Skip to content
2000
image of Hybrid Feature Extraction for Breast Cancer Classification Using the Ensemble Residual VGG16 Deep Learning Model

Abstract

Introduction

Breast Cancer (BC) is a significant cause of high mortality amongst women globally and probably will remain a disease posing challenges about its detectability. Advancements in medical imaging technology have improved the accuracy and efficiency of breast cancer classification. However, tumor features' complexity and imaging data variability still pose challenges.

Methods

This study proposes the Ensemble Residual-VGG-16 model as a novel combination of the Deep Residual Network (DRN) and VGG-16 architecture. This model is purposely engineered with maximal precision for the task of breast cancer diagnosis based on mammography images. We assessed its performance by accuracy, recall, precision, and the F1-Score. All these metrics indicated the high performance of this Residual-VGG-16 model. The diagnostic residual-VGG16 performed exceptionally well with an accuracy of 99.6%, precision of 99.4%, recall of 99.7%, F1 score of 98.6%, and Mean Intersection over Union (MIoU) of 99.8% with MIAS datasets.

Results

Similarly, the INBreast dataset achieved an accuracy of 93.8%, a precision of 94.2%, a recall of 94.5%, and an F1-score of 93.4%.

Conclusion

The proposed model is a significant advancement in breast cancer diagnosis, with high accuracy and potential as an automated grading.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936333380240816053223
2024-10-28
2025-01-19
Loading full text...

Full text loading...

