Skip to content
2000
Volume 18, Issue 3
  • ISSN: 1874-6098
  • E-ISSN: 1874-6128

Abstract

Alzheimer's disease is a progressive neurodegenerative disorder with no known treatment. Recent advances in regenerative medicine, including stem cell therapies, hold promise for treating Alzheimer's disease and slowing its progression. This review explores the various types of stem cells, such as neural and mesenchymal stem cells, and how they can be harnessed for Alzheimer's treatment. It also discusses the potential mechanisms of action, including neurogenesis, anti-inflammatory and anti-apoptotic effects, and the secretion of various biologically active molecules by stem cells.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098334856250106055739
2025-01-20
2026-02-21
Loading full text...

Full text loading...

References

  1. LisaM.C.C.W.T. BainbJ. The global impact of alzheimer’s disease.Alzheimer's Disease-Modernizing Concept, Biological Diagnosis and Therapy20121
    [Google Scholar]
  2. ReviM. Alzheimer’s disease therapeutic approaches.Adv Exp Med Biol.2020119510511610.1007/978‑3‑030‑32633‑3_1532468465
    [Google Scholar]
  3. HardyJ. SelkoeD.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics.Science2002297558035335610.1126/science.107299412130773
    [Google Scholar]
  4. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.20160621027025652
    [Google Scholar]
  5. OnoK. CondronM.M. TeplowD.B. Structure–neurotoxicity relationships of amyloid β-protein oligomers.Proc. Natl. Acad. Sci. USA200910635147451475010.1073/pnas.090512710619706468
    [Google Scholar]
  6. LiuX.Y. YangL.P. ZhaoL. Stem cell therapy for Alzheimer’s disease.World J. Stem Cells202012878780210.4252/wjsc.v12.i8.78732952859
    [Google Scholar]
  7. TongL.M. FongH. HuangY. Stem cell therapy for Alzheimer’s disease and related disorders: Current status and future perspectives.Exp. Mol. Med.2015473e151e15110.1038/emm.2014.12425766620
    [Google Scholar]
  8. HernándezA.E. GarcíaE. Mesenchymal stem cell therapy for Alzheimer’s disease.Stem Cells Int.2021202111210.1155/2021/783442134512767
    [Google Scholar]
  9. MehrabadiS. MotevaseliE. SadrS. S. MoradbeygiK. Hypoxic- conditioned medium from adipose tissue mesenchymal stem cells improved neuroinflammation through alternation of toll like receptor (TLR) 2 and TLR4 expression in model of Alzheimer's disease rats.Behav Brain Res.202037911236210.1016/j.bbr.2019.11236231739000
    [Google Scholar]
  10. HayashiY. LinH.T. LeeC.C. TsaiK.J. Effects of neural stem cell transplantation in Alzheimer’s disease models.J. Biomed. Sci.20202712910.1186/s12929‑020‑0622‑x31987051
    [Google Scholar]
  11. YefroyevD.A. JinS. Induced pluripotent stem cells for treatment of Alzheimer’s and Parkinson’s diseases.Biomedicines202210220810.3390/biomedicines1002020835203418
    [Google Scholar]
  12. McGinleyL.M. KashlanO.N. BrunoE.S. ChenK.S. HayesJ.M. KashlanS.R. RaykinJ. JoheK. MurphyG.G. FeldmanE.L. Human neural stem cell transplantation improves cognition in a murine model of Alzheimer’s disease.Sci. Rep.2018811477610.1038/s41598‑018‑33017‑630283042
    [Google Scholar]
  13. ApodacaL.A. BaddourA.A.D. GarciaC.Jr AlikhaniL. GiedzinskiE. RuN. AgrawalA. AcharyaM.M. BaulchJ.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease.Alzheimers Res. Ther.20211315710.1186/s13195‑021‑00791‑x33676561
    [Google Scholar]
