Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4072
  • E-ISSN:

Abstract

Background

Diabetes mellitus (DM) is a metabolic disorder caused by insufficient insulin production from pancreatic β-cells or insulin resistance; its prevalence rapidly increases worldwide. Increasing reports indicate that most plant bioactive agents exhibited alternative and safe effects in managing DM.

Objective

The study aims to evaluate the antioxidant and anti-diabetic efficacy of the combination of Linn. (AS) leaf extract and Oleanolic acid (OA) using and approaches.

Methods

The leaf of AS was extracted by soxhlet extraction using n-hexane and methanol. The methanol extract of AS (MEAS) was subjected to GC-MS analysis. Quantification of total phenolic and flavonoid content and OA were carried out by HPLC and HPTLC analysis, respectively. antioxidant (DPPH, NO, and HO) and anti-diabetic (α-amylase and α-glucosidase) potentials of MEAS, OA, and a combination of MEAS and OA (MEAS + OA) were studied at different concentrations using ascorbic acid and acarbose as standard, respectively. An study determined their binding interactions with α-amylase (PDB ID-1B2Y) and α-glucosidase (PDB ID-3W37).

Results

GC-MS analysis of MEAS revealed three major bioactives like bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-,[1R-(1R*,4Z,9S*)]-, germacrene D and undecane. The highest amount of phenolic (tannic acid and gallic acid) (150 μg/ml) and flavonoid (rutin and quercetin) (40 μg/ml) compounds were found in MEAS. OA was quantified as 356.74 ng/ml in MEAS by HPTLC. The significant inhibitory effects of MEAS, OA, and (MEAS + OA) on free radicals and α-amylase and α-glucosidase were observed concentration-dependent. However, MEAS + OA exhibited a greater percentage of inhibition than MEAS and OA alone. The analysis revealed highest docking-score of OA (-9.8 & -8.8), Germacrene D (-7.5 & -6.5) and Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-,[1R-(1R*,4Z,9S*)]-, (-7.0 & -6.4) against IB2Y and 3W37 proteins, respectively.

Conclusion

We found that the combination of MEAS + OA exhibited the highest antioxidant and anti-diabetic activities compared to MEAS and OA. It concluded that OA has a significant role in potentiating the anti-diabetic effect of .

