Skip to content
2000
image of Variability in Exercise is Linked to Improved Age-related Dysfunctions, Suggesting a Potential Role for the Constrained-Disorder Principle-based Second-Generation Artificial Intelligence System

Abstract

Objective

Regular physical activity (PA) promotes mental and physical health. Nevertheless, inactivity is a worldwide pandemic, and methods to augment exercise benefits are required. The constrained disorder principle (CDP) characterizes biological systems based on their inherent variability. Therefore, we aimed to investigate the association between intra-individual variability in PA and disability among non-athlete adults.

Methods

In this retrospective analysis of the longitudinal SHARE survey, we included non-disabled adults aged >50 with at least six visits over 14 years. Self-reported PA frequency was documented bi- to triennially. intensity was defined as vigorous PA frequency less than once a week. was described as an unchanged PA intensity in all consecutive middle observations. The primary outcome was defined as a physical limitation in everyday activities at the end of the survey. Secondary outcomes were cognitive functions, including short-term memory, long-term memory, and verbal fluency.

Results

The study included 2,049 non-disabled adults with a mean age of 53 and 49.1% women. In the initially intensity group, variability in PA was associated with increased physical disability prevalence (23.3% 33.2%, ; P<0.01; adjusted P<0.01). In the initially intensity group, variability was associated with a reduced physical disability (45.6% 33.3%, ; P=0.02; adjusted P=0.03). There were no statistically significant differences in cognitive parameters between the groups. Among individuals with the same low PA intensity at the beginning and end of follow-up, variability was associated with reduced physical disability (56.9% 36.5%, ; P=0.02; adjusted P=0.04) and improved short-term memory (score change: -0.28 +0.29, ; P=0.05).

Conclusion

Incorporating variability into PA regimens of inactive adults may enhance their physical and cognitive benefits.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098339043241219060015
2024-01-20
2025-03-30
Loading full text...

Full text loading...

References

  1. Guo J. Huang X. Dou L. Yan M. Shen T. Tang W. Li J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022 7 1 391 10.1038/s41392‑022‑01251‑0 36522308
    [Google Scholar]
  2. Rogeri P.S. Zanella R. Martins G.L. Garcia M.D.A. Leite G. Lugaresi R. Gasparini S.O. Sperandio G.A. Ferreira L.H.B. Souza-Junior T.P. Lancha A.H. Strategies to prevent sarcopenia in the aging process: Role of protein intake and exercise. Nutrients 2021 14 1 52 10.3390/nu14010052 35010928
    [Google Scholar]
  3. Brach M. de Bruin E.D. Levin O. Hinrichs T. Zijlstra W. Netz Y. Evidence-based yet still challenging! Research on physical activity in old age. Eur. Rev. Aging Phys. Act. 2023 20 1 7 10.1186/s11556‑023‑00318‑3 36932320
    [Google Scholar]
  4. Kim Y. Lee E. The association between elderly people’s sedentary behaviors and their health-related quality of life: Focusing on comparing the young-old and the old-old. Health Qual. Life Outcomes 2019 17 1 131 10.1186/s12955‑019‑1191‑0 31349858
    [Google Scholar]
  5. Chodzko-Zajko W. Schwingel A. Chae Hee P. Successful aging: The role of physical activity. Am. J. Lifestyle Med. 2009 3 1 20 28 10.1177/1559827608325456
    [Google Scholar]
  6. Anderson E. Durstine J.L. Physical activity, exercise, and chronic diseases: A brief review. Sports Med. Health Sci. 2019 1 1 3 10 10.1016/j.smhs.2019.08.006 35782456
    [Google Scholar]
  7. Global status report on physical activity 2022. 2022 Available from: https://www.who.int/teams/health-promotion/physical-activity/global-status-report-on-physical-activity-2022-