References

  1. Madariaga B. Mondschein S. Torres S. Breast cancer trends in Chile: Incidence and mortality rates (2007-2018). PLOS Glob. Public Health 2024 4 6 1322 10.1371/journal.pgph.0001322 38935632
    [Google Scholar]
  2. Bigatti S.M. Weathers T. Hayes L. Daggy J. Challenges experienced by black women with breast cancer during active treatment: Relationship to treatment adherence. J. Racial Ethn. Health Disparities 2024 11 1 516 527 10.1007/s40615‑023‑01537‑1 36811760
    [Google Scholar]
  3. Obeagu E.I. Obeagu G.U. Breast cancer: A review of risk factors and diagnosis. Medicine 2024 103 3 36905 10.1097/MD.0000000000036905 38241592
    [Google Scholar]
  4. Dyrskjot L. Hansel D.E. Efstathiou J.A. Knowles M.A. Galsky M.D. Teoh J. Theodorescu D. Bladder cancer. Nat. Rev. Dis. Primers 2023 9 1 58 10.1038/s41572‑023‑00468‑9 37884563
    [Google Scholar]
  5. Ilić I. Multifocality, multicentricity, and bilaterality of breast cancer. Breast Cancer - Evolving Challenges and Next Frontiers. IntechOpen 2021
    [Google Scholar]
  6. Awotunde J.B. Panigrahi R. Khandelwal B. Breast cancer diagnosis based on hybrid rule-based feature selection with deep learning algorithm. Res. Biomed. Eng. 2023 39 1 115 127 10.1007/s42600‑022‑00255‑7
    [Google Scholar]
  7. Taheri M. Omranpour H. Breast cancer prediction by ensemble meta-feature space generator based on deep neural network. Biomed. Signal Process. Control 2024 87 105382 10.1016/j.bspc.2023.105382
    [Google Scholar]
  8. Ali M. Maqsood F. Liu S. Enhancing breast cancer diagnosis with channel-wise attention mechanisms in deep learning. Comput. Mater. Continua 2023 77 3 2699 2714 10.32604/cmc.2023.045310
    [Google Scholar]
  9. Mandair D. Reis-Filho J.S. Ashworth A. Biological insights and novel biomarker discovery through deep learning approaches in breast cancer histopathology. NPJ Breast Cancer 2023 9 1 21 10.1038/s41523‑023‑00518‑1 37024522
    [Google Scholar]
  10. Nissar I. Alam S. Masood S. Kashif M. MOB-CBAM: A dual-channel attention-based deep learning generalizable model for breast cancer molecular subtypes prediction using mammograms. Comput. Methods Programs Biomed. 2024 248 108121 10.1016/j.cmpb.2024.108121 38531147
    [Google Scholar]
  11. Ziyambe B. Yahya A. Mushiri T. Tariq M.U. Abbas Q. Babar M. Albathan M. Asim M. Hussain A. Jabbar S. A deep learning framework for the prediction and diagnosis of ovarian cancer in pre- and post-menopausal women. Diagnostics 2023 13 10 10 10.3390/diagnostics13101703 37238188
    [Google Scholar]
  12. Wheeler S.B. Rocque G. Basch E. Benefits of breast cancer screening and treatment on mortality. JAMA 2024 331 3 199 200 10.1001/jama.2023.26730 38227044
    [Google Scholar]
  13. Taylor D.B. Burrows S. Saunders C.M. Parizel P.M. Ives A. Contrast-enhanced mammography (CEM) versus MRI for breast cancer staging: detection of additional malignant lesions not seen on conventional imaging. Eur. Radiol. Exp. 2023 7 1 8 10.1186/s41747‑022‑00318‑5 36781808
    [Google Scholar]
  14. Rehman N. U. Edge of discovery: Enhancing breast tumor MRI analysis with boundary-driven deep learning. Biomed. Signal Process. Control 2024 95 106291 10.1016/j.bspc.2024.106291
    [Google Scholar]
  15. Shen L. He M. Optimal breast tumor diagnosis using discrete wavelet transform and deep belief network based on improved sunflower optimization method. Biomed. Signal Process. Control 2020 60 101953 10.1016/j.bspc.2020.101953
    [Google Scholar]
  16. Biradar N. Patil R.S. Automated mammogram breast cancer detection using the optimized combination of convolutional and recurrent neural network. Evol. Intell. 2021 14 4 1459 1474 10.1007/s12065‑020‑00403‑x
    [Google Scholar]
  17. Mohanty F. Rup S. Automated diagnosis of breast cancer using parameter optimized kernel extreme learning machine. Biomed. Signal Process. Control 2020 62 102108 10.1016/j.bspc.2020.102108
    [Google Scholar]
  18. Ting F.F. Tan Y.J. Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 2019 120 103 115 10.1016/j.eswa.2018.11.008
    [Google Scholar]
