Skip to content
2000
image of Extracellular Vesicles: A Promising Therapeutic Approach to Alzheimer's Disease

Abstract

Extracellular vesicles (EVs) are nano-sized membranous particles that are secreted by various cell types and play a critical role in intercellular communication. Their unique properties and remarkable ability to deliver bioactive cargo to target cells have made them promising tools in the treatment of various diseases, including Alzheimer's disease (AD). AD is a devastating neurodegenerative disease characterized by progressive cognitive decline and neuropathological hallmarks, such as amyloid-beta plaques and neurofibrillary tangles. Despite extensive research, no disease-modifying therapy for AD is currently available. However, EVs have emerged as a potential therapeutic agent in AD due to their ability to cross the blood-brain barrier, deliver bioactive cargo, and modulate neuroinflammation. This review provides a comprehensive overview of the current knowledge on the role of EVs in AD and discusses their potential as a therapeutic approach. It covers the mechanisms of action, potential therapeutic targets, and challenges and limitations of EV-based therapies for AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050365314250112042136
2025-01-28
2025-03-27
Loading full text...

Full text loading...

References

  1. Pegtel D.M. Gould S.J. Exosomes. Annu. Rev. Biochem. 2019 88 1 487 514 10.1146/annurev‑biochem‑013118‑111902 31220978
    [Google Scholar]
  2. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  3. Sedgwick A.E. D’Souza-Schorey C. The biology of extracellular microvesicles. Traffic 2018 19 5 319 327 10.1111/tra.12558 29479795
    [Google Scholar]
  4. Clancy J.W. Schmidtmann M. D’Souza-Schorey C. The ins and outs of microvesicles. FASEB Bioadv. 2021 3 6 399 406 10.1096/fba.2020‑00127 34124595
    [Google Scholar]
  5. Santavanond J.P. Rutter S.F. Atkin-Smith G.K. Poon I.K. Apoptotic bodies: mechanism of formation, isolation and functional relevance 2021
    [Google Scholar]
  6. Zhou M. Li Y.J. Tang Y.C. Hao X.Y. Xu W.J. Xiang D.X. Wu J.Y. Apoptotic bodies for advanced drug delivery and therapy. J. Control. Release 2022 351 394 406 10.1016/j.jconrel.2022.09.045 36167267
    [Google Scholar]
  7. Sadallah S. Eken C. Schifferli J.A. Ectosomes as immunomodulators 2011 10.1007/s00281‑010‑0232‑x
    [Google Scholar]
  8. Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr. Biol. 2018 28 8 R435 R444 10.1016/j.cub.2018.01.059 29689228
    [Google Scholar]
  9. Meehan B. Rak J. Di Vizio D. Oncosomes – large and small: what are they, where they came from? J. Extracell. Vesicles 2016 5 1 33109 10.3402/jev.v5.33109 27680302
    [Google Scholar]
  10. Morello M. Minciacchi V. de Candia P. Yang J. Posadas E. Kim H. Griffiths D. Bhowmick N. Chung L. Gandellini P. Freeman M. Demichelis F. DiVizio D. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 2013 12 22 3526 3536 10.4161/cc.26539 24091630
    [Google Scholar]
  11. Ciardiello C. Leone A. Lanuti P. Roca M.S. Moccia T. Minciacchi V.R. Minopoli M. Gigantino V. De Cecio R. Rippa M. Petti L. Capone F. Vitagliano C. Milone M.R. Pucci B. Lombardi R. Iannelli F. Di Gennaro E. Bruzzese F. Marchisio M. Carriero M.V. Di Vizio D. Budillon A. Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. J. Exp. Clin. Cancer Res. 2019 38 1 317 10.1186/s13046‑019‑1317‑6 31319863
    [Google Scholar]
  12. Matsumoto J. Stewart T. Banks W.A. Zhang J. The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr. Pharm. Des. 2018 23 40 6206 6214 10.2174/1381612823666170913164738 28914201