  8. Isath A. Koziol K.J. Martinez M.W. Garber C.E. Martinez M.N. Emery M.S. Baggish A.L. Naidu S.S. Lavie C.J. Arena R. Krittanawong C. Exercise and cardiovascular health: A state-of-the-art review. Prog. Cardiovasc. Dis. 2023 79 44 52 10.1016/j.pcad.2023.04.008 37120119
    [Google Scholar]
  9. Fossati C. Torre G. Vasta S. Giombini A. Quaranta F. Papalia R. Pigozzi F. Physical exercise and mental health: The routes of a reciprocal relation. Int. J. Environ. Res. Public Health 2021 18 23 12364 10.3390/ijerph182312364 34886090
    [Google Scholar]
  10. WHO guidelines on physical activity and sedentary behaviour. 2020 Available from: https://www.who.int/publications/i/item/9789240015128
  11. Angevaren M. Aufdemkampe G. Verhaar H. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 2008 3 CD005381 10.1002/14651858.CD005381.pub3
    [Google Scholar]
  12. Srinivas N.S. Vimalan V. Padmanabhan P. Gulyás B. An overview on cognitive function enhancement through physical exercises. Brain Sci. 2021 11 10 1289 10.3390/brainsci11101289 34679354
    [Google Scholar]
  13. Audiffren M. André N. The exercise-cognition relationship: A virtuous circle. J. Sport Health Sci. 2019 8 4 339 347 10.1016/j.jshs.2019.03.001 31333886
    [Google Scholar]
  14. Netz Y. Is there a preferred mode of exercise for cognition enhancement in older age? - A narrative review. Front. Med. (Lausanne) 2019 6 57 10.3389/fmed.2019.00057 30984760
    [Google Scholar]
  15. Ilan Y. The constrained disorder principle defines living organisms and provides a method for correcting disturbed biological systems. Comput. Struct. Biotechnol. J. 2022 20 6087 6096 10.1016/j.csbj.2022.11.015 36420157
    [Google Scholar]
  16. Ilan Y. Overcoming randomness does not rule out the importance of inherent randomness for functionality. J. Biosci. 2019 44 6 132 10.1007/s12038‑019‑9958‑3 31894113
    [Google Scholar]
  17. Ilan Y. Generating randomness: Making the most out of disordering a false order into a real one. J. Transl. Med. 2019 17 1 49 10.1186/s12967‑019‑1798‑2 30777074
    [Google Scholar]
  18. Ilan Y. Advanced tailored randomness: A novel approach for improving the efficacy of biological systems. J. Comput. Biol. 2020 27 1 20 29 10.1089/cmb.2019.0231 31424268
    [Google Scholar]
  19. Ilan Y. Order through disorder: The characteristic variability of systems. Front. Cell Dev. Biol. 2020 8 186 10.3389/fcell.2020.00186 32266266
    [Google Scholar]
  20. El-Haj M. Kanovitch D. Ilan Y. Personalized inherent randomness of the immune system is manifested by an individualized response to immune triggers and immunomodulatory therapies: A novel platform for designing personalized immunotherapies. Immunol. Res. 2019 67 4-5 337 347 10.1007/s12026‑019‑09101‑y 31754971
    [Google Scholar]
  21. Ilan Y. Randomness in microtubule dynamics: An error that requires correction or an inherent plasticity required for normal cellular function? Cell Biol. Int. 2019 43 7 739 748 10.1002/cbin.11157 31042006
    [Google Scholar]
  22. Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J. Cell. Physiol. 2019 234 6 7923 7937 10.1002/jcp.27978 30536951
    [Google Scholar]
  23. Ilan-Ber T. Ilan Y. The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Mol. Immunol. 2019 111 73 82 10.1016/j.molimm.2019.04.014 31035111
    [Google Scholar]
  24. Forkosh E. Kenig A. Ilan Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacol. Res. Perspect. 2020 8 4 e00616 10.1002/prp2.616 32608157
    [Google Scholar]
  25. Ilan Y. β-glycosphingolipids as mediators of both inflammation and immune tolerance: A manifestation of randomness in biological systems. Front. Immunol. 2019 10 1143 10.3389/fimmu.2019.01143 31178868
    [Google Scholar]