Funding
This study was supported by the:
  • Department of Biotechnology (DBT), New Delhi, India
Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072294929240206060527
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. CeleD.N. NtokozoE. MthimunyeQ.B. MkhwanaziS.N. FreedomT. OfentseJ.P. NireshniC. MatthewS.M. AndyR.O. In vitro antidiabetic, antioxidant, and cytotoxic evaluation of honeybush tea (cyclopia genistoides) extracts.Hindawi J Food Biochem2023877409410.1155/2023/8774094
    [Google Scholar]
  2. RathaD. karB. pattnaikG. BhuktaP. Synergistic effect of naringin and glimepiride in streptozotocin-induced diabetic rats.Curr. Diabetes Rev.20232010.2174/1573399820666230817154835 37592777
    [Google Scholar]
  3. El OmariN. SayahK. FettachS. El BlidiO. BouyahyaA. FaouziM.E.A. KamalR. BarkiyouM. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts.Evid. Based Complement. Alternat. Med.201920191910.1155/2019/7384735
    [Google Scholar]
  4. HolmanN. YoungB. GadsbyR. Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK.Diabet. Med.20153291119112010.1111/dme.12791 25962518
    [Google Scholar]
  5. TaoZ. ShiA. ZhaoJ. Epidemiological perspectives of diabetes.Cell Biochem. Biophys.201573118118510.1007/s12013‑015‑0598‑4 25711186
    [Google Scholar]
  6. KifleZ.D. EnyewE.F. Evaluation of in vivo antidiabetic, in vitro α-amylase inhibitory, and in vitro antioxidant activity of leaves crude extract and solvent fractions of Bersama abyssinica fresen (Melianthaceae).J. Evid. Based Integr. Med.2020252515690X209358210.1177/2515690X20935827
    [Google Scholar]
  7. MarlesR. FarnsworthN.R. Plants as sources of antidiabetic agents. in Economic and Medicinal Plant Research;1994149187
    [Google Scholar]
  8. DashS. KarB. SahooN. PattnaikG. Annonaine an alkaloid from the leaves of Custard Apple (Annona squamosa): A comprehensive review on its phytochemicals and pharmacological activities.Asian J. Chem.20203281824183610.14233/ajchem.2020.22696
    [Google Scholar]
  9. ShirwaikarA. RajendranK. Dinesh KumarC. BodlaR. Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin–nicotinamide type 2 diabetic rats.J. Ethnopharmacol.200491117117510.1016/j.jep.2003.12.017 15036485
    [Google Scholar]
  10. YangT.H. ChenC.M. Studies on the constituents of Annona squamosa L.J. Chin. Chem. Soc.197017424325010.1002/jccs.197000031
    [Google Scholar]
  11. MarahattaA.B. AryalA. BasnyatR.C. The phytochemical and nutritional analysis and biological activity of Annona squamosa Linn.Int. J. Herb. Med.2019741928
    [Google Scholar]
  12. ZahidM. MujahidM. SinghP.K. FarooquiS. SinghK. ParveenS. ArifM. Annona squamosa Linn. (Custard Apple): An aromatic medicinal plant fruit with immense nutraceutical and therapeutic potentials.Int. J. Pharm. Sci. Res.20189517451759
    [Google Scholar]
  13. SahaR. Pharmacognosy and pharmacology of Annona squamosa: A review.Int J Pharm Life Sci201121011831189
    [Google Scholar]
  14. MustanirM. NurdinN. GintingB. Antioxidant activity and phytochemical identification of Annona squamosa leaves methanolic extracts.Pharmacogn. J.2021136s1746175010.5530/pj.2021.13.225
    [Google Scholar]
  15. ZhangW. FengJ. ChengB. LuQ. ChenX. Oleanolic acid protects against oxidative stress induced human umbilical vein endothelial cell injury by activating AKT/eNOS signaling.Mol. Med. Rep.20181843641364810.3892/mmr.2018.9354 30106101
    [Google Scholar]
  16. MsibiZ.N.P. MabandlaM.V. Oleanolic acid mitigates 6-hydroxydopamine neurotoxicity by attenuating intracellular ROS in PC12 cells and striatal microglial activation in rat brains.Front. Physiol.201910105910.3389/fphys.2019.01059 31496954