    [Google Scholar]
  13. Ramos-Zaldívar H.M. Polakovicova I. Salas-Huenuleo E. Corvalán A.H. Kogan M.J. Yefi C.P. Andia M.E. Extracellular vesicles through the blood–brain barrier: a review. Fluids Barriers CNS 2022 19 1 60 10.1186/s12987‑022‑00359‑3 35879759
    [Google Scholar]
  14. Krämer-Albers E.M. Extracellular Vesicles at CNS barriers: Mode of action. Curr. Opin. Neurobiol. 2022 75 102569 10.1016/j.conb.2022.102569 35667340
    [Google Scholar]
  15. Busatto S. Morad G. Guo P. Moses M.A. The role of extracellular vesicles in the physiological and pathological regulation of the blood–brain barrier. FASEB Bioadv. 2021 3 9 665 675 10.1096/fba.2021‑00045 34485835
    [Google Scholar]
  16. Peng H. Harvey B.T. Richards C.I. Nixon K. Neuron-derived extracellular vesicles modulate microglia activation and function. Biology (Basel) 2021 10 10 948 10.3390/biology10100948 34681047
    [Google Scholar]
  17. Hering C. Shetty A.K. Extracellular vesicles derived from neural stem cells, astrocytes, and microglia as therapeutics for easing TBI-induced brain dysfunction. Stem Cells Transl. Med. 2023 12 3 140 153 10.1093/stcltm/szad004 36847078
    [Google Scholar]
  18. Whitley J.A. Cai H. Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing. J. Extracell. Vesicles 2023 12 9 12343 10.1002/jev2.12343 37723839
    [Google Scholar]
  19. Izquierdo-Altarejos P. Cabrera-Pastor A. Martínez-García M. Sánchez-Huertas C. Hernández A. Moreno-Manzano V. Felipo V. Extracellular vesicles from mesenchymal stem cells reduce neuroinflammation in hippocampus and restore cognitive function in hyperammonemic rats. J. Neuroinflammation 2023 20 1 1 10.1186/s12974‑022‑02688‑4 36593485
    [Google Scholar]
  20. Kumar S.K. Sasidhar M.V. Recent trends in the use of small extracellular vesicles as optimal drug delivery vehicles in oncology. Mol. Pharm. 2023 20 8 3829 3842 10.1021/acs.molpharmaceut.3c00363 37410017
    [Google Scholar]
  21. Keighron C.N. Avazzadeh S. Goljanek-Whysall K. McDonagh B. Howard L. Ritter T. Quinlan L.R. Extracellular vesicles, cell-penetrating peptides and miRNAs as future novel therapeutic interventions for Parkinson’s and Alzheimer’s disease. Biomedicines 2023 11 3 728 10.3390/biomedicines11030728 36979707
    [Google Scholar]
  22. Yin T. Liu Y. Ji W. Zhuang J. Chen X. Gong B. Chu J. Liang W. Gao J. Yin Y. Engineered mesenchymal stem cell-derived extracellular vesicles: A state-of-the-art multifunctional weapon against Alzheimer’s disease. Theranostics 2023 13 4 1264 1285 10.7150/thno.81860 36923533
    [Google Scholar]
  23. Dutta S. Hornung S. Taha H.B. Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol. 2023 145 5 515 540 10.1007/s00401‑023‑02557‑1 37012443
    [Google Scholar]
  24. Ananbeh H. Kupcova Skalnikova H. Extracellular vesicles as possible sources of Huntington’s disease biomarkers 2023 10.1007/978‑3‑031‑32815‑2_3
    [Google Scholar]
  25. Zamboni S. D’Ambrosio A. Margutti P. Extracellular vesicles as contributors in the pathogenesis of multiple sclerosis. Mult. Scler. Relat. Disord. 2023 71 104554 10.1016/j.msard.2023.104554 36842311
    [Google Scholar]
  26. Ozansoy M. Mikati H. Velioglu H.A. Yulug B. Exosomes: A missing link between chronic systemic inflammation and Alzheimer’s disease? Biomed. Pharmacother. 2023 159 114161 10.1016/j.biopha.2022.114161 36641928
    [Google Scholar]
  27. Pishbin E. Sadri F. Dehghan A. Kiani M.J. Hashemi N. Zare I. Mousavi P. Rahi A. Recent advances in isolation and detection of exosomal microRNAs related to Alzheimer’s disease. Environ. Res. 2023 227 115705 10.1016/j.envres.2023.115705 36958383
