Skip to content
2000
image of Uncovering the Healing Power of Stem Cells: Harnessing Regenerative Therapies for Alzheimer's Disease

Abstract

Alzheimer's disease is a progressive neurodegenerative disorder with no known treatment. Recent advances in regenerative medicine, including stem cell therapies, hold promise for treating Alzheimer's disease and slowing its progression. This review explores the various types of stem cells, such as neural and mesenchymal stem cells, and how they can be harnessed for Alzheimer's treatment. It also discusses the potential mechanisms of action, including neurogenesis, anti-inflammatory and anti-apoptotic effects, and the secretion of various biologically active molecules by stem cells.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098334856250106055739
2025-01-20
2025-06-26
Loading full text...

Full text loading...

References

  1. Lisa M.C.C.W.T. Bainb J. The Global Impact of Alzheimer’s Disease. Alzheimer's Disease-Modernizing Concept, Biological Diagnosis and Therapy 2012 1
    [Google Scholar]
  2. Revi M. Alzheimer’s disease therapeutic approaches. Adv Exp Med Biol. 2020 1195 105 116 10.1007/978‑3‑030‑32633‑3_15 32468465
    [Google Scholar]
  3. Hardy J. Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002 297 5580 353 356 10.1126/science.1072994 12130773
    [Google Scholar]
  4. Selkoe D.J. Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016 8 6 595 608 10.15252/emmm.201606210 27025652
    [Google Scholar]
  5. Ono K. Condron M.M. Teplow D.B. Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl. Acad. Sci. USA 2009 106 35 14745 14750 10.1073/pnas.0905127106 19706468
    [Google Scholar]
  6. Liu X.Y. Yang L.P. Zhao L. Stem cell therapy for Alzheimer’s disease. World J. Stem Cells 2020 12 8 787 802 10.4252/wjsc.v12.i8.787 32952859
    [Google Scholar]
  7. Tong L.M. Fong H. Huang Y. Stem cell therapy for Alzheimer’s disease and related disorders: Current status and future perspectives. Exp. Mol. Med. 2015 47 3 e151 e151 10.1038/emm.2014.124 25766620
    [Google Scholar]
  8. Hernández A.E. García E. Mesenchymal stem cell therapy for Alzheimer’s disease. Stem Cells Int. 2021 2021 1 12 10.1155/2021/7834421 34512767
    [Google Scholar]
  9. Mehrabadi S. Motevaseli E. Sadr S. S. Moradbeygi K. Hypoxic-conditioned medium from adipose tissue mesenchymal stem cells improved neuroinflammation through alternation of toll like receptor (TLR) 2 and TLR4 expression in model of Alzheimer's disease rats. Behav Brain Res. 2020 379 112362 10.1016/j.bbr.2019.112362 31739000
    [Google Scholar]
  10. Hayashi Y. Lin H.T. Lee C.C. Tsai K.J. Effects of neural stem cell transplantation in Alzheimer’s disease models. J. Biomed. Sci. 2020 27 1 29 10.1186/s12929‑020‑0622‑x 31987051
    [Google Scholar]
  11. Yefroyev D.A. Jin S. Induced pluripotent stem cells for treatment of Alzheimer’s and Parkinson’s diseases. Biomedicines 2022 10 2 208 10.3390/biomedicines10020208 35203418
    [Google Scholar]
  12. McGinley L.M. Kashlan O.N. Bruno E.S. Chen K.S. Hayes J.M. Kashlan S.R. Raykin J. Johe K. Murphy G.G. Feldman E.L. Human neural stem cell transplantation improves cognition in a murine model of Alzheimer’s disease. Sci. Rep. 2018 8 1 14776 10.1038/s41598‑018‑33017‑6 30283042
