Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

A 9-aminoacridine derivative has anticancer properties against several types of cancer cells, including colon, breast, pancreatic, lung, and renal cell carcinoma. It triggers apoptosis by stopping the cell cycle in the S phase and inhibits the activity of topoisomerase. So, the present study deals with the synthesis and anti-cancer activity of some of the acridine derivatives.

Methods

The novel set of N-(acridin-9-yl)-N-(2-substituted benzoyl) derivatives were synthesized, and these compounds were subjected to docking studies against topoisomerase II and the result of docking studies revealed that all the compounds possessed promising activity against the targeted enzyme. The docking studies revealed that the derivative AB7 showed a good docking score of -8.7 kcal/mol when compared to doxorubicin.

Results

The following derivatives AA2, AA3, AB3, AB7, AB7, AF6, AF10, AP7, AP10, and APZ7 were selected for the synthesis by conventional method and further studies. These compounds weresubjected to an cytotoxicity study using the MTT assay method with MCF-7 cell lines. Among the tested compounds, derivative APZ7 substituted with chlorobenzene and pyrrole ring showed a significant IC value (46.402 μg/ml), and the compound AP10 substituted with chlorobenzene and pyridine moiety (59.42 μg/ml) exhibited promising inhibition in breast cancer cell line.

Conclusion

The current study suggests that the most effective anticancer compounds are found in the substituted acridine derivative.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072296325240522042442
2024-05-29
2025-06-21
Loading full text...

Full text loading...