  14. ZhangL. DongZ. ZhangJ. Immunomodulatory role of mesenchymal stem cells in Alzheimer’s disease.Life Sci.202024611740510.1016/j.lfs.2020.11740532035129
    [Google Scholar]
  15. TatulloM. GargiuloI.C. DipalmaG. BalliniA. InchingoloA.M. PaduanelliG. 17 - Stem cells and regenerative medicine. Transl. Syst. Med. Oral Dis.202038740710.1016/B978‑0‑12‑813762‑8.00017‑7
    [Google Scholar]
  16. GolchinA. SeyedjafariE. ArdeshirylajimiA. Mesenchymal stem cell therapy for COVID-19: Present or future.Stem Cell Rev. Rep.202016342743310.1007/s12015‑020‑09973‑w32281052
    [Google Scholar]
  17. ChenX. HuangJ. WuJ. HaoJ. FuB. WangY. ZhouB. NaT. WeiJ. ZhangY. LiQ. HuS. ZhouJ. YuJ. WuZ. ZhuH. CaoJ. WangL. PengY. LiangL. MaA. ZhangY. ZhaoT. XiangA.P. Human mesenchymal stem cells.Cell Prolif.2022554e1314110.1111/cpr.1314134936710
    [Google Scholar]
  18. MargianaR. MarkovA. ZekiyA.O. HamzaM.U. Al-DabbaghK.A. Al-ZubaidiS.H. HameedN.M. AhmadI. SivaramanR. KzarH.H. Al-GazallyM.E. MustafaY.F. SiahmansouriH. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review.Stem Cell Res. Ther.202213136610.1186/s13287‑022‑03054‑035902958
    [Google Scholar]
  19. KimH.J. ChoK.R. JangH. LeeN.K. JungY.H. KimJ.P. LeeJ.I. ChangJ.W. ParkS. KimS.T. MoonS.W. SeoS.W. ChoiS.J. NaD.L. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase I clinical trial.Alzheimers Res. Ther.202113115410.1186/s13195‑021‑00897‑234521461
    [Google Scholar]
  20. JasimS.A. YumashevA.V. AbdelbassetW.K. MargianaR. MarkovA. SuksatanW. PinedaB. ThangaveluL. AhmadiS.H. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases.Stem Cell Res. Ther.202213110110.1186/s13287‑022‑02782‑735255979
    [Google Scholar]
  21. YunC.W. LeeS.H. Enhancement of functionality and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for cardiovascular disease.Int. J. Mol. Sci.201920498210.3390/ijms2004098230813471
    [Google Scholar]
  22. AndrzejewskaA. DabrowskaS. LukomskaB. JanowskiM. Mesenchymal stem cells for neurological disorders.Adv. Sci. (Weinh.)202187200294410.1002/advs.20200294433854883
    [Google Scholar]
  23. Chakari-KhiaviF. DolatiS. Chakari-KhiaviA. AbbaszadehH. Aghebati-MalekiL. PourlakT. MehdizadehA. YousefiM. Prospects for the application of mesenchymal stem cells in Alzheimer’s disease treatment.Life Sci.201923111656410.1016/j.lfs.2019.11656431202840
    [Google Scholar]
  24. ParkS.E. KimH.S. KwonS.J. KimM-J. ChoiS-j. OhS-y. RyuG.H. Jeon H.B. NaD.L. ChangJ.W. Exposure of mesenchymal stem cells to an Alzheimer's disease environment enhances therapeutic effects.Stem Cells Int.20212021666018610.1155/2021/666018633815510
    [Google Scholar]
  25. HernándezA. GarcíaE. Mesenchymal stem cell therapy for Alzheimer's disease.Stem Cells Int.20212021783442110.1155/2021/783442134512767
    [Google Scholar]
  26. NevesA.F. CamargoC. PremerC. HareJ.M. BaumelB.S. PintoM. Intravenous administration of mesenchymal stem cells reduces Tau phosphorylation and inflammation in the 3xTg-AD mouse model of Alzheimer’s disease.Exp. Neurol.202134111370610.1016/j.expneurol.2021.11370633757765
    [Google Scholar]
  27. DingM. ShenY. WangP. XieZ. XuS. ZhuZ. WangY. LyuY. WangD. XuL. BiJ. YangH. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer’s disease.Neurochem. Res.201843112165217710.1007/s11064‑018‑2641‑530259257
    [Google Scholar]
  28. LeeC. WillerthS.M. NygaardH.B. The use of patient-derived induced pluripotent stem cells for Alzheimer’s disease modeling.Prog. Neurobiol.202019210180410.1016/j.pneurobio.2020.10180432464173