    [Google Scholar]
  13. Apodaca L.A. Baddour A.A.D. Garcia C. Jr Alikhani L. Giedzinski E. Ru N. Agrawal A. Acharya M.M. Baulch J.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease. Alzheimers Res. Ther. 2021 13 1 57 10.1186/s13195‑021‑00791‑x 33676561
    [Google Scholar]
  14. Zhang L. Dong Z. Zhang J. Immunomodulatory role of mesenchymal stem cells in Alzheimer’s disease. Life Sci. 2020 246 117405 10.1016/j.lfs.2020.117405 32035129
    [Google Scholar]
  15. Tatullo M. Gargiulo I.C. Dipalma G. Ballini A. Inchingolo A.M. Paduanelli G. 17 - Stem cells and regenerative medicine. Transl. Syst. Med. Oral Dis. 2020 387 407 10.1016/B978‑0‑12‑813762‑8.00017‑7
    [Google Scholar]
  16. Golchin A. Seyedjafari E. Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or future. Stem Cell Rev. Rep. 2020 16 3 427 433 10.1007/s12015‑020‑09973‑w 32281052
    [Google Scholar]
  17. Chen X. Huang J. Wu J. Hao J. Fu B. Wang Y. Zhou B. Na T. Wei J. Zhang Y. Li Q. Hu S. Zhou J. Yu J. Wu Z. Zhu H. Cao J. Wang L. Peng Y. Liang L. Ma A. Zhang Y. Zhao T. Xiang A.P. Human mesenchymal stem cells. Cell Prolif. 2022 55 4 e13141 10.1111/cpr.13141 34936710
    [Google Scholar]
  18. Margiana R. Markov A. Zekiy A.O. Hamza M.U. Al-Dabbagh K.A. Al-Zubaidi S.H. Hameed N.M. Ahmad I. Sivaraman R. Kzar H.H. Al-Gazally M.E. Mustafa Y.F. Siahmansouri H. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther. 2022 13 1 366 10.1186/s13287‑022‑03054‑0 35902958
    [Google Scholar]
  19. Kim H.J. Cho K.R. Jang H. Lee N.K. Jung Y.H. Kim J.P. Lee J.I. Chang J.W. Park S. Kim S.T. Moon S.W. Seo S.W. Choi S.J. Na D.L. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase I clinical trial. Alzheimers Res. Ther. 2021 13 1 154 10.1186/s13195‑021‑00897‑2 34521461
    [Google Scholar]
  20. Jasim S.A. Yumashev A.V. Abdelbasset W.K. Margiana R. Markov A. Suksatan W. Pineda B. Thangavelu L. Ahmadi S.H. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res. Ther. 2022 13 1 101 10.1186/s13287‑022‑02782‑7 35255979
    [Google Scholar]
  21. Yun C.W. Lee S.H. Enhancement of functionality and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for cardiovascular disease. Int. J. Mol. Sci. 2019 20 4 982 10.3390/ijms20040982 30813471
    [Google Scholar]
  22. Andrzejewska A. Dabrowska S. Lukomska B. Janowski M. Mesenchymal stem cells for neurological disorders. Adv. Sci. (Weinh.) 2021 8 7 2002944 10.1002/advs.202002944 33854883
    [Google Scholar]
  23. Chakari-Khiavi F. Dolati S. Chakari-Khiavi A. Abbaszadeh H. Aghebati-Maleki L. Pourlak T. Mehdizadeh A. Yousefi M. Prospects for the application of mesenchymal stem cells in Alzheimer’s disease treatment. Life Sci. 2019 231 116564 10.1016/j.lfs.2019.116564 31202840
    [Google Scholar]
  24. Park S.E. Kim H.S. Kwon S.J. Kim M-J. Choi S-j. Oh S-y. Ryu G.H. Jeon H.B. Na D.L. Chang J.W. Exposure of mesenchymal stem cells to an Alzheimer's disease environment enhances therapeutic effects. Stem Cells Int. 2021 2021 6660186 10.1155/2021/6660186 33815510