References

  1. JelenaS.R. VladimirD.D. MaraM.A. JasminaS.B. OliveraA.C. A review of published data on acridine derivatives with different biological activities.Kragujevac J. Sci.20184083101
    [Google Scholar]
  2. KumarR. KaurM. KumariM. Acridine: A versatile heterocyclic nucleus.Acta Pol. Pharm.201269139 22574501
    [Google Scholar]
  3. HemalathaK. MadhumithaG. Inhibition of poly(adenosine diphosphate-ribose) polymerase using quinazolinone nucleus.Appl. Microbiol. Biotechnol.2016100187799781410.1007/s00253‑016‑7731‑1 27470142
    [Google Scholar]
  4. ZhaoC. RakeshK.P. RavidarL. FangW.Y. QinH.L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review.Eur. J. Med. Chem.201916267973410.1016/j.ejmech.2018.11.017 30496988
    [Google Scholar]
  5. KarelouM. KourafalosV. TragomalouA.P. MarakosP. PouliN. TsitsilonisO.E. GikasE. KostakisI.K. Synthesis, biological evaluation and stability studies of some novel aza-acridine aminoderivatives.Molecules202025194584460010.3390/molecules25194584 33049986
    [Google Scholar]
  6. SridharaM.B. RakeshK.P. ManukumarH.M. ShantharamC.S. VivekH.K. KumaraH.K. MohammedY.H.E. GowdaD.C. Synthesis of dihydrazones as potential anticancer and DNA binding candidates: A validation by molecular docking studies.Anticancer. Agents Med. Chem.2020207845858
    [Google Scholar]
  7. TiglaniD. SharmaS.P.K. YadavR. Development of benzimidazole derivatives as target based antitumor drugs: An overview.Int. J. Rec. Res. Pharm.202011A170179
    [Google Scholar]
  8. KumarA. SinghA.K. SinghH. VijayanV. KumarD. NaikJ. TharejaS. YadavJ.P. PathakP. GrishinaM. VermaA. KhalilullahH. JaremkoM. EmwasA.H. KumarP. Nitrogen containing heterocycles as anticancer agents: A medicinal chemistry perspective.Pharmaceuticals202316229910.3390/ph16020299 37259442
    [Google Scholar]
  9. RakeshK.P. WangS.M. LengJ. RavindarL. AsiriA.M. MarwaniH.M. QinH.L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review. Anti-Can.Agents Med. Chem.201818448850510.2174/1871520617666171103140749
    [Google Scholar]
  10. ZhangB. LiX. LiB. GaoC. JiangY. Acridine and its derivatives: A patent review (2009–2013).Expert Opin. Ther. Pat.201424647664
    [Google Scholar]
  11. VarakumarP. RajagopalK. AparnaB. RamanK. ByranG. LimaG.C.M. RashidS. NafadyM.H. EmranT.B. WybraniecS. Acridine as an anti-tumour agent: A critical review.Molecules202228119310.3390/molecules28010193 36615391
    [Google Scholar]
  12. TakacP. KelloM. VilkovaM. VaskovaJ. MichalkovaR. MojzisovaG. MojzisJ. Antiproliferative effect of acridine chalcone is mediated by induction of oxidative stress.Biomolecules202010234510.3390/biom10020345 32098428
    [Google Scholar]
  13. ZhouW. ZhangW. PengY. JiangZ.H. ZhangL. DuZ. Design, synthesis and anti-tumor activity of novel benzimidazole-chalcone hybrids as non-intercalative topoisomerase II catalytic inhibitors.Molecules202025143180319810.3390/molecules25143180 32664629
    [Google Scholar]
  14. PatrikN. EvaK. LadislavJ. RastislavJ. JanaV. JurajS. MariaM. BeataM. PeterF. MariaK. Fluorinated 3,6,9-trisubstituted acridine derivatives as DNA interacting agents and topoisomerase inhibitors with A549 antiproliferative activity.Bioorg. Chem.20192019
    [Google Scholar]
  15. ChenR. HuoL. JaiswalY. HuangJ. ZhongZ. ZhongJ. WilliamsL. XiaX. LiangY. YanZ. Design, synthesis, antimicrobial, and anticancer activities of acridine thiosemicarbazides derivatives.Molecules201924112065207110.3390/molecules24112065 31151235
    [Google Scholar]
  16. GrzegorzC. DorotaI.G. PiotrT. KrystynaD. Synthesis and biological activity of ester derivatives of mycophenolic acid and acridines/acridones as potential immunosuppressive agents.J. Enzyme Inhib. Med. Chem.2015316974982 26308114
    [Google Scholar]
  17. DaiQ. ChenJ. GaoC. SunQ. YuanZ. JiangY. Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents.Chin. Chem. Lett.202031240440810.1016/j.cclet.2019.06.019
    [Google Scholar]
  18. LisboaT. SilvaD. DuarteS. FerreiraR. AndradeC. LopesA.L. RibeiroJ. FariasD. MouraR. ReisM. MedeirosK. MagalhãesH. SobralM. Toxicity and antitumor activity of a thiophene–acridine hybrid.Molecules20192516410.3390/molecules25010064 31878135
    [Google Scholar]
  19. Md RafiH. KamalA. NadeemS. ZulphikarA. Md JawaidA. NeerajF. ShivkanyaF. ManickamR. ShaharY.M. Novel 9-(2-(1-arylethylidene) hydrazinyl)acridine derivatives: Target topoisomerase 1 and growth inhibition of hela cancer cells.Bioorg. Chem.20191930373044
    [Google Scholar]
  20. HackC. KendallG. Bioinformatics: Current practice and future challenges for life science education.Biochem. Mol. Biol. Educ.2005332828510.1002/bmb.2005.494033022424 21638550
    [Google Scholar]
  21. EhnmanM. MissiagliaE. FolestadE. SelfeJ. StrellC. ThwayK. BrodinB. PietrasK. ShipleyJ. ÖstmanA. ErikssonU. Distinct effects of ligand-induced PDGFRα and PDGFRβ signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments.Cancer Res.20137372139214910.1158/0008‑5472.CAN‑12‑1646 23338608
    [Google Scholar]
  22. ChaissonM.J.P. WilsonR.K. EichlerE.E. Genetic variation and the de novo assembly of human genomes.Nat. Rev. Genet.2015161162764010.1038/nrg3933 26442640
    [Google Scholar]
