ZhaoJ. WanM. SongQ. SuQ. WangD. Classification of multi-feature fusion ultrasound images of breast tumor within category 4 using convolutional neural networks.Med. Phys.20245164243425710.1002/mp.1694638436433
    [Google Scholar]
  44. ZakareyaS. IzadkhahH. KarimpourJ. A new deep-learning-based model for breast cancer diagnosis from medical images.Diagnostics20231311194410.3390/diagnostics1311194437296796
    [Google Scholar]
  45. TamminaS. Transfer learning using VGG-16 with deep convolutional neural network for classifying images.Int. J. Scienti. Resea. Pub.201991014315010.29322/IJSRP.9.10.2019.p9420
    [Google Scholar]
  46. KcF. TyH. A novel local pattern descriptor-local vector pattern in high-order derivative space for face recognition.IEEE Trans Image Process201423728779110.1109/TIP.2014.2321495
    [Google Scholar]
  47. AcharyaU.R. HagiwaraY. Automated screening tool for dry and wet age-related macular degeneration (ARMD) using pyramid of histogram of oriented gradients (PHOG) and nonlinear features.J. Comput. Sci.201720415110.1016/j.jocs.2017.03.005
    [Google Scholar]
  48. AlkhatibM. HafianeA. Robust adaptive median binary pattern for noisy texture classification and retrieval.IEEE Trans. Image Process.201928115407541810.1109/TIP.2019.291674231107648
    [Google Scholar]
  49. SebastianV. BinoA. Gray level co-occurrence matrices: Generalisation and some new features.arXiv preprint20122012483110.48550/arXiv.1205.4831
    [Google Scholar]
  50. IqbalN. MumtazR. ShafiU. ZaidiS.M.H. Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms.PeerJ Comput. Sci.2021753610.7717/peerj‑cs.53634141878
    [Google Scholar]
  51. AguerchiK. JabraneY. HabbaM. El HassaniA.H. A CNN hyperparameters optimization based on particle swarm optimization for mammography breast cancer classification.J. Imaging2024102210.3390/jimaging1002003038392079
    [Google Scholar]
  52. NguyenH.-T. LiS. CheahC.C. A layer-wise theoretical framework for deep learning of convolutional neural networks.IEEE2022112199222006
    [Google Scholar]
  53. TangC. SunW. XueM. A hybrid whale optimization algorithm with artificial bee colony.Soft Comput.20222652075209710.1007/s00500‑021‑06623‑2
    [Google Scholar]
  54. BhausahebD.P. KashyapK.L. Shuffled shepherd deer hunting optimization based deep neural network for breast cancer classification using breast histopathology images.Biomed. Signal Process. Control20238310457010.1016/j.bspc.2023.104570
    [Google Scholar]
  55. ChenS. ZouY. LiuP.X. Iba-u-net: Attentive bconvlstm u-net with redesigned inception for medical image segmentation.Comput. Biol. Med.202113510455110.1016/j.compbiomed.2021.104551
    [Google Scholar]
  56. Amin-NajiM. AghagolzadehA. Ensemble of CNN for multi-focus image fusion.Inf. Fusion20195120121410.1016/j.inffus.2019.02.003
    [Google Scholar]
  57. AslanM.F. A hybrid end-to-end learning approach for breast cancer diagnosis: convolutional recurrent network.Comput. Electr. Eng.202310510856210.1016/j.compeleceng.2022.108562
    [Google Scholar]
  58. TiryakiV.M. TutkunN. Breast cancer mass classification using machine learning, binary-coded genetic algorithms and an ensemble of deep transfer learning.Comput. J.20246731111112510.1093/comjnl/bxad046
    [Google Scholar]
  59. ZhuZ. WangS-H. ZhangY-D. A survey of convolutional neural network in breast cancer.Comput. Model. Eng. Sci.202313632127217210.32604/cmes.2023.02548437152661
    [Google Scholar]
  60. MohanakurupV. Breast cancer detection on histopathological images using a composite dilated backbone network.Comp. Intell. Neurosci.202220228517706
    [Google Scholar]
  61. KhandezaminZ. NaderanM. RashtiM.J. Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier.J. Biomed. Inform.202011110359110.1016/j.jbi.2020.10359133039588
    [Google Scholar]
  62. SouzaM.D. PrabhuG.A. KumaraV. EarlyNet: a novel transfer learning approach with VGG11 and EfficientNet for early-stage breast cancer detection.Int. J. Syst. Assur. Eng. Manag.2024Jul11410.1007/s13198‑024‑02408‑6
    [Google Scholar]
  63. IslamW. JonesM. FaizR. SadeghipourN. QiuY. ZhengB. Improving performance of breast lesion classification using a resnet50 model optimized with a novel attention mechanism.Tomography2022852411242510.3390/tomography805020036287799
    [Google Scholar]
  64. WangZ. LiM. WangH. Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features.IEEE Access2019710514610515810.1109/ACCESS.2019.2892795
    [Google Scholar]
  65. AlyamiJ. SadadT. RehmanA. AlmutairiF. SabaT. BahajS.A. AlkhurimA. Cloud computing‐based framework for breast tumor image classification using fusion of alexnet and glcm texture features with ensemble multi‐kernel support vector machine (mk‐svm).Comput. Intell. Neurosci.202220221740330210.1155/2022/740330236093488
    [Google Scholar]
  66. RobinM. JohnJ. Breast tumor segmentation using U-NET.5th international conference on computing methodologies and communication2021, pp. 1164-1167
    [Google Scholar]
  67. HaqI.U. AliH. Feature fusion and Ensemble learning-based CNN model for mammographic image classification.J. King Saud Univ. -Comput. Inf. Sci.20223463310331810.1016/j.jksuci.2022.03.023
    [Google Scholar]
  68. WangX. Intelligent hybrid deep learning model for breast cancer detection.Electronics202211171710.3390/electronics11172767
    [Google Scholar]
  69. SetiawanA.S. WesleyJ. Mammogram classification using law’s texture energy measure and neural networks.Procedia Comput. Sci.201559929710.1016/j.procs.2015.07.341
    [Google Scholar]
  70. QiL. LuX. ShenH. GaoQ. HanZ. ZhuJ. MengY. WangL. ChenS. LiY. Automatic classification of mass shape and margin on mammography with artificial intelligence: deep cnn versus radiomics.J. Digit. Imaging20233641314132210.1007/s10278‑023‑00798‑w36932250
    [Google Scholar]
  71. HuQ. WhitneyH.M. GigerM.L. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI.Sci. Rep.20201011053610.1038/s41598‑020‑67441‑432601367
    [Google Scholar]
  72. SalamaW.M. AlyM.H. Deep learning in mammography images segmentation and classification: Automated CNN approach.Alex. Eng. J.20216054701470910.1016/j.aej.2021.03.048
    [Google Scholar]
  73. El HoubyE.M. YassinN.I. Malignant and nonmalignant classification of breast lesions in mammograms using convolutional neural networks.Biomed. Signal Process. Control20217010295410.1016/j.bspc.2021.102954
    [Google Scholar]
  74. GuoR. LuG. QinB. FeiB. Ultrasound imaging technologies for breast cancer detection and management: A review.Ultrasound Med. Biol.2018441377010.1016/j.ultrasmedbio.2017.09.01229107353
    [Google Scholar]
  75. KoonceB. Convolutional Neural Networks with Swift for TensorflowBerkeley, CAApress2021
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936333380240816053223
Loading
/content/journals/cbio/10.2174/0115748936333380240816053223
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test