  26. Ilan Y. Microtubules as a potential platform for energy transfer in biological systems: A target for implementing individualized, dynamic variability patterns to improve organ function. Mol. Cell. Biochem. 2022 35829870
    [Google Scholar]
  27. Ilan Y. Enhancing the plasticity, proper function and efficient use of energy of the Sun, genes and microtubules using variability. Clin. Transl. Discov. 2022 2 4 e103 10.1002/ctd2.103
    [Google Scholar]
  28. Shabat Y. Lichtenstein Y. Ilan Y. Short-term cohousing of sick with healthy or treated mice alleviates the inflammatory response and liver damage. Inflammation 2021 44 2 518 525 10.1007/s10753‑020‑01348‑0 32978699
    [Google Scholar]
  29. Hurvitz N. Elkhateeb N. Sigawi T. Rinsky-Halivni L. Ilan Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. Front. Aging 2022 3 1044038 10.3389/fragi.2022.1044038 36589143
    [Google Scholar]
  30. Ilan Y. Making use of noise in biological systems. Prog. Biophys. Mol. Biol. 2023 178 83 90 10.1016/j.pbiomolbio.2023.01.001 36640927
    [Google Scholar]
  31. Ilan Y. Constrained disorder principle-based variability is fundamental for biological processes: Beyond biological relativity and physiological regulatory networks. Prog. Biophys. Mol. Biol. 2023 180-181 37 48 10.1016/j.pbiomolbio.2023.04.003 37068713
    [Google Scholar]
  32. Sigawi T. Lehmann H. Hurvitz N. Ilan Y. Constrained disorder principle-based second-generation algorithms implement quantified variability signatures to improve the function of complex systems. J. Bioinform. Syst. Biol. 2023 6 1 82 89 10.26502/jbsb.5107051
    [Google Scholar]
  33. Finn E.H. Misteli T. Molecular basis and biological function of variability in spatial genome organization. Science 2019 365 6457 eaaw9498 10.1126/science.aaw9498 31488662
    [Google Scholar]
  34. Mitchison T. Kirschner M. Dynamic instability of microtubule growth. Nature 1984 312 5991 237 242 10.1038/312237a0 6504138
    [Google Scholar]
  35. Kirschner M.W. Mitchison T. Microtubule dynamics. Nature 1986 324 6098 621 10.1038/324621a0 3796729
    [Google Scholar]
  36. Chiera M. Cerritelli F. Casini A. Barsotti N. Boschiero D. Cavigioli F. Corti C.G. Manzotti A. Heart rate variability in the perinatal period: A critical and conceptual review. Front. Neurosci. 2020 14 561186 10.3389/fnins.2020.561186 33071738
    [Google Scholar]
  37. Forte G. Favieri F. Casagrande M. Heart rate variability and cognitive function: A systematic review. Front. Neurosci. 2019 13 710 10.3389/fnins.2019.00710 31354419
    [Google Scholar]
  38. Schutte A.E. Kollias A. Stergiou G.S. Blood pressure and its variability: Classic and novel measurement techniques. Nat. Rev. Cardiol. 2022 19 10 643 654 10.1038/s41569‑022‑00690‑0 35440738
    [Google Scholar]
  39. van den Bosch O.F.C. Alvarez-Jimenez R. de Grooth H.J. Girbes A.R.J. Loer S.A. Breathing variability - Implications for anaesthesiology and intensive care. Crit. Care 2021 25 1 280 10.1186/s13054‑021‑03716‑0 34353348
    [Google Scholar]
  40. Boripuntakul S. Kamnardsiri T. Lord S.R. Maiarin S. Worakul P. Sungkarat S. Gait variability during abrupt slow and fast speed transitions in older adults with mild cognitive impairment. PLoS One 2022 17 10 e0276658 10.1371/journal.pone.0276658 36269750
    [Google Scholar]
  41. Genon S. Eickhoff S.B. Kharabian S. Linking interindividual variability in brain structure to behaviour. Nat. Rev. Neurosci. 2022 23 5 307 318 10.1038/s41583‑022‑00584‑7 35365814
    [Google Scholar]
  42. Saha S. Baumert M. Intra- and inter-subject variability in EEG-based sensorimotor brain computer interface: A review. Front. Comput. Neurosci. 2020 13 87 10.3389/fncom.2019.00087 32038208
    [Google Scholar]