    [Google Scholar]
  17. RohillaS. BhattD.C. Significance of hepatoprotective liver specific targeted drug delivery: A review on novel herbal and formulation approaches in the management of hepatotoxicity.Curr. Drug Targets201819131519154910.2174/1389450119666180104113601 29299986
    [Google Scholar]
  18. HuafangD. Hu, Xing; Xu, Ximing; Guowen, Z; Deming, G. Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase.Int J Biol Macromol20181071844185510.1016/j.ijbiomac.2017.10.040
    [Google Scholar]
  19. HaguetQ. Le JoubiouxF. ChavanelleV. GroultH. SchoonjansN. LanghiC. MichauxA. OteroY.F. BoisseauN. PeltierS.L. SirventP. MaugardT. Inhibitory potential of α-amylase, α-glucosidase, and pancreatic lipase by a formulation of five plant extracts: TOTUM-63.Int. J. Mol. Sci.2023244365210.3390/ijms24043652 36835060
    [Google Scholar]
  20. DashS. PattnaikG. The promising role of oleanolic acid in the management of diabetes mellitus: A review.J Appl Pharm Sci.2021119149157
    [Google Scholar]
  21. DashS. SahooN. PattnaikG. GhoshG. RathG. BhattacharyaS. KarB. Antihyperglycemic effect of Annona squamosa leaf and Oleanolic acid combination in diabetic albino rats.Curr. Trends Biotechnol. Pharm.202317310041012
    [Google Scholar]
  22. DeviP. MeeraR. Study of antioxdant, antiinflammatory and wound healing activity of extracts of Litseaglutinosa.J Pharmaceut Sci Res201023155163
    [Google Scholar]
  23. AniN.I. OkoloK.O. OffiahR.O. Evaluation of antibacterial, antioxidant, and anti-inflammatory properties of GC/MS characterized methanol leaf extract of Terminalia superba (Combretaceae, Engl. & Diels).Future Journal of Pharmaceutical Sciences202391310.1186/s43094‑022‑00455‑z
    [Google Scholar]
  24. HotaR.N. NandaB.K. BeheraB.R. BoseA. DasD. Ameliorative effect of ethanolic extract of Limnophila rugosa (Scrophulariaceae) in paracetamol- and carbon tetrachloride-induced hepatotoxicity in rats.Future Journal of Pharmaceutical Sciences202281610.1186/s43094‑021‑00397‑y
    [Google Scholar]
  25. AshrafG.J. DasP. DuaT.K. PaulP. NandiG. SahuR. High‐performance thin‐layer chromatography based approach for bioassay and ATR–FTIR spectroscopy for the evaluation of antioxidant compounds from Asparagus racemosus Willd. aerial parts.Biomed. Chromatogr.20213512e523010.1002/bmc.5230 34407236
    [Google Scholar]
  26. NonglangF.P. KhaleA. WankharW. BhanS. Pharmacognostic evaluation of Eranthemum indicum extracts for its in-vitro antioxidant activity, acute toxicology, and investigation of potent bioactive phytocompounds using HPTLC and GCMS.Beni. Suef Univ. J. Basic Appl. Sci.202211112910.1186/s43088‑022‑00311‑2
    [Google Scholar]
  27. SingletonV.L. RossiJ.A.Jr Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents.Am. J. Enol. Vitic.196516314415810.5344/ajev.1965.16.3.144
    [Google Scholar]
  28. ParkY.S. JungS.T. KangS.G. HeoB.G. Arancibia-AvilaP. ToledoF. DrzewieckiJ. NamiesnikJ. GorinsteinS. Antioxidants and proteins in ethylene-treated kiwifruits.Food Chem.2008107264064810.1016/j.foodchem.2007.08.070
    [Google Scholar]
  29. MeenaH. PandeyH. PandeyP. AryaM. AhmedZ. Evaluation of antioxidant activity of two important memory enhancing medicinal plants Baccopa monnieri and Centella asiatica.Indian J. Pharmacol.201244111411710.4103/0253‑7613.91880 22345883
    [Google Scholar]
  30. HotaR.N. NandaB.K. BeheraB.R. BoseA. DasD. GC-MS analysis, molecular docking and hepatoprotective effect of ethanolic extract of capparis zeylanica on CCl4-Induced hepatotoxicity in rats.Asian J. Chem.202234497998810.14233/ajchem.2022.23616
    [Google Scholar]