    [Google Scholar]
  25. Hernández A. García E. Mesenchymal stem cell therapy for Alzheimer's disease. Stem Cells Int. 2021 2021 7834421 10.1155/2021/7834421 34512767
    [Google Scholar]
  26. Neves A.F. Camargo C. Premer C. Hare J.M. Baumel B.S. Pinto M. Intravenous administration of mesenchymal stem cells reduces Tau phosphorylation and inflammation in the 3xTg-AD mouse model of Alzheimer’s disease. Exp. Neurol. 2021 341 113706 10.1016/j.expneurol.2021.113706 33757765
    [Google Scholar]
  27. Ding M. Shen Y. Wang P. Xie Z. Xu S. Zhu Z. Wang Y. Lyu Y. Wang D. Xu L. Bi J. Yang H. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer’s disease. Neurochem. Res. 2018 43 11 2165 2177 10.1007/s11064‑018‑2641‑5 30259257
    [Google Scholar]
  28. Lee C. Willerth S.M. Nygaard H.B. The use of patient-derived induced pluripotent stem cells for Alzheimer’s disease modeling. Prog. Neurobiol. 2020 192 101804 10.1016/j.pneurobio.2020.101804 32464173
    [Google Scholar]
  29. McInvale J.J. Canoll P. Hargus G. Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in Alzheimer’s disease and frontotemporal dementia. Brain Pathol. 2024 34 4 e13231 10.1111/bpa.13231 38246596
    [Google Scholar]
  30. Verheijen M.C.T. Krauskopf J. Caiment F. Nazaruk M. Wen Q.F. van Herwijnen M.H.M. Hauser D.A. Gajjar M. Verfaillie C. Vermeiren Y. De Deyn P.P. Wittens M.M.J. Sieben A. Engelborghs S. Dejonckheere W. Princen K. Griffioen G. Roggen E.L. Briedé J.J. iPSC-derived cortical neurons to study sporadic Alzheimer disease: A transcriptome comparison with post-mortem brain samples. Toxicol. Lett. 2022 356 89 99 10.1016/j.toxlet.2021.12.009 34921933
    [Google Scholar]
  31. Williams G. Gatt A. Clarke E. Corcoran J. Doherty P. Chambers D. Ballard C. Drug repurposing for Alzheimer’s disease based on transcriptional profiling of human iPSC-derived cortical neurons. Transl. Psychiatry 2019 9 1 220 10.1038/s41398‑019‑0555‑x 31492831
    [Google Scholar]
  32. Umekage M. Sato Y. Takasu N. Overview: An iPS cell stock at CiRA. Inflamm. Regen. 2019 39 1 17 10.1186/s41232‑019‑0106‑0 31497180
    [Google Scholar]
  33. Mattis V.B. Svendsen C.N. Induced pluripotent stem cells: A new revolution for clinical neurology? Lancet Neurol. 2011 10 4 383 394 10.1016/S1474‑4422(11)70022‑9 21435601
    [Google Scholar]
  34. Israel M.A. Yuan S.H. Bardy C. Reyna S.M. Mu Y. Herrera C. Hefferan M.P. Van Gorp S. Nazor K.L. Boscolo F.S. Carson C.T. Laurent L.C. Marsala M. Gage F.H. Remes A.M. Koo E.H. Goldstein L.S.B. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 2012 482 7384 216 220 10.1038/nature10821 22278060
    [Google Scholar]
  35. Pandey S. Jirásko M. Lochman J. Chvátal A. Chottova Dvorakova M. Kučera R. iPSCs in neurodegenerative disorders: A unique platform for clinical research and personalized medicine. J. Pers. Med. 2022 12 9 1485 10.3390/jpm12091485 36143270
    [Google Scholar]
  36. Park S. Gwon Y. Khan S.A. Jang K.J. Kim J. Engineering considerations of iPSC-based personalized medicine. Biomater. Res. 2023 27 1 67 10.1186/s40824‑023‑00382‑x 37420273
    [Google Scholar]