  19. Houssein E.H. Emam M.M. Ali A.A. An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm. Neural Comput. Appl. 2022 34 20 18015 18033 10.1007/s00521‑022‑07445‑5 35698722
    [Google Scholar]
  20. Melekoodappattu J.G. Dhas A.S. Kandathil B.K. Breast cancer detection in mammogram: Combining modified CNN and texture feature-based approach. J. Ambient Intell. Humaniz. Comput. 2023 14 9 11397 11406 10.1007/s12652‑022‑03713‑3
    [Google Scholar]
  21. Karthiga R. Diagnosis of breast cancer for modern mammography using artificial intelligence. Math. Comput. Simul. 2022 202 316 330 10.1016/j.matcom.2022.05.038
    [Google Scholar]
  22. Titoriya A. Sachdeva S. Breast cancer histopathology image classification using AlexNet. 4th International conference on information systems and computer networks (ISCON), 21-22 November 2019, Mathura, India, pp. 708-712.
    [Google Scholar]
  23. Hameed Z. Zahia S. Garcia-Zapirain B. Javier Aguirre J. María Vanegas A. Breast cancer histopathology image classification using an ensemble of deep learning models. Sensors 2020 20 16 16 10.3390/s20164373 32764398
    [Google Scholar]
  24. Ismail N.S. Sovuthy C. Breast cancer detection based on deep learning technique. International UNIMAS STEM 12th engineering conference (EnCon), 28-29 August 2019, Kuching, Malaysia, pp. 89-92.
    [Google Scholar]
  25. Tsai M-J. Tao Y-H. Deep learning technology applied to medical image tissue classification. Diagnostics 2022 12 10 10 10.3390/diagnostics12102430 36292119
    [Google Scholar]
  26. Thwin S.M. Malebary S.J. Abulfaraj A.W. Attention-based ensemble network for effective breast cancer classification over benchmarks. Technologies 2024 12 2 2 10.3390/technologies12020016
    [Google Scholar]
  27. Shukla P.K. Behera A.R. A framework for breast cancer prediction and classification using deep learning. IJCVR 2024 14 2 154 169
    [Google Scholar]
  28. Suckling J. Mammographic Image Analysis Society (MIAS) database v1.21. Apollo - University of Cambridge Repository 2015
    [Google Scholar]
  29. Moreira I.C. Amaral I. Domingues I. Cardoso A. Cardoso M.J. Cardoso J.S. In breast: Toward a full-field digital mammographic database. Acad. Radiol. 2012 19 2 236 248 10.1016/j.acra.2011.09.014 22078258
    [Google Scholar]
  30. Seely J.M. Ellison L.F. Billette J-M. Zhang S.X. Wilkinson A.N. Incidence of breast cancer in younger women: A canadian trend analysis. Can. Assoc. Radiol. J. 2024 10.1177/08465371241246422 38664982
    [Google Scholar]
  31. Sriram G. Praveena T.R.R. Classification of leukemia and leukemoid using vgg-16 convolutional neural network architecture. Mol. Cell. Biomech. 2022 19 1 29 40 10.32604/mcb.2022.016966
    [Google Scholar]
  32. Amiri A.F. Kichou S. Oudira H. Fault Detection and Diagnosis of a Photovoltaic System Based on Deep Learning Using the Combination of a Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU). Sustainability 2024 16 3 3 10.3390/su16031012
    [Google Scholar]
  33. Mahmoud A. El-Sharkawy Y.H. Multi-wavelength interference phase imaging for automatic breast cancer detection and delineation using diffuse reflection imaging. Sci. Rep. 2024 14 1 415 10.1038/s41598‑023‑50475‑9 38172105
    [Google Scholar]
  34. Taheri S. Golrizkhatami Z. Magnification-specific and magnification-independent classification of breast cancer histopathological image using deep learning approaches. Signal Image Video Process. 2023 17 2 583 591 10.1007/s11760‑022‑02263‑7
    [Google Scholar]
  35. Platania R. Shams S. Automated breast cancer diagnosis using deep learning and region of interest detection (bc-droid). Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics, 20 August 2017, pp. 536-543.
    [Google Scholar]
  36. Raaj R.S. Breast cancer detection and diagnosis using hybrid deep learning architecture. Biomed. Signal Process. Control 2023 82 104558 10.1016/j.bspc.2022.104558
    [Google Scholar]
  37. Aljuaid H. Alturki N. Alsubaie N. Cavallaro L. Liotta A. Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Comput. Methods Programs Biomed. 2022 223 106951 10.1016/j.cmpb.2022.106951 35767911
    [Google Scholar]