  23. XiaX. Bioinformatics and drug discovery.Curr. Top. Med. Chem.201717151709172610.2174/1568026617666161116143440 27848897
    [Google Scholar]
  24. BurgessS. MasonA.M. GrantA.J. SlobE.A.W. GkatzionisA. ZuberV. PatelA. TianH. LiuC. HaynesW.G. HovinghG.K. KnudsenL.B. WhittakerJ.C. GillD. Using genetic association data to guide drug discovery and development: Review of methods and applications.Am. J. Hum. Genet.2023110219521410.1016/j.ajhg.2022.12.017 36736292
    [Google Scholar]
  25. KataraP. Role of bioinformatics and pharmacogenomics in drug discovery and development process.Netw. Model. Anal. Health Inform. Bioinform.20132422523010.1007/s13721‑013‑0039‑5
    [Google Scholar]
  26. RakeshR. SaketV. Dynamics of bioinformatics in the artificial designing of drugs.J. Glob. Biosci20198461376145
    [Google Scholar]
  27. WoollerS.K. HumeB.G. ChenX. AliY. PearlF.M.G. Bioinformatics in translational drug discovery.Biosci. Rep.2017374BSR2016018010.1042/BSR20160180 28487472
    [Google Scholar]
  28. MalathiK. RamaiahS. Bioinformatics approaches for new drug discovery: A review.Biotechnol. Genet. Eng. Rev.201834224326010.1080/02648725.2018.1502984 30064294
    [Google Scholar]
  29. KaviarasanL. GowrammaB. KalirajanR. MevithraM. ChandralekhaS. Molecular docking studies and synthesis of a new class of chroman 4 one fused 1,3,4 thiadiazole derivatives and evaluation for their anticancer potential.J. Indian Chem. Soc.20201720832094
    [Google Scholar]
  30. BinZ. NingW. CunlongZ. ChunmeiG. WeiZ. KangC. WeibinW. YuzongC. ChunyanT. FengL. YuyangJ. Novel multi-substituted benzyl acridone derivatives as survivin inhibitors for hepatocellular carcinoma treatment.Eur. J. Med. Chem.201717223234
    [Google Scholar]
  31. RakeshK.P. ShantharamC.S. SridharaM.B. ManukumarH.M. QinH.L. BenzisoxazoleQ. Benzisoxazole: A privileged scaffold for medicinal chemistry.Med Chem Comm20178112023203910.1039/C7MD00449D 30108720
    [Google Scholar]
  32. KalirajanR. GowrammaB. JubieS. SankarS. Molecular docking studies and in silico admet screening of some novel heterocyclic substituted 9-anilinoacridines as topoisomerase II inhibitors.JSM Chem.2017511039
    [Google Scholar]
  33. MokuB. RavindarL. RakeshK.P. QinH.L. The significance of N-methylpicolinamides in the development of anticancer therapeutics: Synthesis and structure-activity relationship (SAR) studies.Bioorg. Chem.20198651353710.1016/j.bioorg.2019.02.030 30782571
    [Google Scholar]
  34. MengW. RakeshK.P. JingL. YinW. Amino acids/peptides conjugated heterocycles: A tool for the recent development of novel therapeutic agents.Bioorgan. Chem.201776113129
    [Google Scholar]
  35. DongP. RakeshK.P. ManukumarH.M. MohammedY.H.E. KarthikC.S. SumathiS. MalluP. QinH.L. QinH-L. Innovative nano-carriers in anticancer drug delivery-a comprehensive review.Bioorg. Chem.20198532533610.1016/j.bioorg.2019.01.019 30658232
    [Google Scholar]
  36. KaviarasanL. ElizabethE. PraveenT.K. KalirajanR. ManalM. PrudvirajP. GowrammaB. 1,3,4-Thiadiazolo (3,2-A) pyrimidine-6-carbonitrile Scaffold as PARP1 inhibitor.Anticancer. Agents Med. Chem.2021152050206510.2174/1871520621666201216095018 33327923
    [Google Scholar]
  37. PengC.K. ZengT. XuX.J. ChangY.Q. HouW. LuK. LinH. SunP.H. LinJ. ChenW.M. Novel 4-(4-substituted amidobenzyl)furan-2(5H)-one derivatives as topoisomerase I inhibitors.Eur. J. Med. Chem.201712718719910.1016/j.ejmech.2016.12.035 28063351
    [Google Scholar]
  38. LakshmananK. ByranG. Identification of benzimidazole containing 4 H-chromen-4-one derivative as potential MAP kinase inhibitors by in-silico approaches.J. Recept. Signal Transduct. Res.202141215315810.1080/10799893.2020.1800733 32752909
    [Google Scholar]
  39. KathiravanM.K. KaleA.N. NilewarS. Discovery and development of topoisomerase inhibitors as anticancer agents.Mini Rev. Med. Chem.201616151219122910.2174/1389557516666160822110819 27549098
    [Google Scholar]
  40. CapranicoG. MarinelloJ. ChillemiG. Type I DNA topoisomerases.J. Med. Chem.20176062169219210.1021/acs.jmedchem.6b00966 28072526
    [Google Scholar]
  41. QingQ.L. LuK. ZhuH.M. KongS.L. YuanJ.M. ZhangG.H. ChenN.Y. GuC.X. PanC.X. MoD.L. SuG.F. Identification of 3-(benzazol-2-yl)quinoxaline derivatives as potent anticancer compounds: Privileged structure-based design, synthesis, and bioactive evaluation in vitro and in vivo.Eur. J. Med. Chem.2019165293308
    [Google Scholar]
  42. SravanthiB. KaviarasanL. PraveenT.K. PindiproluS.S. KiranS. PavankumarC. GowrammaB. Synthesis and pharmacological evaluation of 1, 3, 4-thiadiazole bearing pyrimidine derivatives as STAT3 inhibitor for treatment of breast cancer.J. Indian Chem. Soc.20201723592370
    [Google Scholar]
  43. ChenJ. LiD. LiW. YinJ. ZhangY. YuanZ. GaoC. LiuF. JiangY. Design, synthesis and anticancer evaluation of acridine hydroxamic acid derivatives as dual Topo and HDAC inhibitors.Bioorg. Med. Chem.201826143958396610.1016/j.bmc.2018.06.016 29954683
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072296325240522042442
Loading
/content/journals/cbc/10.2174/0115734072296325240522042442
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test