  37. Flannagan K. Stopperan J.A. Hauger B.M. Troutwine B.R. Lysaker C.R. Strope T.A. Csikos Drummond V. Gilmore C.A. Swerdlow N.A. Draper J.M. Gouvion C.M. Vivian J.L. Haeri M. Swerdlow R.H. Wilkins H.M. Cell type and sex specific mitochondrial phenotypes in iPSC derived models of Alzheimer’s disease. Front. Mol. Neurosci. 2023 16 1201015 10.3389/fnmol.2023.1201015 37614699
    [Google Scholar]
  38. Pellitteri R. Bonfanti R. Spatuzza M. Cambria M.T. Ferrara M. Raciti G. Campisi A. Effect of some growth factors on tissue transglutaminase overexpression induced by β-amyloid in olfactory ensheathing cells. Mol. Neurobiol. 2017 54 9 6785 6794 10.1007/s12035‑016‑0152‑4 27757835
    [Google Scholar]
  39. Raisman G. Barnett S.C. Ramón-Cueto A. Repair of central nervous system lesions by transplantation of olfactory ensheathing cells. Handb. Clin. Neurol. 2012 109 541 549 10.1016/B978‑0‑444‑52137‑8.00033‑4 23098735
    [Google Scholar]
  40. Sheng B-y. Li Y. Jiang Y-j. Wei C-j. Li Y. Ren X-m. Proliferation and directed differentiation of neural stem cells and olfactory ensheathing cells after co-transplantation into the brain of Alzheimer’s disease rats. Chinese Journal of Tissue Engineering Research 2011 15 9186
    [Google Scholar]
  41. Sun X. Tan Z. Huang X. Cheng X. Yuan Y. Qin S. Wang D. Hu X. Gu Y. Qian W.J. Wang Z. He C. Su Z. Direct neuronal reprogramming of olfactory ensheathing cells for CNS repair. Cell Death Dis. 2019 10 9 646 10.1038/s41419‑019‑1887‑4 31501413
    [Google Scholar]
  42. He B.R. Xie S.T. Wu M.M. Hao D.J. Yang H. Phagocytic removal of neuronal debris by olfactory ensheathing cells enhances neuronal survival and neurite outgrowth via p38MAPK activity. Mol. Neurobiol. 2014 49 3 1501 1512 10.1007/s12035‑013‑8588‑2 24258406
    [Google Scholar]
  43. Zhang L. Liao J. Liu Y. Luo H. Zhang W. Potential therapeutic effect of olfactory ensheathing cells in neurological diseases: Neurodegenerative diseases and peripheral nerve injuries. Front. Immunol. 2023 14 1280186 10.3389/fimmu.2023.1280186 37915589
    [Google Scholar]
  44. Yang C. Li J. Lin H. Zhao K. Zheng C. Nasal mucosa derived-mesenchymal stem cells from mice reduce inflammation via modulating immune responses. PLoS One 2015 10 3 e0118849 10.1371/journal.pone.0118849 25739057
    [Google Scholar]
  45. Ansari S. Etekochay M.O. Atanasov A.G. Prasad V.P. Kandimalla R. Mofatteh M. Priyanka V. Emran T.B. Human olfactory neurosphere-derived cells: A unified tool for neurological disease modelling and neurotherapeutic applications. Int J Surg. 2024 110 10 6321 6329 10.1097/JS9.0000000000001460 38652180
    [Google Scholar]
  46. Hong C.G. Chen M.L. Duan R. Wang X. Pang Z.L. Ge L.T. Lu M. Xie H. Liu Z.Z. Transplantation of nasal olfactory mucosa mesenchymal stem cells benefits Alzheimer’s disease. Mol. Neurobiol. 2022 59 12 7323 7336 10.1007/s12035‑022‑03044‑6 36173534
    [Google Scholar]
  47. Zhang Q. Wu H. Wang Y. Gu G. Zhang W. Xia R. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J. Neurochem. 2016 136 4 815 825 10.1111/jnc.13413 26525612
    [Google Scholar]