  38. Gao M. Fessler J.A. Chan H-P. X-ray source motion blur modeling and deblurring with generative diffusion for digital breast tomosynthesis. Phys. Med. Biol. 2024 69 11 115003 10.1088/1361‑6560/ad40f8 38640913
    [Google Scholar]
  39. Al-Jabbar M. Alshahrani M. Senan E.M. Multi-method diagnosis of histopathological images for early detection of breast cancer based on hybrid and deep learning. Mathematics 2023 11 6 6 10.3390/math11061429
    [Google Scholar]
  40. Jing X. Automated breast density assessment in MRI using deep learning and radiomics: strategies for reducing inter‐observer variability. J. Magn. Reson. Imaging. 2024 60 1 80 91
    [Google Scholar]
  41. Jabeen K. Khan M.A. Alhaisoni M. Tariq U. Zhang Y.D. Hamza A. Mickus A. Damaševičius R. Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors 2022 22 3 3 10.3390/s22030807 35161552
    [Google Scholar]
  42. Ragab D.A. Attallah O. Sharkas M. Ren J. Marshall S. A framework for breast cancer classification using Multi-DCNNs. Comput. Biol. Med. 2021 131 104245 10.1016/j.compbiomed.2021.104245 33556893
    [Google Scholar]
  43. Xu P. Zhao J. Wan M. Song Q. Su Q. Wang D. Classification of multi-feature fusion ultrasound images of breast tumor within category 4 using convolutional neural networks. Med. Phys. 2024 51 6 4243 4257 10.1002/mp.16946 38436433
    [Google Scholar]
  44. Zakareya S. Izadkhah H. Karimpour J. A new deep-learning-based model for breast cancer diagnosis from medical images. Diagnostics 2023 13 11 1944 10.3390/diagnostics13111944 37296796
    [Google Scholar]
  45. Tammina S. Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int. J. Scienti. Resea. Pub. 2019 9 10 143 150 10.29322/IJSRP.9.10.2019.p9420
    [Google Scholar]
  46. Kc F. Ty H. A novel local pattern descriptor-local vector pattern in high-order derivative space for face recognition. IEEE Trans Image Process 2014 23 7 2877 91 10.1109/TIP.2014.2321495
    [Google Scholar]
  47. Acharya U.R. Hagiwara Y. Automated screening tool for dry and wet age-related macular degeneration (ARMD) using pyramid of histogram of oriented gradients (PHOG) and nonlinear features. J. Comput. Sci. 2017 20 41 51 10.1016/j.jocs.2017.03.005
    [Google Scholar]
  48. Alkhatib M. Hafiane A. Robust adaptive median binary pattern for noisy texture classification and retrieval. IEEE Trans. Image Process. 2019 28 11 5407 5418 10.1109/TIP.2019.2916742 31107648
    [Google Scholar]
  49. Sebastian V. Bino A. Gray level co-occurrence matrices: Generalisation and some new features. arXiv preprint 2012 2012 4831 10.48550/arXiv.1205.4831
    [Google Scholar]
  50. Iqbal N. Mumtaz R. Shafi U. Zaidi S.M.H. Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms. PeerJ Comput. Sci. 2021 7 536 10.7717/peerj‑cs.536 34141878
    [Google Scholar]
  51. Aguerchi K. Jabrane Y. Habba M. El Hassani A.H. A CNN hyperparameters optimization based on particle swarm optimization for mammography breast cancer classification. J. Imaging 2024 10 2 2 10.3390/jimaging10020030 38392079
    [Google Scholar]
  52. Nguyen H.-T. Li S. Cheah C.C. A layer-wise theoretical framework for deep learning of convolutional neural networks. IEEE 2022 11 21992 22006
    [Google Scholar]
  53. Tang C. Sun W. Xue M. A hybrid whale optimization algorithm with artificial bee colony. Soft Comput. 2022 26 5 2075 2097 10.1007/s00500‑021‑06623‑2
    [Google Scholar]
  54. Bhausaheb D.P. Kashyap K.L. Shuffled shepherd deer hunting optimization based deep neural network for breast cancer classification using breast histopathology images. Biomed. Signal Process. Control 2023 83 104570 10.1016/j.bspc.2023.104570
    [Google Scholar]
  55. Chen S. Zou Y. Liu P.X. Iba-u-net: Attentive bconvlstm u-net with redesigned inception for medical image segmentation. Comput. Biol. Med. 2021 135 104551 10.1016/j.compbiomed.2021.104551
    [Google Scholar]
  56. Amin-Naji M. Aghagolzadeh A. Ensemble of CNN for multi-focus image fusion. Inf. Fusion 2019 51 201 214 10.1016/j.inffus.2019.02.003
    [Google Scholar]
  57. Aslan M.F. A hybrid end-to-end learning approach for breast cancer diagnosis: convolutional recurrent network. Comput. Electr. Eng. 2023 105 108562 10.1016/j.compeleceng.2022.108562
