Skip to content
2000
Volume 18, Issue 1
  • ISSN: 1874-6098
  • E-ISSN: 1874-6128

Abstract

Background

Epilepsy, the tendency to have recurrent seizures, can have various causes, including brain tumors, genetics, stroke, brain injury, infections, and developmental disorders. Epileptic seizures are usually transient events. They normally leave no trace after the postictal recovery period has passed.

Aims

An electroencephalogram (EEG) can only detect brain activity during the recording. It will be detected if an epileptogenic focus or generalized abnormality is active during the recording.

Objective

This work demonstrated a smart seizure detection system for Healthcare IoT, which is a challenging problem of EEG data analysis.

Methods

The study suggested an integrated methodology in recognition of the drawbacks of manual identification and the significant negative effects of uncontrollable seizures on patients' lives.

Results

The research shows remarkable accuracy, up to 100% in some experiments, by combining classifier ensembles like Decision Trees, Logistic Regression, and Support Vector Machine with different signal processing techniques like Discrete Wavelet Transform, Hjorth Parameters, and statistical features. The results were compared using the kNN classifier, other datasets and other state-of-the-art techniques.

Conclusion

Healthcare IoT is further utilized by the methodology, which takes a comprehensive approach using classifier ensembles and signal processing approaches resulting in real-time data to help them make better decisions. This demonstrates how well the suggested method works for smart seizure detection, which is a crucial development for better patient outcomes.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098298618240429102237
2024-05-03
2025-03-28
Loading full text...

Full text loading...