  48. Yang J. Li S. He X.B. Cheng C. Le W. Induced pluripotent stem cells in Alzheimer’s disease: Applications for disease modeling and cell-replacement therapy. Mol. Neurodegener. 2016 11 1 39 10.1186/s13024‑016‑0106‑3 27184028
    [Google Scholar]
  49. Wang H. Dwamena A. Olfactory ecto-mesenchymal stem cells in modeling and treating Alzheimer’s disease. Int. J. Mol. Sci. 2024 25 15 8492 10.3390/ijms25158492 39126059
    [Google Scholar]
  50. Marei H.E. Khan M.U.A. Hasan A. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer’s disease. Cell. Mol. Biol. Lett. 2023 28 1 98 10.1186/s11658‑023‑00504‑2 38031028
    [Google Scholar]
  51. De Plano L.M. Calabrese G. Conoci S. Guglielmino S.P.P. Oddo S. Caccamo A. Applications of CRISPR-Cas9 in Alzheimer’s disease and related disorders. Int. J. Mol. Sci. 2022 23 15 8714 10.3390/ijms23158714 35955847
    [Google Scholar]
  52. Park H. Oh J. Shim G. Cho B. Chang Y. Kim S. Baek S. Kim H. Shin J. Choi H. Yoo J. Kim J. Jun W. Lee M. Lengner C.J. Oh Y.K. Kim J. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat. Neurosci. 2019 22 4 524 528 10.1038/s41593‑019‑0352‑0 30858603
    [Google Scholar]
  53. Izadpanah M. Dargahi L. Ai J. Asgari Taei A. Ebrahimi Barough S. Mowla S.J. TavoosiDana G. Farahmandfar M. Extracellular vesicles as a neprilysin delivery system memory improvement in Alzheimer’s disease. Iran. J. Pharm. Res. 2020 19 2 45 60 33224210
    [Google Scholar]
  54. Yin T. Liu Y. Ji W. Zhuang J. Chen X. Gong B. Chu J. Liang W. Gao J. Yin Y. Engineered mesenchymal stem cell-derived extracellular vesicles: A state-of-the-art multifunctional weapon against Alzheimer’s disease. Theranostics 2023 13 4 1264 1285 10.7150/thno.81860 36923533
    [Google Scholar]
  55. Wyse R. Dunbar G. Rossignol J. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int. J. Mol. Sci. 2014 15 2 1719 1745 10.3390/ijms15021719 24463293
    [Google Scholar]
  56. Cavalli E. Battaglia G. Basile M.S. Bruno V. Petralia M.C. Lombardo S.D. Pennisi M. Kalfin R. Tancheva L. Fagone P. Nicoletti F. Mangano K. Exploratory analysis of iPSCS-derived neuronal cells as predictors of diagnosis and treatment of Alzheimer disease. Brain Sci. 2020 10 3 166 10.3390/brainsci10030166 32183090
    [Google Scholar]
  57. Ortiz-Virumbrales M. Moreno C.L. Kruglikov I. Marazuela P. Sproul A. Jacob S. Zimmer M. Paull D. Zhang B. Schadt E.E. Ehrlich M.E. Tanzi R.E. Arancio O. Noggle S. Gandy S. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta Neuropathol. Commun. 2017 5 1 77 10.1186/s40478‑017‑0475‑z 29078805
    [Google Scholar]
  58. Zheng W. Li Q. Zhao C. Da Y. Zhang H.L. Chen Z. Differentiation of glial cells from hiPSCs: Potential applications in neurological diseases and cell replacement therapy. Front. Cell. Neurosci. 2018 12 239 10.3389/fncel.2018.00239 30140204
    [Google Scholar]
  59. Turchiano G. Andrieux G. Klermund J. Blattner G. Pennucci V. El Gaz M. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell 2021 28 6 1136 1147.e5 10.1016/j.stem.2021.02.002 33626327
    [Google Scholar]
  60. Maxwell K.G. Augsornworawat P. Velazco-Cruz L. Kim M.H. Asada R. Hogrebe N.J. Morikawa S. Urano F. Millman J.R. Gene-edited human stem cell–derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci. Transl. Med. 2020 12 540 eaax9106 10.1126/scitranslmed.aax9106 32321868