    [Google Scholar]
  28. Khan M.I. Jeong E.S. Khan M.Z. Shin J.H. Kim J.D. Stem cells-derived exosomes alleviate neurodegeneration and Alzheimer’s pathogenesis by ameliorating neuroinflamation, and regulating the associated molecular pathways. Sci. Rep. 2023 13 1 15731 10.1038/s41598‑023‑42485‑4 37735227
    [Google Scholar]
  29. Kumar P. Sharma H. Singh A. Pandey S.N. Chandra P. Correlation Between Exosomes and Neuro-inflammation in Various Brain Disorders 2024 10.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
  30. Zhu Y. Wang F. Xia Y. Wang L. Lin H. Zhong T. Wang X. Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases. Rev. Neurosci. 2024 35 8 855 875 10.1515/revneuro‑2024‑0043 38889403
    [Google Scholar]
  31. Ogaki A. Ikegaya Y. Koyama R. Extracellular vesicles taken up by astrocytes. Int. J. Mol. Sci. 2021 22 19 10553 10.3390/ijms221910553 34638890
    [Google Scholar]
  32. Nogueras-Ortiz C.J. Mahairaki V. Delgado-Peraza F. Das D. Avgerinos K. Eren E. Hentschel M. Goetzl E.J. Mattson M.P. Kapogiannis D. Astrocyte-and neuron-derived extracellular vesicles from Alzheimer’s disease patients effect complement-mediated neurotoxicity. Cells 2020 9 7 1618 10.3390/cells9071618 32635578
    [Google Scholar]
  33. Upadhya R. Zingg W. Shetty S. Shetty A.K. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J. Control. Release 2020 323 225 239 10.1016/j.jconrel.2020.04.017 32289328
    [Google Scholar]
  34. Zhao S. Sheng S. Wang Y. Ding L. Xu X. Xia X. Zheng J.C. Astrocyte-derived extracellular vesicles: A double-edged sword in central nervous system disorders. Neurosci. Biobehav. Rev. 2021 125 148 159 10.1016/j.neubiorev.2021.02.027 33626395
    [Google Scholar]
  35. Krämer-Albers E.M. Extracellular vesicles in the oligodendrocyte microenvironment. Neurosci. Lett. 2020 725 134915 10.1016/j.neulet.2020.134915 32208226
    [Google Scholar]
  36. Casella G. Rasouli J. Boehm A. Zhang W. Xiao D. Ishikawa L.L.W. Thome R. Li X. Hwang D. Porazzi P. Molugu S. Tang H.Y. Zhang G.X. Ciric B. Rostami A. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci. Transl. Med. 2020 12 568 eaba0599 10.1126/scitranslmed.aba0599 33148622
    [Google Scholar]
  37. Krämer-Albers E.M. Werner H.B. Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles. Nat. Rev. Neurosci. 2023 24 8 474 486 10.1038/s41583‑023‑00711‑y 37258632
    [Google Scholar]
  38. Sun M. Chen Z. Unveiling the Complex Role of Exosomes in Alzheimer’s Disease. J. Inflamm. Res. 2024 17 3921 3948 10.2147/JIR.S466821 38911990
    [Google Scholar]
  39. Natale F. Fusco S. Grassi C. Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules. Transl. Neurodegener. 2022 11 1 50 10.1186/s40035‑022‑00326‑w 36437458
    [Google Scholar]
  40. Thakor A.S. Garcia-Contreras M. Extracellular vesicles in Alzheimer’s disease: from pathology to therapeutic approaches. Neural Regen. Res. 2023 18 1 18 22 10.4103/1673‑5374.343882 35799503
    [Google Scholar]
  41. Roudi S. Rädler J.A. El Andaloussi S. Therapeutic potential of extracellular vesicles in neurodegenerative disorders. Handb. Clin. Neurol. 2023 193 243 266 10.1016/B978‑0‑323‑85555‑6.00017‑5 36803815
    [Google Scholar]
  42. Raghav A. Singh M. Jeong G.B. Giri R. Agarwal S. Kala S. Gautam K.A. Extracellular vesicles in neurodegenerative diseases: A systematic review. Front. Mol. Neurosci. 2022 15 1061076 10.3389/fnmol.2022.1061076 36504676
    [Google Scholar]