    [Google Scholar]
  29. McInvaleJ.J. CanollP. HargusG. Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in Alzheimer’s disease and frontotemporal dementia.Brain Pathol.2024344e1323110.1111/bpa.1323138246596
    [Google Scholar]
  30. VerheijenM.C.T. KrauskopfJ. CaimentF. NazarukM. WenQ.F. van HerwijnenM.H.M. HauserD.A. GajjarM. VerfaillieC. VermeirenY. De DeynP.P. WittensM.M.J. SiebenA. EngelborghsS. DejonckheereW. PrincenK. GriffioenG. RoggenE.L. BriedéJ.J. iPSC-derived cortical neurons to study sporadic Alzheimer disease: A transcriptome comparison with post-mortem brain samples.Toxicol. Lett.2022356899910.1016/j.toxlet.2021.12.00934921933
    [Google Scholar]
  31. WilliamsG. GattA. ClarkeE. CorcoranJ. DohertyP. ChambersD. BallardC. Drug repurposing for Alzheimer’s disease based on transcriptional profiling of human iPSC-derived cortical neurons.Transl. Psychiatry20199122010.1038/s41398‑019‑0555‑x31492831
    [Google Scholar]
  32. UmekageM. SatoY. TakasuN. Overview: An iPS cell stock at CiRA.Inflamm. Regen.20193911710.1186/s41232‑019‑0106‑031497180
    [Google Scholar]
  33. MattisV.B. SvendsenC.N. Induced pluripotent stem cells: A new revolution for clinical neurology?Lancet Neurol.201110438339410.1016/S1474‑4422(11)70022‑921435601
    [Google Scholar]
  34. IsraelM.A. YuanS.H. BardyC. ReynaS.M. MuY. HerreraC. HefferanM.P. Van GorpS. NazorK.L. BoscoloF.S. CarsonC.T. LaurentL.C. MarsalaM. GageF.H. RemesA.M. KooE.H. GoldsteinL.S.B. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells.Nature2012482738421622010.1038/nature1082122278060
    [Google Scholar]
  35. PandeyS. JiráskoM. LochmanJ. ChvátalA. Chottova DvorakovaM. KučeraR. iPSCs in neurodegenerative disorders: A unique platform for clinical research and personalized medicine.J. Pers. Med.2022129148510.3390/jpm1209148536143270
    [Google Scholar]
  36. ParkS. GwonY. KhanS.A. JangK.J. KimJ. Engineering considerations of iPSC-based personalized medicine.Biomater. Res.20232716710.1186/s40824‑023‑00382‑x37420273
    [Google Scholar]
  37. FlannaganK. StopperanJ.A. HaugerB.M. TroutwineB.R. LysakerC.R. StropeT.A. Csikos DrummondV. GilmoreC.A. SwerdlowN.A. DraperJ.M. GouvionC.M. VivianJ.L. HaeriM. SwerdlowR.H. WilkinsH.M. Cell type and sex specific mitochondrial phenotypes in iPSC derived models of Alzheimer’s disease.Front. Mol. Neurosci.202316120101510.3389/fnmol.2023.120101537614699
    [Google Scholar]
  38. PellitteriR. BonfantiR. SpatuzzaM. CambriaM.T. FerraraM. RacitiG. CampisiA. Effect of some growth factors on tissue transglutaminase overexpression induced by β-amyloid in olfactory ensheathing cells.Mol. Neurobiol.20175496785679410.1007/s12035‑016‑0152‑427757835
    [Google Scholar]
  39. RaismanG. BarnettS.C. Ramón-CuetoA. Repair of central nervous system lesions by transplantation of olfactory ensheathing cells.Handb. Clin. Neurol.201210954154910.1016/B978‑0‑444‑52137‑8.00033‑423098735
    [Google Scholar]
  40. ShengB-y. LiY. JiangY-j. WeiC-j. LiY. RenX-m. Proliferation and directed differentiation of neural stem cells and olfactory ensheathing cells after co-transplantation into the brain of Alzheimer’s disease rats.Chinese Journal of Tissue Engineering Research2011159186
    [Google Scholar]
  41. SunX. TanZ. HuangX. ChengX. YuanY. QinS. WangD. HuX. GuY. QianW.J. WangZ. HeC. SuZ. Direct neuronal reprogramming of olfactory ensheathing cells for CNS repair.Cell Death Dis.201910964610.1038/s41419‑019‑1887‑431501413