  43. Crawford L. Mills E. Meylakh N. Brain activity changes associated with pain perception variability. Cereb. Cortex 2022 36069972
    [Google Scholar]
  44. Brodin P. Davis M.M. Human immune system variation. Nat. Rev. Immunol. 2017 17 1 21 29 10.1038/nri.2016.125 27916977
    [Google Scholar]
  45. Ilan Y. Second-generation digital health platforms: Placing the patient at the center and focusing on clinical outcomes. Front. Digit. Health 2020 2 569178 10.3389/fdgth.2020.569178 34713042
    [Google Scholar]
  46. Ilan Y. Improving global healthcare and reducing costs using second-generation artificial intelligence-based digital pills: A market disruptor. Int. J. Environ. Res. Public Health 2021 18 2 811 10.3390/ijerph18020811 33477865
    [Google Scholar]
  47. Ilan Y. Next-generation personalized medicine: Implementation of variability patterns for overcoming drug resistance in chronic diseases. J. Pers. Med. 2022 12 8 1303 10.3390/jpm12081303 36013252
    [Google Scholar]
  48. Ilan Y. Overcoming compensatory mechanisms toward chronic drug administration to ensure long-term, sustainable beneficial effects. Mol. Ther. Methods Clin. Dev. 2020 18 335 344 10.1016/j.omtm.2020.06.006 32671136
    [Google Scholar]
  49. Bae W. Ik Suh Y. Ryu J. Heo J. Physical activity levels and well-being in older adults. Psychol. Rep. 2017 120 2 192 205 10.1177/0033294116688892 28558621
    [Google Scholar]
  50. Panza G.A. Taylor B.A. Thompson P.D. White C.M. Pescatello L.S. Physical activity intensity and subjective well-being in healthy adults. J. Health Psychol. 2019 24 9 1257 1267 10.1177/1359105317691589 28810402
    [Google Scholar]
  51. Aune D. Schlesinger S. Leitzmann M.F. Tonstad S. Norat T. Riboli E. Vatten L.J. Physical activity and the risk of heart failure: A systematic review and dose–response meta-analysis of prospective studies. Eur. J. Epidemiol. 2021 36 4 367 381 10.1007/s10654‑020‑00693‑6 33331992
    [Google Scholar]
  52. Geidl W. Schlesinger S. Mino E. Miranda L. Pfeifer K. Dose–response relationship between physical activity and mortality in adults with noncommunicable diseases: A systematic review and meta-analysis of prospective observational studies. Int. J. Behav. Nutr. Phys. Act. 2020 17 1 109 10.1186/s12966‑020‑01007‑5 32843054
    [Google Scholar]
  53. Boyer W.R. Indelicato N.A. Richardson M.R. Churilla J.R. Johnson T.M. Associations between mental distress and physical activity in US adults: A dose–response analysis BRFSS 2011. J. Public Health (Oxf.) 2018 40 2 289 294 10.1093/pubmed/fdx080 28985352
    [Google Scholar]
  54. Guo Z. Li R. Lu S. Leisure-time physical activity and risk of depression: A dose-response meta-analysis of prospective cohort studies. Medicine (Baltimore) 2022 101 30 e29917 10.1097/MD.0000000000029917 35905243
    [Google Scholar]
  55. Kyriazis M. Practical applications of chaos theory to the modulation of human ageing: Nature prefers chaos to regularity. Biogerontology 2003 4 2 75 90 10.1023/A:1023306419861 12766532
    [Google Scholar]
  56. Raichlen D.A. Klimentidis Y.C. Hsu C.H. Alexander G.E. Fractal complexity of daily physical activity patterns differs with age over the life span and is associated with mortality in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2019 74 9 1461 1467 10.1093/gerona/gly247 30371743
    [Google Scholar]
  57. Varma V.R. Watts A. Daily physical activity patterns during the early stage of alzheimer’s disease. J. Alzheimers Dis. 2016 55 2 659 667 10.3233/JAD‑160582 27716669
    [Google Scholar]
  58. Gelman R. Berg M. Ilan Y. A subject-tailored variability-based platform for overcoming the plateau effect in sports training: A narrative review. Int. J. Environ. Res. Public Health 2022 19 3 1722 10.3390/ijerph19031722 35162745
    [Google Scholar]