  31. WickramaratneM.N. PunchihewaJ.C. WickramaratneD.B.M. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina.BMC Complement. Altern. Med.201616146647010.1186/s12906‑016‑1452‑y 27846876
    [Google Scholar]
  32. AdemiluyiA.O. ObohG. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro.Exp. Toxicol. Pathol.201365330530910.1016/j.etp.2011.09.005 22005499
    [Google Scholar]
  33. TagamiT. YamashitaK. OkuyamaM. MoriH. YaoM. KimuraA. Molecular basis for the recognition of long-chain substrates by plant α-glucosidases.J. Biol. Chem.201328826192961930310.1074/jbc.M113.465211 23687304
    [Google Scholar]
  34. NahoumV. RouxG. AntonV. RougéP. PuigserverA. BischoffH. HenrissatB. PayanF. Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors.Biochem. J.2000346120120810.1042/bj3460201 10657258
    [Google Scholar]
  35. RavishankaraB. Riaz MahmoodV.K. VinaykumarN.M. ShastriS.L. Hepatoprotective activity and molecular docking studies of Chloroxylon swietenia DC. fruit extract phytocompounds.Int J Pharmaceut Res202113427042717
    [Google Scholar]
  36. SiddiqueM.H. AshrafA. HayatS. AslamB. Fakhar-e-AlamM. MuzammilS. AtifM. ShahidM. ShafeeqS. AfzalM. AhmadS. Antidiabetic and antioxidant potentials of Abelmoschus esculentus: In vitro combined with molecular docking approach.J. Saudi Chem. Soc.202226210141810.1016/j.jscs.2021.101418
    [Google Scholar]
  37. CasparyW.F. Sucrose malabsorption in man after ingestion of α-glucosidehydrolase inhibitor.Lancet197831180761231123310.1016/S0140‑6736(78)92466‑2 77996
    [Google Scholar]
  38. IslamM.S. ChipitiT. IbrahimM.A. SinghM. In vitro α-amylase and α-glucosidase inhibitory effects and cytotoxic activity of Albizia antunesiana extracts.Pharmacogn. Mag.20151144Suppl. 223110.4103/0973‑1296.166018 26664010
    [Google Scholar]
  39. MsomiN.Z. ShodeF.O. PooeO.J. Mazibuko-MbejeS. SimelaneM.B.C. Iso- mukaadial acetate from Warburgiasalutaris enhances glucose uptake in the L6 rat myoblast cell line.Biomolecules201991052010.3390/biom9100520 31546691
    [Google Scholar]
  40. PaunG. NeaguE. AlbuC. SavinS. RaduG.L. In vitro evaluation of antidiabetic and anti-inflammatory activities of polyphenolic-rich extracts from Anchusa officinalis and Melilotus officinalis.ACS Omega2020522130141302210.1021/acsomega.0c00929 32548486
    [Google Scholar]
  41. LunagariyaN.A. PatelN.K. JagtapS.C. BhutaniK.K. Inhibitors of pancreatic lipase: State of the art and clinical perspectives.EXCLI J.201413897921 26417311
    [Google Scholar]
  42. PoongunranJ. PereraH. FernandoW. JayasingheL. SivakanesanR. α-Glucosidase and α-amylase inhibitory activities of nine Sri Lankan anti diabetic plants.Br. J. Pharm. Res.20157536537410.9734/BJPR/2015/18645
    [Google Scholar]
  43. MahomoodallyMF SubrattyAH Gurib-FakimA ChoudharyMI KhanSN Traditional medicinal herbs and food plants have the potential to inhibit key carbohydrate hydrolyzing enzymes in vitro and reduce postprandial blood glucose peaks in vivo.Sci World J2012
    [Google Scholar]
  44. da SilvaS.M. KoehnleinE.A. BrachtA. CastoldiR. de MoraisG.R. BaessoM.L. PeraltaR.A. de SouzaC.G.M. de Sá-NakanishiA.B. PeraltaR.M. Inhibition of salivary and pancreatic α-amylases by a pinhão coat (Araucaria angustifolia) extract rich in condensed tannin.Food Res. Int.2014561810.1016/j.foodres.2013.12.004
    [Google Scholar]
  45. KimJ.S. KwonC.S. SonK.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid.Biosci. Biotechnol. Biochem.200064112458246110.1271/bbb.64.2458 11193416
    [Google Scholar]
  46. BarrettA. NdouT. HugheyC.A. StrautC. HowellA. DaiZ. KaletuncG. Inhibition of α-amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries, and grapes.J. Agric. Food Chem.20136171477148610.1021/jf304876g 23289516