    [Google Scholar]
  42. HeB.R. XieS.T. WuM.M. HaoD.J. YangH. Phagocytic removal of neuronal debris by olfactory ensheathing cells enhances neuronal survival and neurite outgrowth via p38MAPK activity.Mol. Neurobiol.20144931501151210.1007/s12035‑013‑8588‑224258406
    [Google Scholar]
  43. ZhangL. LiaoJ. LiuY. LuoH. ZhangW. Potential therapeutic effect of olfactory ensheathing cells in neurological diseases: Neurodegenerative diseases and peripheral nerve injuries.Front. Immunol.202314128018610.3389/fimmu.2023.128018637915589
    [Google Scholar]
  44. YangC. LiJ. LinH. ZhaoK. ZhengC. Nasal mucosa derived-mesenchymal stem cells from mice reduce inflammation via modulating immune responses.PLoS One2015103e011884910.1371/journal.pone.011884925739057
    [Google Scholar]
  45. AnsariS. EtekochayM.O. AtanasovA.G. PrasadV.P. KandimallaR. MofattehM. PriyankaV. EmranT.B. Human olfactory neurosphere-derived cells: A unified tool for neurological disease modelling and neurotherapeutic applications.Int J Surg.2024110106321632910.1097/JS9.000000000000146038652180
    [Google Scholar]
  46. HongC.G. ChenM.L. DuanR. WangX. PangZ.L. GeL.T. LuM. XieH. LiuZ.Z. Transplantation of nasal olfactory mucosa mesenchymal stem cells benefits Alzheimer’s disease.Mol. Neurobiol.202259127323733610.1007/s12035‑022‑03044‑636173534
    [Google Scholar]
  47. ZhangQ. WuH. WangY. GuG. ZhangW. XiaR. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease.J. Neurochem.2016136481582510.1111/jnc.1341326525612
    [Google Scholar]
  48. YangJ. LiS. HeX.B. ChengC. LeW. Induced pluripotent stem cells in Alzheimer’s disease: Applications for disease modeling and cell-replacement therapy.Mol. Neurodegener.20161113910.1186/s13024‑016‑0106‑327184028
    [Google Scholar]
  49. WangH. DwamenaA. Olfactory ecto-mesenchymal stem cells in modeling and treating Alzheimer’s disease.Int. J. Mol. Sci.20242515849210.3390/ijms2515849239126059
    [Google Scholar]
  50. MareiH.E. KhanM.U.A. HasanA. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer’s disease.Cell. Mol. Biol. Lett.20232819810.1186/s11658‑023‑00504‑238031028
    [Google Scholar]
  51. De PlanoL.M. CalabreseG. ConociS. GuglielminoS.P.P. OddoS. CaccamoA. Applications of CRISPR-Cas9 in Alzheimer’s disease and related disorders.Int. J. Mol. Sci.20222315871410.3390/ijms2315871435955847
    [Google Scholar]
  52. ParkH. OhJ. ShimG. ChoB. ChangY. KimS. BaekS. KimH. ShinJ. ChoiH. YooJ. KimJ. JunW. LeeM. LengnerC.J. OhY.K. KimJ. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease.Nat. Neurosci.201922452452810.1038/s41593‑019‑0352‑030858603
    [Google Scholar]
  53. IzadpanahM. DargahiL. AiJ. Asgari TaeiA. Ebrahimi BaroughS. MowlaS.J. TavoosiDanaG. FarahmandfarM. Extracellular vesicles as a neprilysin delivery system memory improvement in Alzheimer’s disease.Iran. J. Pharm. Res.2020192456033224210
    [Google Scholar]
  54. YinT. LiuY. JiW. ZhuangJ. ChenX. GongB. ChuJ. LiangW. GaoJ. YinY. Engineered mesenchymal stem cell-derived extracellular vesicles: A state-of-the-art multifunctional weapon against Alzheimer’s disease.Theranostics20231341264128510.7150/thno.8186036923533
    [Google Scholar]
  55. WyseR. DunbarG. RossignolJ. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases.Int. J. Mol. Sci.20141521719174510.3390/ijms1502171924463293
    [Google Scholar]