  59. Buchheit M. Laursen P.B. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013 43 10 927 954 10.1007/s40279‑013‑0066‑5 23832851
    [Google Scholar]
  60. Atakan M.M. Li Y. Koşar Ş.N. Turnagöl H.H. Yan X. Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. Int. J. Environ. Res. Public Health 2021 18 13 7201 10.3390/ijerph18137201 34281138
    [Google Scholar]
  61. Knapik J.J. Injuries during high-intensity functional training: Systematic review and meta-analysis. J. Spec. Oper. Med. 2022 22 1 121 129 10.55460/G29P‑I0AU 35278328
    [Google Scholar]
  62. Soligard T. Schwellnus M. Alonso J.M. Bahr R. Clarsen B. Dijkstra H.P. Gabbett T. Gleeson M. Hägglund M. Hutchinson M.R. Janse van Rensburg C. Khan K.M. Meeusen R. Orchard J.W. Pluim B.M. Raftery M. Budgett R. Engebretsen L. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br. J. Sports Med. 2016 50 17 1030 1041 10.1136/bjsports‑2016‑096581 27535989
    [Google Scholar]
  63. Schwellnus M. Soligard T. Alonso J.M. Bahr R. Clarsen B. Dijkstra H.P. Gabbett T.J. Gleeson M. Hägglund M. Hutchinson M.R. Janse Van Rensburg C. Meeusen R. Orchard J.W. Pluim B.M. Raftery M. Budgett R. Engebretsen L. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br. J. Sports Med. 2016 50 17 1043 1052 10.1136/bjsports‑2016‑096572 27535991
    [Google Scholar]
  64. Börsch-Supan A. Brandt M. Hunkler C. Kneip T. Korbmacher J. Malter F. Schaan B. Stuck S. Zuber S. Data resource profile: The survey of health, ageing and retirement in Europe (SHARE). Int. J. Epidemiol. 2013 42 4 992 1001 10.1093/ije/dyt088 23778574
    [Google Scholar]
  65. Bergmann M. Kneip T. De Luca G. Survey participation in the Survey of Health, Ageing and Retirement in Europe (SHARE), Wave 1-7. 2019 Available from: https://share-eric.eu/fileadmin/user_upload/SHARE_Working_Paper/WP_Series_41_2019_Bergmann_et_al.pdf
  66. Borsch-Supan A. Survey of health, ageing and retirement in Europe (SHARE) wave 1. 8.0.0 ed. SHARE-ERIC. 2022 Available from: https://www.da-ra.de/dara/study/web_show?res_id=773062&mdlang=en&detail=true
  67. Borsch-Supan A. Survey of health, ageing and retirement in Europe (SHARE) wave 2. 8.0.0 ed. SHARE-ERIC. 2022 Available from: https://snd.se/en/catalogue/dataset/ext0148-1
  68. Borsch-Supan A. Survey of health, ageing and retirement in Europe (SHARE) wave 4. 8.0.0 ed. SHARE-ERIC. 2022 Available from: https://snd.se/en/catalogue/dataset/ext0150-1
  69. Borsch-Supan A. Survey of health, ageing and retirement in Europe (SHARE) wave 5. 8.0.0 ed. SHARE-ERIC. 2022 Available from: https://snd.se/en/catalogue/dataset/ext0201-1
  70. Borsch-Supan A. Survey of health, ageing and retirement in Europe (SHARE) wave 6. 8.0.0 ed. SHARE-ERIC. 2022 Available from: https://snd.se/en/catalogue/dataset/2020-104-1
  71. Borsch-Supan A. Survey of health, ageing and retirement in Europe (SHARE) wave 7. 8.0.0 ed. SHARE-ERIC. 2022 Available from: https://www.da-ra.de/dara/study/web_show?res_id=773068&mdlang=en&detail=true
  72. Borsch-Supan A. Survey of health, ageing and retirement in Europe (SHARE) wave 8. 8.0.0 ed. SHARE-ERIC. 2022 Available from: https://www.da-ra.de/dara/study/web_show?res_id=773069&mdlang=en&detail=true
  73. Cohn-Schwartz E. Levinsky M. Litwin H. Social network type and subsequent cognitive health among older Europeans. Int. Psychogeriatr. 2021 33 5 495 504 10.1017/S1041610220003439 33153511
    [Google Scholar]
  74. Dal Bianco C. Garrouste C. Paccagnella O. Early-life circumstances and cognitive functioning dynamics in later life. Active Ageing and Solidarity Between Generations in Europe Walter De Gruyter 2013 209 224 10.1515/9783110295467.209
    [Google Scholar]
  75. Clark L.J. Gatz M. Zheng L. Chen Y.L. McCleary C. Mack W.J. Longitudinal verbal fluency in normal aging, preclinical, and prevalent Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2009 24 6 461 468 10.1177/1533317509345154 19759254