    [Google Scholar]
  47. SongY. MansonJ.E. BuringJ.E. SessoH.D. LiuS. Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis.J. Am. Coll. Nutr.200524537638410.1080/07315724.2005.10719488 16192263
    [Google Scholar]
  48. FanX.H. ChengY.Y. YeZ.L. LinR.C. QianZ.Z. Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines.Anal. Chim. Acta2006555221722410.1016/j.aca.2005.09.037
    [Google Scholar]
  49. LouW. ChenY. MaH. LiangG. LiuB. Antioxidant and α-amylase inhibitory activities of tannic acid.J. Food Sci. Technol.20185593640364610.1007/s13197‑018‑3292‑x 30150823
    [Google Scholar]
  50. LiR. WangS. McClementsD.J. WanY. LiuC. FuG. Antioxidant activity and α-amylase and α-glucosidase inhibitory activity of a fermented tannic acid product.Trigalloylglucose. Lebensm. Wiss. Technol.201911210824910.1016/j.lwt.2019.108249
    [Google Scholar]
  51. KokilaN.R. MaheshB. RamuR. MruthunjayaK. BettadaiahB.K. MadhyasthaH. Inhibitory effect of gallic acid from Thunbergia mysorensis against α-glucosidase, α-amylase, aldose reductase and their interaction: Inhibition kinetics and molecular simulations.J. Biomol. Struct. Dyn.20221911710.1080/07391102.2022.2156923 36533383
    [Google Scholar]
  52. DubeyS. GaneshpurkarA. GaneshpurkarA. BansalD. DubeyN. Glycolytic enzyme inhibitory and antiglycation potential of rutin.Fut. J. Pharm. Sci.20173215816210.1016/j.fjps.2017.05.005
    [Google Scholar]
  53. LiK. YaoF. XueQ. FanH. YangL. LiX. SunL. LiuY. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure–activity relationship of its eight flavonoids by a refined assign-score method.Chem. Cent. J.20181218210.1186/s13065‑018‑0445‑y 30003449
    [Google Scholar]
  54. SonS.M. Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes.Diabetes Metab. J.201236319019810.4093/dmj.2012.36.3.190 22737658
    [Google Scholar]
  55. MatoughF.A. BudinS.B. HamidZ.A. AlwahaibiN. MohamedJ. The role of oxidative stress and antioxidants in diabetic complications.Sultan Qaboos Univ. Med. J.201212151810.12816/0003082 22375253
    [Google Scholar]
  56. PitoccoD. ZaccardiF. Di StasioE. RomitelliF. SantiniS.A. ZuppiC. GhirlandaG. Oxidative stress, nitric oxide, and diabetes.Rev. Diabet. Stud.201071152510.1900/RDS.2010.7.15 20703435
    [Google Scholar]
  57. ŽourekM. KyselováP. MudraJ. KrčmaM. JankovecZ. LacigováS. VíšekJ. RušavýZ. The relationship between glycemia, insulin and oxidative stress in hereditary hypertriglyceridemic rat.Physiol. Res.200857453153810.33549/physiolres.931255 17705681
    [Google Scholar]
  58. EvansJ.L. GoldfineI.D. MadduxB.A. GrodskyG.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?Diabetes20035211810.2337/diabetes.52.1.1 12502486
    [Google Scholar]
  59. HelfandS.L. RoginaB. Genetics of aging in the fruit fly, Drosophila melanogaster.Annu. Rev. Genet.200337132934810.1146/annurev.genet.37.040103.095211 14616064
    [Google Scholar]
  60. BoninaF. PugliaC. TomainoA. SaijaA. MulinacciN. RomaniA. VincieriF.F. In-vitro antioxidant and in-vivo photoprotective effect of three lyophilized extracts of Sedum telephium L. leaves.J. Pharm. Pharmacol.201052101279128510.1211/0022357001777261 11092573
    [Google Scholar]
  61. SarwarR. FarooqU. KhanA. NazS. KhanS. KhanA. RaufA. BahadarH. UddinR. Evaluation of antioxidant, free radical scavenging, and antimicrobial activity of Quercus incana roxb.Front. Pharmacol.2015627710.3389/fphar.2015.00277 26635607
    [Google Scholar]