    [Google Scholar]
  61. Bahrami E. Schmid J.P. Becker M. Wirth A.K. Öllinger R. Rad R. Vick B. Jayavelu A.K. Mann M. Herold T. Jeremias I. In vivo CRISPR-Cas9 screens in PDX models reveals ADAM10 as novel therapeutic target in acute leukemia. Blood 2021 138 Suppl. 1 708 10.1182/blood‑2021‑149658
    [Google Scholar]
  62. Myeong S.H. Kim H. Lee N.K. Hwang J.W. Kim H.J. Jang H. Choi S.J. Na D.L. Intracerebroventricular administration of human umbilical cord blood—derived mesenchymal stem cells induces transient inflammation in a transgenic mouse model and patients with Alzheimer’s disease. Biomedicines 2022 10 3 563 10.3390/biomedicines10030563 35327365
    [Google Scholar]
  63. Barak M. Fedorova V. Pospisilova V. Raska J. Vochyanova S. Sedmik J. Hribkova H. Klimova H. Vanova T. Bohaciakova D. Human iPSC-derived neural models for studying Alzheimer’s disease: From neural stem cells to cerebral organoids. Stem Cell Rev. Rep. 2022 18 2 792 820 10.1007/s12015‑021‑10254‑3 35107767
    [Google Scholar]
  64. Choe M.S. Yeo H.C. Kim J.S. Lee J. Lee H.J. Kim H.R. Baek K.M. Jung N.Y. Choi M. Lee M.Y. Simple modeling of familial Alzheimer’s disease using human pluripotent stem cell-derived cerebral organoid technology. Stem Cell Res. Ther. 2024 15 1 118 10.1186/s13287‑024‑03732‑1 38659053
    [Google Scholar]
  65. Fan W. Sun Y. Shi Z. Wang H. Deng J. Mouse induced pluripotent stem cells-derived Alzheimer’s disease cerebral organoid culture and neural differentiation disorders. Neurosci. Lett. 2019 711 134433 10.1016/j.neulet.2019.134433 31421155
    [Google Scholar]
  66. Guttikonda S.R. Sikkema L. Tchieu J. Saurat N. Walsh R.M. Harschnitz O. Ciceri G. Sneeboer M. Mazutis L. Setty M. Zumbo P. Betel D. de Witte L.D. Pe’er D. Studer L. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer’s disease. Nat. Neurosci. 2021 24 3 343 354 10.1038/s41593‑020‑00796‑z 33558694
    [Google Scholar]
  67. Liu T. Human stem cell-derived microglia will be an indispensable toolbox for Alzheimer’s disease research. Neural Regen. Res. 2021 16 9 1770 1771 10.4103/1673‑5374.306087 33510070
    [Google Scholar]
  68. Regeneration Biomedical, Inc. Autologous Activated Adipose-derived Stem Cells (RB-ADSC) Injected Directly Into the Brain for Mild to Moderate Alzheimer's Disease. NCT05667649 2024 Available from: https://clinicaltrials.gov/study/NCT05667649
  69. Yan S.S. Campos de Souza S. Xie Z.D. Bao Y.X. Research progress in clinical trials of stem cell therapy for stroke and neurodegenerative diseases. Ibrain 2023 9 2 214 230 10.1002/ibra.12095 37786546
    [Google Scholar]
  70. China Medical University Hospital Implantation of Olfactory Ensheathing Cells (OECs) (OECs). NCT01327768 2011 Available from: https://clinicaltrials.gov/study/NCT01327768
  71. Azienda Ospedaliera Santa Maria, Terni, Italy Human Neural Stem Cell Transplantation in Amyotrophic Lateral Sclerosis (ALS) (hNSCALS). NCT01640067 2015 Available from: https://clinicaltrials.gov/study/NCT01640067