  56. CavalliE. BattagliaG. BasileM.S. BrunoV. PetraliaM.C. LombardoS.D. PennisiM. KalfinR. TanchevaL. FagoneP. NicolettiF. ManganoK. Exploratory analysis of iPSCS-derived neuronal cells as predictors of diagnosis and treatment of Alzheimer disease.Brain Sci.202010316610.3390/brainsci1003016632183090
    [Google Scholar]
  57. Ortiz-VirumbralesM. MorenoC.L. KruglikovI. MarazuelaP. SproulA. JacobS. ZimmerM. PaullD. ZhangB. SchadtE.E. EhrlichM.E. TanziR.E. ArancioO. NoggleS. GandyS. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons.Acta Neuropathol. Commun.2017517710.1186/s40478‑017‑0475‑z29078805
    [Google Scholar]
  58. ZhengW. LiQ. ZhaoC. DaY. ZhangH.L. ChenZ. Differentiation of glial cells from hiPSCs: Potential applications in neurological diseases and cell replacement therapy.Front. Cell. Neurosci.20181223910.3389/fncel.2018.0023930140204
    [Google Scholar]
  59. TurchianoG. AndrieuxG. KlermundJ. BlattnerG. PennucciV. El GazM. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq.Cell Stem Cell202128611361147.e510.1016/j.stem.2021.02.00233626327
    [Google Scholar]
  60. MaxwellK.G. AugsornworawatP. Velazco-CruzL. KimM.H. AsadaR. HogrebeN.J. MorikawaS. UranoF. MillmanJ.R. Gene-edited human stem cell–derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice.Sci. Transl. Med.202012540eaax910610.1126/scitranslmed.aax910632321868
    [Google Scholar]
  61. BahramiE. SchmidJ.P. BeckerM. WirthA.K. ÖllingerR. RadR. VickB. JayaveluA.K. MannM. HeroldT. JeremiasI. In vivo CRISPR-Cas9 screens in PDX models reveals ADAM10 as novel therapeutic target in acute leukemia.Blood2021138Suppl. 170810.1182/blood‑2021‑149658
    [Google Scholar]
  62. MyeongS.H. KimH. LeeN.K. HwangJ.W. KimH.J. JangH. ChoiS.J. NaD.L. Intracerebroventricular administration of human umbilical cord blood—derived mesenchymal stem cells induces transient inflammation in a transgenic mouse model and patients with Alzheimer’s disease.Biomedicines202210356310.3390/biomedicines1003056335327365
    [Google Scholar]
  63. BarakM. FedorovaV. PospisilovaV. RaskaJ. VochyanovaS. SedmikJ. HribkovaH. KlimovaH. VanovaT. BohaciakovaD. Human iPSC-derived neural models for studying Alzheimer’s disease: From neural stem cells to cerebral organoids.Stem Cell Rev. Rep.202218279282010.1007/s12015‑021‑10254‑335107767
    [Google Scholar]
  64. ChoeM.S. YeoH.C. KimJ.S. LeeJ. LeeH.J. KimH.R. BaekK.M. JungN.Y. ChoiM. LeeM.Y. Simple modeling of familial Alzheimer’s disease using human pluripotent stem cell-derived cerebral organoid technology.Stem Cell Res. Ther.202415111810.1186/s13287‑024‑03732‑138659053
    [Google Scholar]
  65. FanW. SunY. ShiZ. WangH. DengJ. Mouse induced pluripotent stem cells-derived Alzheimer’s disease cerebral organoid culture and neural differentiation disorders.Neurosci. Lett.201971113443310.1016/j.neulet.2019.13443331421155
    [Google Scholar]
  66. GuttikondaS.R. SikkemaL. TchieuJ. SauratN. WalshR.M. HarschnitzO. CiceriG. SneeboerM. MazutisL. SettyM. ZumboP. BetelD. de WitteL.D. Pe’erD. StuderL. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer’s disease.Nat. Neurosci.202124334335410.1038/s41593‑020‑00796‑z33558694
    [Google Scholar]
  67. LiuT. Human stem cell-derived microglia will be an indispensable toolbox for Alzheimer’s disease research.Neural Regen. Res.20211691770177110.4103/1673‑5374.30608733510070
    [Google Scholar]