  62. KumariS. DeoriM. ElancheranR. KotokyJ. DeviR. In vitro and In vivo antioxidant, anti-hyperlipidemic properties and chemical characterization of Centella asiatica (L.).Extract. Front. Pharmacol.2016740010.3389/fphar.2016.00400 27840607
    [Google Scholar]
  63. NileS.H. KeumY.S. Anti-oxidant, anti-inflammatory and enzyme inhibitory activities of 10 selected Unani herbs.Bangladesh J. Pharmacol.201712216216410.3329/bjp.v12i2.31843
    [Google Scholar]
  64. FerreiraO.O. FrancoC.J.P. VarelaE.L.P. SilvaS.G. CascaesM.M. PercárioS. de OliveiraM.S. AndradeE.H.A. Chemical composition and antioxidant activity of essential oils from leaves of two specimens of Eugenia florida DC.Molecules20212619584810.3390/molecules26195848 34641394
    [Google Scholar]
  65. SahooS. RathD. KarD.M. PattanaikS. Hepatoprotective potency of Litsea glutinosa (L.) C.B. Rob. leaf methanol extract on H2O2-induced toxicity in HepG2 cells.J. Ethnopharmacol.202330411607610.1016/j.jep.2022.116076 36567040
    [Google Scholar]
  66. KunihiroK. MyodaT. TajimaN. GotohK. KaneshimaT. SomeyaT. ToedaK. FujimoriT. NishizawaM. Volatile components of the essential oil of Artemisia montana and their sedative effects.J. Oleo Sci.201766884384910.5650/jos.ess16006 28381767
    [Google Scholar]
  67. MosbahH. ChahdouraH. KammounJ. HlilaM.B. LouatiH. HammamiS. FlaminiG. AchourL. SelmiB. Rhaponticum acaule (L) DC essential oil: Chemical composition, in vitro antioxidant and enzyme inhibition properties.BMC Complement. Altern. Med.20181817910.1186/s12906‑018‑2145‑5 29506517
    [Google Scholar]
  68. GazaliM. JolandaO. HusniA. Nurjanah; Majid, F.A.A.; Zuriat; Syafitri, R. In vitro α-amylase and α-glucosidase inhibitory activity of green seaweed Halimeda tuna extract from the coast of lhok bubon, aceh.Plants202312239310.3390/plants12020393 36679105
    [Google Scholar]
  69. XuQ. ZhangL. YuS. XiaG. ZhuJ. ZangH. Chemical composition and biological activities of an essential oil from the aerial parts of Artemisia Gmelinii weber ex Stechm.Nat. Prod. Res.202135234634910.1080/14786419.2019.1627349 31177847
    [Google Scholar]
  70. HullattiK. TelagariM. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions.Indian J. Pharmacol.201547442542910.4103/0253‑7613.161270 26288477
    [Google Scholar]
  71. HanhT.T.H. DangN.H. DatN.T. α -Amylase and α -Glucosidase Inhibitory Saponins from Polyscias fruticosa Leaves.J. Chem.201620161510.1155/2016/2082946
    [Google Scholar]
  72. OkechukwuP. SharmaM. TanW.H. ChanH.K. ChiraraK. GauravA. Al-NemaM. In-vitro anti-diabetic activity and in-silico studies of binding energies of palmatine with alpha-amylase, alpha-glucosidase and DPP-IV enzymes.Pharmacia202067436337110.3897/pharmacia.67.e58392
    [Google Scholar]
  73. OgunyemiO.M. GyebiG.A. SaheedA. PaulJ. Nwaneri-ChidozieV. OlorundareO. AdebayoJ. KoketsuM. AljarbaN. AlkahtaniS. BatihaG.E.S. OlaiyaC.O. Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth.Front. Mol. Biosci.2022986671910.3389/fmolb.2022.866719 36032689
    [Google Scholar]
  74. AgH.B.I.S.C.H.O.F.F.B. Pharmacology of α‐glucosidase inhibition.Eur. J. Clin. Invest.199424S3Suppl. 331010.1111/j.1365‑2362.1994.tb02249.x 8001624
    [Google Scholar]
  75. PedroodK. RezaeiZ. KhavaninzadehK. LarijaniB. IrajiA. HosseiniS. MojtabaviS. DianatpourM. RastegarH. FaramarziM.A. HamedifarH. HajimiriM.H. MahdaviM. Design, synthesis, and molecular docking studies of diphenylquinoxaline-6-carbohydrazide hybrids as potent α-glucosidase inhibitors.BMC Chem.20221615710.1186/s13065‑022‑00848‑4 35909126
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072294929240206060527
Loading
/content/journals/cbc/10.2174/0115734072294929240206060527
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test