  72. Sheng C.C. Zhou L. Hao J. Current stem cell delivery methods for myocardial repair. Biomed Res Int. 2013 2013 547902 10.1155/2013/547902 23509740
    [Google Scholar]
  73. Jin X. Lin T. Xu Y. Stem cell therapy and immunological rejection in animal models. Curr. Mol. Pharmacol. 2016 9 4 284 288 10.2174/1874467208666150928153511 26415913
    [Google Scholar]
  74. Penn M.S. Mangi A.A. Genetic enhancement of stem cell engraftment, survival, and efficacy. Circ. Res. 2008 102 12 1471 1482 10.1161/CIRCRESAHA.108.175174 18566313
    [Google Scholar]
  75. Lee A.S. Tang C. Rao M.S. Weissman I.L. Wu J.C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 2013 19 8 998 1004 10.1038/nm.3267 23921754
    [Google Scholar]
  76. Boyette L. Tuan R. Adult stem cells and diseases of aging. J. Clin. Med. 2014 3 1 88 134 10.3390/jcm3010088 24757526
    [Google Scholar]
  77. Nawab K. Bhere D. Bommarito A. Mufti M. Naeem A. Stem cell therapies: A way to promising cures. Cureus 2019 11 9 e5712 10.7759/cureus.5712 31720180
    [Google Scholar]
  78. Tiwari S. Atluri V. Kaushik A. Yndart A. Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine 2019 14 5541 5554 10.2147/IJN.S200490 31410002
    [Google Scholar]
  79. Mehrabadi S. Sadr S.S. Hoseini M. Stem Cell Conditioned Medium as a Novel Treatment for Neuroinflamation Diseases. Int. J. Med. Investig. 2019 8 1 12
    [Google Scholar]
  80. Yao W. Yang H. Yang J. Small-molecule drugs development for Alzheimer’s disease. Front. Aging Neurosci. 2022 14 1019412 10.3389/fnagi.2022.1019412 36389082
    [Google Scholar]
  81. Cotrina E.Y. Santos L.M. Rivas J. Blasi D. Leite J.P. Liz M.A. Busquets M.A. Planas A. Prohens R. Gimeno A. Jiménez-Barbero J. Gales L. Llop J. Quintana J. Cardoso I. Arsequell G. Targeting transthyretin in Alzheimer’s disease: Drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer’s disease. Eur. J. Med. Chem. 2021 226 113847 10.1016/j.ejmech.2021.113847 34555615
    [Google Scholar]
  82. Chen L. Cruz E. Oikari L.E. Padmanabhan P. Song J. Götz J. Opportunities and challenges in delivering biologics for Alzheimer’s disease by low-intensity ultrasound. Adv. Drug Deliv. Rev. 2022 189 114517 10.1016/j.addr.2022.114517 36030018
    [Google Scholar]
  83. Weaver D.F. Drug design for Alzheimer’s disease: Biologics vs. small molecules. Curr. Alzheimer Res. 2023 20 12 821 826 10.2174/0115672050301583240307114452 38468530
    [Google Scholar]
  84. Yu J. Li T. Zhu J. Gene therapy strategies targeting aging-related diseases. Aging Dis. 2023 14 2 398 417 37008065
    [Google Scholar]
  85. Ahn S.H. Jeong J.H. Park K.W. Kim E.J. Yoon S.J. Yoon B. Jang J.W. Minn Y. Choi S.H. Effect of dietary habits on Alzheimer’s disease progression. Yonsei Med. J. 2024 65 4 217 226 10.3349/ymj.2023.0119 38515359
    [Google Scholar]
  86. Kandimalla R. Saeed M. Tyagi N. Gupta R.C. Aqil F. Exosome-based approaches in the management of Alzheimer’s disease. Neurosci. Biobehav. Rev. 2023 144 104974 10.1016/j.neubiorev.2022.104974 36435392
    [Google Scholar]