    [Google Scholar]
  58. Tiryaki V.M. Tutkun N. Breast cancer mass classification using machine learning, binary-coded genetic algorithms and an ensemble of deep transfer learning. Comput. J. 2024 67 3 1111 1125 10.1093/comjnl/bxad046
    [Google Scholar]
  59. Zhu Z. Wang S-H. Zhang Y-D. A survey of convolutional neural network in breast cancer. Comput. Model. Eng. Sci. 2023 136 3 2127 2172 10.32604/cmes.2023.025484 37152661
    [Google Scholar]
  60. Mohanakurup V. Breast cancer detection on histopathological images using a composite dilated backbone network. Comp. Intell. Neurosci. 2022 2022 8517706
    [Google Scholar]
  61. Khandezamin Z. Naderan M. Rashti M.J. Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier. J. Biomed. Inform. 2020 111 103591 10.1016/j.jbi.2020.103591 33039588
    [Google Scholar]
  62. Souza M.D. Prabhu G.A. Kumara V. EarlyNet: a novel transfer learning approach with VGG11 and EfficientNet for early-stage breast cancer detection. Int. J. Syst. Assur. Eng. Manag. 2024 Jul 1 14 10.1007/s13198‑024‑02408‑6
    [Google Scholar]
  63. Islam W. Jones M. Faiz R. Sadeghipour N. Qiu Y. Zheng B. Improving performance of breast lesion classification using a resnet50 model optimized with a novel attention mechanism. Tomography 2022 8 5 2411 2425 10.3390/tomography8050200 36287799
    [Google Scholar]
  64. Wang Z. Li M. Wang H. Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access 2019 7 105146 105158 10.1109/ACCESS.2019.2892795
    [Google Scholar]
  65. Alyami J. Sadad T. Rehman A. Almutairi F. Saba T. Bahaj S.A. Alkhurim A. Cloud computing‐based framework for breast tumor image classification using fusion of alexnet and glcm texture features with ensemble multi‐kernel support vector machine (mk‐svm). Comput. Intell. Neurosci. 2022 2022 1 7403302 10.1155/2022/7403302 36093488
    [Google Scholar]
  66. Robin M. John J. Breast tumor segmentation using U-NET. 5th international conference on computing methodologies and communication, 2021, pp. 1164-1167
    [Google Scholar]
  67. Haq I.U. Ali H. Feature fusion and Ensemble learning-based CNN model for mammographic image classification. J. King Saud Univ. -Comput. Inf. Sci. 2022 34 6 3310 3318 10.1016/j.jksuci.2022.03.023
    [Google Scholar]
  68. Wang X. Intelligent hybrid deep learning model for breast cancer detection. Electronics 2022 11 17 17 10.3390/electronics11172767
    [Google Scholar]
  69. Setiawan A.S. Wesley J. Mammogram classification using law’s texture energy measure and neural networks. Procedia Comput. Sci. 2015 59 92 97 10.1016/j.procs.2015.07.341
    [Google Scholar]
  70. Qi L. Lu X. Shen H. Gao Q. Han Z. Zhu J. Meng Y. Wang L. Chen S. Li Y. Automatic classification of mass shape and margin on mammography with artificial intelligence: deep cnn versus radiomics. J. Digit. Imaging 2023 36 4 1314 1322 10.1007/s10278‑023‑00798‑w 36932250
    [Google Scholar]
  71. Hu Q. Whitney H.M. Giger M.L. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Sci. Rep. 2020 10 1 10536 10.1038/s41598‑020‑67441‑4 32601367
    [Google Scholar]
  72. Salama W.M. Aly M.H. Deep learning in mammography images segmentation and classification: Automated CNN approach. Alex. Eng. J. 2021 60 5 4701 4709 10.1016/j.aej.2021.03.048
    [Google Scholar]
  73. El Houby E.M. Yassin N.I. Malignant and nonmalignant classification of breast lesions in mammograms using convolutional neural networks. Biomed. Signal Process. Control 2021 70 102954 10.1016/j.bspc.2021.102954
    [Google Scholar]
  74. Guo R. Lu G. Qin B. Fei B. Ultrasound imaging technologies for breast cancer detection and management: A review. Ultrasound Med. Biol. 2018 44 1 37 70 10.1016/j.ultrasmedbio.2017.09.012 29107353
    [Google Scholar]
  75. Koonce B. Convolutional Neural Networks with Swift for Tensorflow Apress Berkeley, CA 2021
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936333380240816053223
Loading
/content/journals/cbio/10.2174/0115748936333380240816053223
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test