  68. Regeneration Biomedical, Inc.Autologous activated adipose-derived stem cells (RB-ADSC) injected directly into the brain for mild to moderate alzheimer's disease.NCT05667649 2024Available from: https://clinicaltrials.gov/study/NCT05667649
  69. YanS.S. Campos de SouzaS. XieZ.D. BaoY.X. Research progress in clinical trials of stem cell therapy for stroke and neurodegenerative diseases.Ibrain20239221423010.1002/ibra.1209537786546
    [Google Scholar]
  70. China Medical University HospitalImplantation of Olfactory Ensheathing Cells (OECs).NCT01327768 2011Available from: https://clinicaltrials.gov/study/NCT01327768
  71. Azienda Ospedaliera Santa Maria, Terni, ItalyHuman Neural Stem Cell Transplantation in Amyotrophic Lateral Sclerosis (hNSCALS).NCT01640067 2015Available from: https://clinicaltrials.gov/study/NCT01640067
  72. ShengC.C. ZhouL. HaoJ. Current stem cell delivery methods for myocardial repair.Biomed Res Int.2013201354790210.1155/2013/54790223509740
    [Google Scholar]
  73. JinX. LinT. XuY. Stem cell therapy and immunological rejection in animal models.Curr. Mol. Pharmacol.20169428428810.2174/187446720866615092815351126415913
    [Google Scholar]
  74. PennM.S. MangiA.A. Genetic enhancement of stem cell engraftment, survival, and efficacy.Circ. Res.2008102121471148210.1161/CIRCRESAHA.108.17517418566313
    [Google Scholar]
  75. LeeA.S. TangC. RaoM.S. WeissmanI.L. WuJ.C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies.Nat. Med.2013198998100410.1038/nm.326723921754
    [Google Scholar]
  76. BoyetteL. TuanR. Adult stem cells and diseases of aging.J. Clin. Med.2014318813410.3390/jcm301008824757526
    [Google Scholar]
  77. NawabK. BhereD. BommaritoA. MuftiM. NaeemA. Stem cell therapies: A way to promising cures.Cureus2019119e571210.7759/cureus.571231720180
    [Google Scholar]
  78. TiwariS. AtluriV. KaushikA. YndartA. NairM. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics.Int. J. Nanomedicine2019145541555410.2147/IJN.S20049031410002
    [Google Scholar]
  79. MehrabadiS. SadrS.S. HoseiniM. Stem cell conditioned medium as a novel treatment for neuroinflamation diseases.Int. J. Med. Investig.20198112
    [Google Scholar]
  80. YaoW. YangH. YangJ. Small-molecule drugs development for Alzheimer’s disease.Front. Aging Neurosci.202214101941210.3389/fnagi.2022.101941236389082
    [Google Scholar]
  81. CotrinaE.Y. SantosL.M. RivasJ. BlasiD. LeiteJ.P. LizM.A. BusquetsM.A. PlanasA. ProhensR. GimenoA. Jiménez-BarberoJ. GalesL. LlopJ. QuintanaJ. CardosoI. ArsequellG. Targeting transthyretin in Alzheimer’s disease: Drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer’s disease.Eur. J. Med. Chem.202122611384710.1016/j.ejmech.2021.11384734555615
    [Google Scholar]
  82. ChenL. CruzE. OikariL.E. PadmanabhanP. SongJ. GötzJ. Opportunities and challenges in delivering biologics for Alzheimer’s disease by low-intensity ultrasound.Adv. Drug Deliv. Rev.202218911451710.1016/j.addr.2022.11451736030018
    [Google Scholar]
  83. WeaverD.F. Drug design for Alzheimer’s disease: Biologics vs. small molecules.Curr. Alzheimer Res.2023201282182610.2174/011567205030158324030711445238468530
    [Google Scholar]
  84. YuJ. LiT. ZhuJ. Gene therapy strategies targeting aging-related diseases.Aging Dis.202314239841737008065
    [Google Scholar]
  85. AhnS.H. JeongJ.H. ParkK.W. KimE.J. YoonS.J. YoonB. JangJ.W. MinnY. ChoiS.H. Effect of dietary habits on Alzheimer’s disease progression.Yonsei Med. J.202465421722610.3349/ymj.2023.011938515359