  43. Gao X. Gao L.-f. Kong X.-q. Zhang Y.-n. Jia S. Meng C.-y. Mesenchymal stem cell-derived extracellular vesicles carrying miR-99b-3p restrain microglial activation and neuropathic pain by stimulating autophagy. Int. Immunopharmacol. 2023 115 109695 10.1016/j.intimp.2023.109695
    [Google Scholar]
  44. Hao L. Yang Y. Xu X. Guo X. Zhan Q. Modulatory effects of mesenchymal stem cells on microglia in ischemic stroke. Front. Neurol. 2023 13 1073958 10.3389/fneur.2022.1073958 36742051
    [Google Scholar]
  45. Gabrielli M. Tozzi F. Verderio C. Origlia N. Emerging roles of extracellular vesicles in alzheimer’s disease: Focus on synaptic dysfunction and vesicle–neuron interaction. Cells 2022 12 1 63 10.3390/cells12010063 36611856
    [Google Scholar]
  46. Bonetto V. Grilli M. Neural stem cell-derived extracellular vesicles: Mini players with key roles in neurogenesis, immunomodulation, neuroprotection and aging. Front. Mol. Biosci. 2023 10 1187263 10.3389/fmolb.2023.1187263 37228583
    [Google Scholar]
  47. Mehrabadi S. Motevaseli E. Sadr S.S. Moradbeygi K. Hypoxic-conditioned medium from adipose tissue mesenchymal stem cells improved neuroinflammation through alternation of toll like receptor (TLR) 2 and TLR4 expression in model of alzheimer’s disease rats. Behav. Brain Res. 2020 379 112362 10.1016/j.bbr.2019.112362 31739000
    [Google Scholar]
  48. Trotta T. Antonietta Panaro M. Cianciulli A. Mori G. Di Benedetto A. Porro C. Microglia-derived extracellular vesicles in alzheimer’s disease: A double-edged sword. Biochem. Pharmacol. 2018 148 184 192 10.1016/j.bcp.2017.12.020 29305855
    [Google Scholar]
  49. Tan H.S. Wang T. Sun H.N. Liu A. Li S.S. Advances of surface-enhanced Raman spectroscopy in exosomal biomarkers analysis. Trends Analyt. Chem. 2023 167 117253 10.1016/j.trac.2023.117253
    [Google Scholar]
  50. Jang Y.O. Ahn H.S. Dao T.N.T. Hong J. Shin W. Lim Y.M. Chung S.J. Lee J.H. Liu H. Koo B. Kim M.G. Kim K. Lee E.J. Shin Y. Magnetic transferrin nanoparticles (MTNs) assay as a novel isolation approach for exosomal biomarkers in neurological diseases. Biomater. Res. 2023 27 1 12 10.1186/s40824‑023‑00353‑2 36797805
    [Google Scholar]
  51. Vandendriessche C. Balusu S. Van Cauwenberghe C. Brkic M. Pauwels M. Plehiers N. Bruggeman A. Dujardin P. Van Imschoot G. Van Wonterghem E. Hendrix A. Baeke F. De Rycke R. Gevaert K. Vandenbroucke R.E. Importance of extracellular vesicle secretion at the blood–cerebrospinal fluid interface in the pathogenesis of alzheimer’s disease. Acta Neuropathol. Commun. 2021 9 1 143 10.1186/s40478‑021‑01245‑z 34425919
    [Google Scholar]
  52. Hornung S. Dutta S. Bitan G. CNS-derived blood exosomes as a promising source of biomarkers: Opportunities and challenges. Front. Mol. Neurosci. 2020 13 38 10.3389/fnmol.2020.00038 32265650
    [Google Scholar]
  53. Taha H.B. Extracellular vesicles for alzheimer disease and dementia diagnosis medRxiv 2024.04 2024
    [Google Scholar]
  54. Cai H. Pang Y. Ren Z. Fu X. Jia L. Delivering synaptic protein mRNAs via extracellular vesicles ameliorates cognitive impairment in a mouse model of alzheimer’s disease. BMC Med. 2024 22 1 138 10.1186/s12916‑024‑03359‑2 38528511
    [Google Scholar]
  55. Sha S. Shen X. Cao Y. Qu L. Mesenchymal stem cells-derived extracellular vesicles ameliorate alzheimer’s disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway. Aging 2021 13 11 15285 15306 10.18632/aging.203088 34086603
    [Google Scholar]
  56. Mir B. Goettsch C. Extracellular vesicles as delivery vehicles of specific cellular cargo. Cells 2020 9 7 1601 10.3390/cells9071601 32630649
    [Google Scholar]
