Full text loading...
-
Bio-based Polymers and Microcarriers Improve Stability and Efficacy of Essential Oils
-
-
- 23 May 2024
- 19 Aug 2024
- 17 Dec 2024
Abstract
Current developments provide an overview of alginate electrospinning for biopolymers in pharmaceutical and biological applications, but their volatile nature and susceptibility to degradation pose challenges to their storage and use. Due to their innate medicinal qualities, pure essential oils have drawn a lot of attention to their many uses, such as aromatherapy and medicine. However, the stability, regulated release, and sustained efficacy of EOs are complicated by their brittleness and sensitivity. Bio-based small carriers as well as polymers have recently come to light as a viable solution to these problems. To improve the stability and therapeutic efficacy of essential oils, this review study investigates the novel use of bio-based microcarriers and polymers. By encapsulating essential oils within biocompatible materials, such as microcarriers and polymers derived from natural sources, researchers have been able to extend their shelf life, improve their controlled release, and enhance their bioavailability. The general stability, as well as bioavailability of these encapsulated EOs, are improved by the interaction of the natural qualities of essential oils with the specific properties of bio-based polymers. This paper examines the design and manufacturing concepts of bio-based microcarriers, emphasizing encapsulating techniques and the variables affecting release kinetics. Additionally, it highlights the potential uses of EO-loaded tiny carriers in various fields, such as cosmetics, agriculture, and medicine. This paper also delves into recent advancements in this field, discussing the fabrication techniques, characterization methods, and application areas of bio-based microcarriers and polymers for essential oil delivery.