    [Google Scholar]
  86. KandimallaR. SaeedM. TyagiN. GuptaR.C. AqilF. Exosome-based approaches in the management of Alzheimer’s disease.Neurosci. Biobehav. Rev.202314410497410.1016/j.neubiorev.2022.10497436435392
    [Google Scholar]
  87. YadavK. VijayalakshmiR. Kumar SahuK. SureP. ChahalK. YadavR. Sucheta DubeyA. JhaM. PradhanM. Exosome-Based Macromolecular neurotherapeutic drug delivery approaches in overcoming the Blood-Brain barrier for treating brain disorders.Eur. J. Pharm. Biopharm.202419911429810.1016/j.ejpb.2024.11429838642716
    [Google Scholar]
  88. WinchesterL.M. HarshfieldE.L. ShiL. BadhwarA. KhleifatA.A. ClarkeN. DehsarviA. LengyelI. LouridaI. MadanC.R. MarziS.J. ProitsiP. RajkumarA.P. RittmanT. SilajdžićE. TamburinS. RansonJ.M. LlewellynD.J. Artificial intelligence for biomarker discovery in Alzheimer’s disease and dementia.Alzheimers Dement.202319125860587110.1002/alz.1339037654029
    [Google Scholar]
  89. DeviG. A how-to guide for a precision medicine approach to the diagnosis and treatment of Alzheimer’s disease.Front Aging Neurosci.202315121396810.3389/fnagi.2023.121396837662550
    [Google Scholar]
  90. TincerG. MashkaryanV. BhattaraiP. KizilC. Neural stem/progenitor cells in Alzheimer’s disease.Yale J. Biol. Med.2016891233527505014
    [Google Scholar]
  91. ZhouZ. ShiB. XuY. ZhangJ. liuX. ZhouX. FengB. MaJ. CuiH. Neural stem/progenitor cell therapy for Alzheimer disease in preclinical rodent models: A systematic review and meta-analysis.Stem Cell Res. Ther.2023141310.1186/s13287‑022‑03231‑136600321
    [Google Scholar]
  92. LuL. YuX. CaiY. SunM. YangH. Application of CRISPR/Cas9 in Alzheimer’s disease.Front. Neurosci.20211580389410.3389/fnins.2021.80389434992519
    [Google Scholar]
  93. VandendriesscheC. KapogiannisD. VandenbrouckeR.E. Biomarker and therapeutic potential of peripheral extracellular vesicles in Alzheimer’s disease.Adv. Drug Deliv. Rev.202219011448610.1016/j.addr.2022.11448635952829
    [Google Scholar]
  94. BhardwajS. KesariK.K. RachamallaM. ManiS. AshrafG.M. JhaS.K. KumarP. AmbastaR.K. DurejaH. DevkotaH.P. GuptaG. ChellappanD.K. SinghS.K. DuaK. RuokolainenJ. KamalM.A. OjhaS. JhaN.K. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics.J. Adv. Res.20224020722110.1016/j.jare.2021.07.00136100328
    [Google Scholar]
  95. TianC. StewartT. HongZ. GuoZ. AroP. SoltysD. PanC. PeskindE.R. ZabetianC.P. ShawL.M. GalaskoD. QuinnJ.F. ShiM. ZhangJ. Alzheimer’s Disease Neuroimaging Initiative Blood extracellular vesicles carrying synaptic function- and brain-related proteins as potential biomarkers for Alzheimer’s disease.Alzheimers Dement.202319390992310.1002/alz.1272335779041
    [Google Scholar]
  96. GonçalvesR.J. VasquesJ. da Silva-JuniorA. GubertF. Mendez-OteroR. Mesenchymal stem cell- and extracellular vesicle-based therapies for Alzheimer′s disease: Progress, advantages, and challenges.Neural Regen. Res.2023188010.4103/1673‑5374.36154636751774
    [Google Scholar]
  97. Bagheri-MohammadiS. Stem cell-based therapy as a promising approach in Alzheimer’s disease: Current perspectives on novel treatment.Cell Tissue Bank.202122333935310.1007/s10561‑020‑09896‑333398492
    [Google Scholar]
/content/journals/cas/10.2174/0118746098334856250106055739
Loading
/content/journals/cas/10.2174/0118746098334856250106055739
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test