  87. Yadav K. Vijayalakshmi R. Kumar Sahu K. Sure P. Chahal K. Yadav R. Sucheta Dubey A. Jha M. Pradhan M. Exosome-Based Macromolecular neurotherapeutic drug delivery approaches in overcoming the Blood-Brain barrier for treating brain disorders. Eur. J. Pharm. Biopharm. 2024 199 114298 10.1016/j.ejpb.2024.114298 38642716
    [Google Scholar]
  88. Winchester L.M. Harshfield E.L. Shi L. Badhwar A. Khleifat A.A. Clarke N. Dehsarvi A. Lengyel I. Lourida I. Madan C.R. Marzi S.J. Proitsi P. Rajkumar A.P. Rittman T. Silajdžić E. Tamburin S. Ranson J.M. Llewellyn D.J. Artificial intelligence for biomarker discovery in Alzheimer’s disease and dementia. Alzheimers Dement. 2023 19 12 5860 5871 10.1002/alz.13390 37654029
    [Google Scholar]
  89. Devi G. A how-to guide for a precision medicine approach to the diagnosis and treatment of Alzheimer’s disease. Front Aging Neurosci. 2023 15 1213968 10.3389/fnagi.2023.1213968 37662550
    [Google Scholar]
  90. Tincer G. Mashkaryan V. Bhattarai P. Kizil C. Neural stem/progenitor cells in Alzheimer’s disease. Yale J. Biol. Med. 2016 89 1 23 35 27505014
    [Google Scholar]
  91. Zhou Z. Shi B. Xu Y. Zhang J. liu X. Zhou X. Feng B. Ma J. Cui H. Neural stem/progenitor cell therapy for Alzheimer disease in preclinical rodent models: A systematic review and meta-analysis. Stem Cell Res. Ther. 2023 14 1 3 10.1186/s13287‑022‑03231‑1 36600321
    [Google Scholar]
  92. Lu L. Yu X. Cai Y. Sun M. Yang H. Application of CRISPR/Cas9 in Alzheimer’s disease. Front. Neurosci. 2021 15 803894 10.3389/fnins.2021.803894 34992519
    [Google Scholar]
  93. Vandendriessche C. Kapogiannis D. Vandenbroucke R.E. Biomarker and therapeutic potential of peripheral extracellular vesicles in Alzheimer’s disease. Adv. Drug Deliv. Rev. 2022 190 114486 10.1016/j.addr.2022.114486 35952829
    [Google Scholar]
  94. Bhardwaj S. Kesari K.K. Rachamalla M. Mani S. Ashraf G.M. Jha S.K. Kumar P. Ambasta R.K. Dureja H. Devkota H.P. Gupta G. Chellappan D.K. Singh S.K. Dua K. Ruokolainen J. Kamal M.A. Ojha S. Jha N.K. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J. Adv. Res. 2022 40 207 221 10.1016/j.jare.2021.07.001 36100328
    [Google Scholar]
  95. Tian C. Stewart T. Hong Z. Guo Z. Aro P. Soltys D. Pan C. Peskind E.R. Zabetian C.P. Shaw L.M. Galasko D. Quinn J.F. Shi M. Zhang J. Alzheimer’s Disease Neuroimaging Initiative Blood extracellular vesicles carrying synaptic function‐ and brain‐related proteins as potential biomarkers for Alzheimer’s disease. Alzheimers Dement. 2023 19 3 909 923 10.1002/alz.12723 35779041
    [Google Scholar]
  96. Gonçalves R.J. Vasques J. da Silva-Junior A. Gubert F. Mendez-Otero R. Mesenchymal stem cell- and extracellular vesicle-based therapies for Alzheimer′s disease: Progress, advantages, and challenges. Neural Regen. Res. 2023 18 8 0 10.4103/1673‑5374.361546 36751774
    [Google Scholar]
  97. Bagheri-Mohammadi S. Stem cell-based therapy as a promising approach in Alzheimer’s disease: Current perspectives on novel treatment. Cell Tissue Bank. 2021 22 3 339 353 10.1007/s10561‑020‑09896‑3 33398492
    [Google Scholar]
/content/journals/cas/10.2174/0118746098334856250106055739
Loading
/content/journals/cas/10.2174/0118746098334856250106055739
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test