References

  1. KuhlmannL. KarolyP. FreestoneD.R. Epilepsyecosystem.org: Crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG.Brain201814192619263010.1093/brain/awy210 30101347
    [Google Scholar]
  2. KuhlmannL. LehnertzK. RichardsonM. SchelterB. ZaveriH. Seizure prediction - ready for a new era.Nat. Rev. Neurol.20181410618630
    [Google Scholar]
  3. NasseriM. NurseE. GlasstetterM. Signal quality and patient experience with wearable devices for epilepsy management.Epilepsia202061S1Suppl. 1S25S3510.1111/epi.16527 32497269
    [Google Scholar]
  4. FreestoneD.R. KarolyP.J. PetersonA.D.H. Seizure prediction: Science fiction or soon to become reality?Curr. Neurol. Neurosci. Rep.201515117310.1007/s11910‑015‑0596‑3 26404726
    [Google Scholar]
  5. KarolyP.J. UngH. GraydenD.B. The circadian profile of epilepsy improves seizure forecasting.Brain201714082169218210.1093/brain/awx173 28899023
    [Google Scholar]
  6. CookM.J. O’BrienT.J. BerkovicS.F. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study.Lancet Neurol.201312656357110.1016/S1474‑4422(13)70075‑9 23642342
    [Google Scholar]
  7. BrinkmannB.H. WagenaarJ. AbbotD. Crowdsourcing reproducible seizure forecasting in human and canine epilepsy.Brain201613961713172210.1093/brain/aww045 27034258
    [Google Scholar]
  8. GadhoumiK. LinaJ.M. MormannF. GotmanJ. Seizure prediction for therapeutic devices: A review.J. Neurosci. Methods201626027028210.1016/j.jneumeth.2015.06.010 26099549
    [Google Scholar]
  9. GalvãoF. AlarcãoS.M. FonsecaM.J. Predicting Exact Valence and Arousal Values from EEG.Sensors (Basel)20212110341410.3390/s21103414 34068895
    [Google Scholar]
  10. AndrzejakR.G. ChicharroD. ElgerC.E. MormannF. Seizure prediction: Any better than chance?Clin. Neurophysiol.200912081465147810.1016/j.clinph.2009.05.019 19576849
    [Google Scholar]
  11. MormannF. AndrzejakR.G. ElgerC.E. LehnertzK. Seizure prediction: The long and winding road.Brain2007130231433310.1093/brain/awl241 17008335
    [Google Scholar]
  12. Abu SayeedMd. SarajuP. A fast and accurate approach for realtime seizure detection in the IoMT.2018 IEEE International Smart Cities Conference (ISC2).16-19 September 2018; Kansas City, MO, USA. 2018.
    [Google Scholar]
  13. JahanS NowsheenF AntikMM AI-based epileptic seizure detection and prediction in internet of healthcare things: A systematic review.IEEE Access202311306903072510.1109/ACCESS.2023.3251105
    [Google Scholar]
  14. NatuM. HCLA_CBiGRU: Hybrid convolutional bidirectional GRU based model for epileptic seizure detection.Neurosci Inform202333100135
    [Google Scholar]
  15. SayeedM.A. MohantyS.P. KougianosE. ZaveriH.P. Neuro-Detect: A machine learning-based fast and accurate seizure detection system in the IoMT.IEEE Trans. Consum. Electron.201965335936810.1109/TCE.2019.2917895
    [Google Scholar]
  16. FragkiadakisA. TragosE. MakrogiannakisA. PapadakisS. CharalampidisP. SurligasM. Signal processing techniques for energy efficiency, security, and reliability in the IoT domain.Internet of Things (IoT) in 5G Mobile Technologies.ChamSpringer201641944710.1007/978‑3‑319‑30913‑2_18
    [Google Scholar]
  17. BenkedjouhT. ZerhouniN. RechakS. Deep Learning for Fault Diagnosis based on short-time Fourier transform.2018 International Conference on Smart Communications in Network Technologies (SaCoNeT).27-31 October 2018; El Oued, Algeria. 2018.10.1109/SaCoNeT.2018.8585444
    [Google Scholar]
  18. NawazM. AhmedJ. AbbasG. RehmanM.U. Signal analysis and anomaly detection of loT-based healthcare framework.2020 Global Conference on Wireless and Optical Technologies (GCWOT)16
    [Google Scholar]
  19. ZhangY. YangS. LiuY. ZhangY. HanB. ZhouF. Integration of 24 Feature Types to Accurately Detect and Predict Seizures Using Scalp EEG Signals.Sensors (Basel)2018185137210.3390/s18051372 29710763
    [Google Scholar]
  20. JainS. Computer-aided detection system for the classification of non-small cell lung lesions using SVM.Curr. Computeraided Drug Des.202116683384010.2174/1573409916666200102122021 31899680
    [Google Scholar]
  21. JainS. SoodM. SVM classification of cell survival/apoptotic death for color texture images of survival receptor proteins.Int J Emerging Technol20191022328
    [Google Scholar]
  22. JainS. SalauA.O. An image feature selection approach for dimensionality reduction based on kNN and SVM for AkT proteins.Cogent Eng.20196153710.1080/23311916.2019.1599537
    [Google Scholar]
  23. KaveheiO. HamiltonT.J. TruongN.D. NikpourA. Opportunities for electroceuticals in epilepsy.Trends Pharmacol. Sci.2019401073574610.1016/j.tips.2019.08.001 31495453
    [Google Scholar]
  24. AndrewY. Feature selection, L1 vs. L2 regularization, and rotational invariance.2019Available From: https://dl.acm.org/doi/10.1145/1015330.1015435
    [Google Scholar]
  25. SaltzbergB. Period analytic estimates of moments of the power spectrum: A simplified EEG time domain procedure.Electroencephalogr. Clin. Neurophysiol.197130656857010.1016/0013‑4694(71)90156‑8
    [Google Scholar]
  26. GluckmanB.J. SchevonC.A. Seizure Prediction 6.J. Clin. Neurophysiol.201532318118710.1097/WNP.0000000000000184 26035671
    [Google Scholar]
  27. SharmaS. JainS. BhusriS. Two class classification of breast lesions using statistical and transform domain features.J. Glob. Pharma Technol.2017971824
    [Google Scholar]
  28. RanaS. JainS. VirmaniJ. Classification of focal kidney lesions using wavelet-based texture descriptors.2016Available From: https://typeset.io/papers/classification-of-focal-kidney-lesions-using-wavelet-based-2j665lkp13
  29. BhusriS. JainS. VirmaniJ. Classification of breast lesions using the difference of statistical features.Res. J. Pharm. Biol. Chem. Sci.20167413651372
    [Google Scholar]
  30. UKB EEG Data Download.2001Available From: https://www.ukbonn.de/epileptologie/arbeitsgruppen/ag-lehnertz-neurophysik/downloads/
  31. PrasharN. SoodM. JainS. A novel cardiac arrhythmia processing using machine learning techniques.Int. J. Image Graph.2020203205002310.1142/S0219467820500230
    [Google Scholar]
  32. DograJ. JainS. SoodM. Glioma Classification of MR brain tumor employing Machine Learning.Int. J. Innov. Technol. Explor. Eng.20198826762682
    [Google Scholar]
  33. NEMAR. EEG/ERP data available for free public download (updated 2023).2023Available From: https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
  34. TawfikN.S. YoussefS.M. KholiefM. A hybrid automated detection of epileptic seizures in EEG records.Comput. Electr. Eng.20165317719010.1016/j.compeleceng.2015.09.001
    [Google Scholar]
  35. KumarY. DewalM.L. AnandR.S. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network.Signal Image Video Process.2014871323133410.1007/s11760‑012‑0362‑9
    [Google Scholar]
  36. YavuzE. KasapbasıM.C. EyupogluC. YazıcıR. An epileptic seizure detection system based on cepstral analysis and generalized regression neural network.Biocybern. Biomed. Eng.201838220121610.1016/j.bbe.2018.01.002
    [Google Scholar]
/content/journals/cas/10.2174/0118746098298618240429102237
Loading
/content/journals/cas/10.2174/0118746098298618240429102237
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): EEG; feature extraction; IoMT; machine learning; seizures; smart healthcare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test