  57. Dixson A.C. Dawson T.R. Di Vizio D. Weaver A.M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat. Rev. Mol. Cell Biol. 2023 24 7 454 476 10.1038/s41580‑023‑00576‑0 36765164
    [Google Scholar]
  58. Xue V.W. Wong S.C.C. Song G. Cho W.C.S. Promising RNA-based cancer gene therapy using extracellular vesicles for drug delivery. Expert Opin. Biol. Ther. 2020 20 7 767 777 10.1080/14712598.2020.1738377 32125904
    [Google Scholar]
  59. Born L.J. Harmon J.W. Jay S.M. Therapeutic potential of extracellular vesicle‐associated long noncoding RNA. Bioeng. Transl. Med. 2020 5 3 e10172 10.1002/btm2.10172 33005738
    [Google Scholar]
  60. Najafi S. Majidpoor J. Mortezaee K. Extracellular vesicle–based drug delivery in cancer immunotherapy. Drug Deliv. Transl. Res. 2023 13 11 2790 2806 10.1007/s13346‑023‑01370‑3 37261603
    [Google Scholar]
  61. Wiklander O.P.B. Mamand D.R. Mohammad D.K. Zheng W. Jawad Wiklander R. Sych T. Zickler A.M. Liang X. Sharma H. Lavado A. Bost J. Roudi S. Corso G. Lennaárd A.J. Abedi-Valugerdi M. Mäger I. Alici E. Sezgin E. Nordin J.Z. Gupta D. Görgens A. EL Andaloussi S. Antibody-displaying extracellular vesicles for targeted cancer therapy. Nat. Biomed. Eng. 2024 8 11 1453 1468 10.1038/s41551‑024‑01214‑6 38769158
    [Google Scholar]
  62. Kang J.H. Jung M.Y. Choudhury M. Leof E.B. Transforming growth factor beta induces fibroblasts to express and release the immunomodulatory protein PD‐L1 into extracellular vesicles. FASEB J. 2020 34 2 2213 2226 10.1096/fj.201902354R 31907984
    [Google Scholar]
  63. Ahn S.Y. Park W.S. Kim Y.E. Sung D.K. Sung S.I. Ahn J.Y. Chang Y.S. Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Exp. Mol. Med. 2018 50 4 1 12 10.1038/s12276‑018‑0055‑8 29650962
    [Google Scholar]
  64. Oszvald Á. Szvicsek Z. Sándor G.O. Kelemen A. Soós A.Á. Pálóczi K. Bursics A. Dede K. Tölgyes T. Buzás E.I. Zeöld A. Wiener Z. Extracellular vesicles transmit epithelial growth factor activity in the intestinal stem cell niche. Stem Cells 2020 38 2 291 300 10.1002/stem.3113 31675158
    [Google Scholar]
  65. Russell A.E. Sneider A. Witwer K.W. Bergese P. Bhattacharyya S.N. Cocks A. Cocucci E. Erdbrügger U. Falcon-Perez J.M. Freeman D.W. Gallagher T.M. Hu S. Huang Y. Jay S.M. Kano S. Lavieu G. Leszczynska A. Llorente A.M. Lu Q. Mahairaki V. Muth D.C. Hooten N.N. Ostrowski M. Prada I. Sahoo S. Schøyen T.H. Sheng L. Tesch D. Van Niel G. Vandenbroucke R.E. Verweij F.J. Villar A.V. Wauben M. Wehman A.M. Yin H. Carter D.R.F. Vader P. Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: An ISEV position paper arising from the ISEV membranes and EVs workshop. J. Extracell. Vesicles 2019 8 1 1684862 10.1080/20013078.2019.1684862 31762963
    [Google Scholar]
  66. Vandendriessche C. Kapogiannis D. Vandenbroucke R.E. Biomarker and therapeutic potential of peripheral extracellular vesicles in alzheimer’s disease. Adv. Drug Deliv. Rev. 2022 190 114486 10.1016/j.addr.2022.114486 35952829
    [Google Scholar]
  67. Hernando S. Santos-Vizcaíno E. Igartua M. Hernandez R.M. Targeting the central nervous system: From synthetic nanoparticles to extracellular vesicles—Focus on alzheimer’s and parkinson’s disease. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 5 e1898 10.1002/wnan.1898 37157144
    [Google Scholar]
  68. Rupert D.L.M. Claudio V. Lässer C. Bally M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim. Biophys. Acta, Gen. Subj. 2017 1861 1 3164 3179 10.1016/j.bbagen.2016.07.028 27495390
    [Google Scholar]
  69. Ayers L. Pink R. Carter D.R.F. Nieuwland R. Clinical requirements for extracellular vesicle assays. J. Extracell. Vesicles 2019 8 1 1593755 10.1080/20013078.2019.1593755 30949310