    [Google Scholar]
  76. Haugrud N. Crossley M. Vrbancic M. Clustering and switching strategies during verbal fluency performance differentiate Alzheimer’s disease and healthy aging. J. Int. Neuropsychol. Soc. 2011 17 6 1153 1157 10.1017/S1355617711001196 22014065
    [Google Scholar]
  77. Schröer S. Haupt J. Pieper C. Evidence-based lifestyle interventions in the workplace - An overview. Occup. Med. (Lond.) 2014 64 1 8 12 10.1093/occmed/kqt136 24280187
    [Google Scholar]
  78. Kessler A. Weksler-Zangen S. Ilan Y. Role of the immune system and the circadian rhythm in the pathogenesis of chronic pancreatitis. Pancreas 2020 49 8 1024 1032 10.1097/MPA.0000000000001626 32833942
    [Google Scholar]
  79. Ishay Y. Kolben Y. Kessler A. Ilan Y. Role of circadian rhythm and autonomic nervous system in liver function: A hypothetical basis for improving the management of hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2021 321 4 G400 G412 10.1152/ajpgi.00186.2021 34346773
    [Google Scholar]
  80. Kolben Y. Weksler-Zangen S. Ilan Y. Adropin as a potential mediator of the metabolic system‐autonomic nervous system‐chronobiology axis: Implementing a personalized signature‐based platform for chronotherapy. Obes. Rev. 2021 22 2 e13108 10.1111/obr.13108 32720402
    [Google Scholar]
  81. Kenig A. Kolben Y. Asleh R. Amir O. Ilan Y. Improving diuretic response in heart failure by implementing a patient-tailored variability and chronotherapy-guided algorithm. Front. Cardiovasc. Med. 2021 8 695547 10.3389/fcvm.2021.695547 34458334
    [Google Scholar]
  82. Azmanov H. Ross E.L. Ilan Y. Establishment of an individualized chronotherapy, autonomic nervous system, and variability-based dynamic platform for overcoming the loss of response to analgesics. Pain Physician 2021 24 3 243 252 33988944
    [Google Scholar]
  83. Potruch A. Khoury S.T. Ilan Y. The role of chronobiology in drug-resistance epilepsy: The potential use of a variability and chronotherapy-based individualized platform for improving the response to anti-seizure drugs. Seizure 2020 80 201 211 10.1016/j.seizure.2020.06.032 32629327
    [Google Scholar]
  84. Isahy Y. Ilan Y. Improving the long-term response to antidepressants by establishing an individualized platform based on variability and chronotherapy
. Int. J. Clin. Pharmacol. Ther. 2021 59 12 768 774 10.5414/CP204000 34647865
    [Google Scholar]
  85. Khoury T. Ilan Y. Introducing patterns of variability for overcoming compensatory adaptation of the immune system to immunomodulatory agents: A novel method for improving clinical response to anti-TNF therapies. Front. Immunol. 2019 10 2726 10.3389/fimmu.2019.02726 31824506
    [Google Scholar]
  86. Khoury T. Ilan Y. Platform introducing individually tailored variability in nerve stimulations and dietary regimen to prevent weight regain following weight loss in patients with obesity. Obes. Res. Clin. Pract. 2021 15 2 114 123 10.1016/j.orcp.2021.02.003 33653665
    [Google Scholar]
  87. Kenig A. Ilan Y. A personalized signature and chronotherapy-based platform for improving the efficacy of sepsis treatment. Front. Physiol. 2019 10 1542 10.3389/fphys.2019.01542 31920730
    [Google Scholar]
  88. Ilan Y. Why targeting the microbiome is not so successful: Can randomness overcome the adaptation that occurs following gut manipulation? Clin. Exp. Gastroenterol. 2019 12 209 217 10.2147/CEG.S203823 31190948
    [Google Scholar]
  89. Gelman R. Bayatra A. Kessler A. Schwartz A. Ilan Y. Targeting SARS-CoV-2 receptors as a means for reducing infectivity and improving antiviral and immune response: An algorithm-based method for overcoming resistance to antiviral agents. Emerg. Microbes Infect. 2020 9 1 1397 1406 10.1080/22221751.2020.1776161 32490731
    [Google Scholar]
  90. Ishay Y. Potruch A. Schwartz A. Berg M. Jamil K. Agus S. Ilan Y. A digital health platform for assisting the diagnosis and monitoring of COVID-19 progression: An adjuvant approach for augmenting the antiviral response and mitigating the immune-mediated target organ damage. Biomed. Pharmacother. 2021 143 112228 10.1016/j.biopha.2021.112228 34649354
    [Google Scholar]
  91. Ilan Y. Spigelman Z. Establishing patient-tailored variability-based paradigms for anti-cancer therapy: Using the inherent trajectories which underlie cancer for overcoming drug resistance. Cancer Treat. Res. Commun. 2020 25 100240 10.1016/j.ctarc.2020.100240 33246316
    [Google Scholar]
  92. Hurvitz N. Azmanov H. Kesler A. Ilan Y. Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. Eur. J. Hum. Genet. 2021 29 10 1485 1490 10.1038/s41431‑021‑00928‑4 34276056
    [Google Scholar]
  93. Ilan Y. Digital medical cannabis as market differentiator: Second-generation artificial intelligence systems to improve response. Front. Med. (Lausanne) 2022 8 788777 10.3389/fmed.2021.788777 35141242
    [Google Scholar]
  94. Sigawi T. Gelman R. Maimon O. Yossef A. Hemed N. Agus S. Berg M. Ilan Y. Popovtzer A. Improving the response to lenvatinib in partial responders using a Constrained-Disorder-Principle-based second-generation artificial intelligence-therapeutic regimen: A proof-of-concept open-labeled clinical trial. Front. Oncol. 2024 14 1426426 10.3389/fonc.2024.1426426 39139285
    [Google Scholar]
  95. Azmanov H. Bayatra A. Ilan Y. Digital analgesic comprising a second-generation digital health system: Increasing effectiveness by optimizing the dosing and minimizing side effects. J. Pain Res. 2022 15 1051 1060 10.2147/JPR.S356319 35444460
    [Google Scholar]
  96. Kolben Y. Azmanov H. Gelman R. Dror D. Ilan Y. Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections. Ann. Med. 2023 55 1 311 318 10.1080/07853890.2022.2163053 36594558
    [Google Scholar]
  97. Lehmann H. Arkadir D. Ilan Y. Methods for improving brain-computer interface: Using a brain-directed adjuvant and a second-generation artificial intelligence system to enhance information streaming and effectiveness of stimuli. Int. J. Appl. Biol. Pharm. Technol. 2023 14 2 42 52 10.26502/ijabpt.202124
    [Google Scholar]
  98. Adar O. Hollander A. Ilan Y. The constrained disorder principle accounts for the variability that characterizes breathing: A method for treating chronic respiratory diseases and improving mechanical ventilation. Adv. Respir. Med. 2023 91 5 350 367 10.3390/arm91050028 37736974
    [Google Scholar]
  99. Ilan Y. The constrained disorder principle accounts for the structure and function of water as an ultimate biosensor and bioreactor in biological systems. Int. J. Appl. Biol. Pharm. Technol. 2023 14 2 31 41 10.26502/ijabpt.202123
    [Google Scholar]
  100. Sigawi T. Hamtzany O. Shakargy J.D. Ilan Y. The constrained disorder principle may account for consciousness. Brain Sci. 2024 14 3 209 10.3390/brainsci14030209 38539598
    [Google Scholar]
  101. Ilan Y. Special Issue “Computer-Aided Drug Discovery and Treatment”. Int. J. Mol. Sci. 2024 25 5 2683 10.3390/ijms25052683 38473929
    [Google Scholar]
  102. Hurvitz N. Dinur T. Revel-Vilk S. Agus S. Berg M. Zimran A. Ilan Y. A feasibility open-labeled clinical trial using a second-generation artificial-intelligence-based therapeutic regimen in patients with gaucher disease treated with enzyme replacement therapy. J. Clin. Med. 2024 13 11 3325 10.3390/jcm13113325 38893036
    [Google Scholar]
  103. Ilan Y. Free Will as defined by the constrained disorder principle: A restricted, mandatory, personalized, regulated process for decision-making. Integr. Psychol. Behav. Sci. 2024 10.1007/s12124‑024‑09853‑9 38900370
    [Google Scholar]
  104. Ilan Y. The constrained disorder principle defines mitochondrial variability and provides a platform for a novel mechanism for improved functionality of complex systems. Fortune J. Health Sci. 2024 7 338 347 10.26502/fjhs.194
    [Google Scholar]
  105. Gelman R. Hurvitz N. Nesserat R. Kolben Y. Nachman D. Jamil K. Agus S. Asleh R. Amir O. Berg M. Ilan Y. A second-generation artificial intelligence-based therapeutic regimen improves diuretic resistance in heart failure: Results of a feasibility open-labeled clinical trial. Biomed. Pharmacother. 2023 161 114334 10.1016/j.biopha.2023.114334 36905809
    [Google Scholar]
  106. Radak Z. Taylor A.W. Issues on trainability. Front. Physiol. 2022 12 790196 10.3389/fphys.2021.790196 35140629
    [Google Scholar]
  107. Kawai H. Obuchi S. Hirayama R. Watanabe Y. Hirano H. Fujiwara Y. Ihara K. Kim H. Kobayashi Y. Mochimaru M. Tsushima E. Nakamura K. Intra-day variation in daily outdoor walking speed among community-dwelling older adults. BMC Geriatr. 2021 21 1 417 10.1186/s12877‑021‑02349‑w 34238238
    [Google Scholar]
  108. Wanigatunga A.A. Di J. Zipunnikov V. Urbanek J.K. Kuo P.L. Simonsick E.M. Ferrucci L. Schrack J.A. Association of total daily physical activity and fragmented physical activity with mortality in older adults. JAMA Netw. Open 2019 2 10 e1912352 10.1001/jamanetworkopen.2019.12352 31577355
    [Google Scholar]
  109. Schrack J.A. Kuo P.L. Wanigatunga A.A. Di J. Simonsick E.M. Spira A.P. Ferrucci L. Zipunnikov V. Active-to-sedentary behavior transitions, fatigability, and physical functioning in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2019 74 4 560 567 10.1093/gerona/gly243 30357322
    [Google Scholar]
  110. del Pozo-Cruz J. del Pozo Cruz B. Perez-Sousa M.Á. Alfonso-Rosa R.M. High fragmented physical activity as an early risk indicator of frailty and mortality in adults aged 50 years and over. Gerontology 2023 69 3 370 378 10.1159/000525910 36481521
    [Google Scholar]
  111. Martinez-Jimenez C.P. Eling N. Chen H.C. Vallejos C.A. Kolodziejczyk A.A. Connor F. Stojic L. Rayner T.F. Stubbington M.J.T. Teichmann S.A. de la Roche M. Marioni J.C. Odom D.T. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 2017 355 6332 1433 1436 10.1126/science.aah4115 28360329
    [Google Scholar]
  112. Myerson J. Robertson S. Hale S. Aging and intraindividual variability in performance: Analyses of response time distributions. J. Exp. Anal. Behav. 2007 88 3 319 337 10.1901/jeab.2007.88‑319 18047224
    [Google Scholar]
  113. LaPlume A.A. Anderson N.D. McKetton L. When I'm 64: Age-related variability in over 40,000 online cognitive test takers. J. Gerontol. B 2021 77 1 104 117 10.1093/geronb/gbab143
    [Google Scholar]
  114. Garrett D.D. Lindenberger U. Hoge R.D. Gauthier C.J. Age differences in brain signal variability are robust to multiple vascular controls. Sci. Rep. 2017 7 1 10149 10.1038/s41598‑017‑09752‑7 28860455
    [Google Scholar]
  115. Gabell A. Nayak U.S.L. The effect of age on variability in gait. J. Gerontol. 1984 39 6 662 666 10.1093/geronj/39.6.662 6491179
    [Google Scholar]
  116. Kenny G.P. Yardley J.E. Martineau L. Jay O. Physical work capacity in older adults: Implications for the aging worker. Am. J. Ind. Med. 2008 51 8 610 625 10.1002/ajim.20600 18543279
    [Google Scholar]
/content/journals/cas/10.2174/0118746098339043241219060015
Loading
/content/journals/cas/10.2174/0118746098339043241219060015
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: variability ; complex systems ; defective engineering ; disorder ; artificial intelligence ; Aging
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test