    [Google Scholar]
  70. Kornilov R. Puhka M. Mannerström B. Hiidenmaa H. Peltoniemi H. Siljander P. Seppänen-Kaijansinkko R. Kaur S. Efficient ultrafiltration‐based protocol to deplete extracellular vesicles from fetal bovine serum. J. Extracell. Vesicles 2018 7 1 1422674 10.1080/20013078.2017.1422674 29410778
    [Google Scholar]
  71. Lo T.W. Zhu Z. Purcell E. Watza D. Wang J. Kang Y.T. Jolly S. Nagrath D. Nagrath S. Microfluidic device for high-throughput affinity-based isolation of extracellular vesicles. Lab Chip 2020 20 10 1762 1770 10.1039/C9LC01190K 32338266
    [Google Scholar]
  72. Rezaei S. Nilforoushzadeh M.A. Amirkhani M.A. Moghadasali R. Taghiabadi E. Nasrabadi D. Preclinical and clinical studies on the use of extracellular vesicles derived from mesenchymal stem cells in the treatment of chronic wounds. Mol. Pharm. 2024 21 6 2637 2658 10.1021/acs.molpharmaceut.3c01121 38728585
    [Google Scholar]
  73. Xie X. Song Q. Dai C. Cui S. Tang R. Li S. Chang J. Li P. Wang J. Li J. Gao C. Chen H. Chen S. Ren R. Gao X. Wang G. Clinical safety and efficacy of allogenic human adipose mesenchymal stromal cells-derived exosomes in patients with mild to moderate alzheimer’s disease: A phase I/II clinical trial. Gen. Psychiatr. 2023 36 5 e101143 10.1136/gpsych‑2023‑101143 37859748
    [Google Scholar]
  74. Yuan Y. Sun J. You T. Shen W. Xu W. Dong Q. Cui M. Extracellular vesicle-based therapeutics in neurological disorders. Pharmaceutics 2022 14 12 2652 10.3390/pharmaceutics14122652 36559145
    [Google Scholar]
  75. Cone A.S. Yuan X. Sun L. Duke L.C. Vreones M.P. Carrier A.N. Kenyon S.M. Carver S.R. Benthem S.D. Stimmell A.C. Moseley S.C. Hike D. Grant S.C. Wilber A.A. Olcese J.M. Meckes D.G. Jr Mesenchymal stem cell-derived extracellular vesicles ameliorate alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics 2021 11 17 8129 8142 10.7150/thno.62069 34373732
    [Google Scholar]
  76. Gao G. Li C. Ma Y. Liang Z. Li Y. Li X. Fu S. Wang Y. Xia X. Zheng J.C. Neural stem cell-derived extracellular vesicles mitigate alzheimer’s disease-like phenotypes in a preclinical mouse model. Signal Transduct. Target. Ther. 2023 8 1 228 10.1038/s41392‑023‑01436‑1 37311758
    [Google Scholar]
  77. Xing Z. Zhao C. Liu H. Fan Y. Endothelial progenitor cell‐derived extracellular vesicles: A novel candidate for regenerative medicine and disease treatment. Adv. Healthc. Mater. 2020 9 12 2000255 10.1002/adhm.202000255 32378361
    [Google Scholar]
  78. Kazsoki A. Németh K. Visnovitz T. Lenzinger D. Buzás E.I. Zelkó R. Formulation and characterization of nanofibrous scaffolds incorporating extracellular vesicles loaded with curcumin. Sci. Rep. 2024 14 1 27574 10.1038/s41598‑024‑79277‑3 39528605
    [Google Scholar]
  79. Evers M.J.W. van de Wakker S.I. de Groot E.M. de Jong O.G. Gitz-François J.J.J. Seinen C.S. Sluijter J.P.G. Schiffelers R.M. Vader P. Functional siRNA delivery by extracellular vesicle–liposome hybrid nanoparticles. Adv. Healthc. Mater. 2022 11 5 2101202 10.1002/adhm.202101202 34382360
    [Google Scholar]
  80. Lee S. Mankhong S. Kang J.H. Extracellular vesicle as a source of alzheimer’s biomarkers: Opportunities and challenges. Int. J. Mol. Sci. 2019 20 7 1728 10.3390/ijms20071728 30965555
    [Google Scholar]
  81. Rather H.A. Almousa S. Craft S. Deep G. Therapeutic efficacy and promise of stem cell-derived extracellular vesicles in alzheimer’s disease and other aging-related disorders. Ageing Res. Rev. 2023 92 102088 10.1016/j.arr.2023.102088 37827304
    [Google Scholar]
  82. Jeong H. Kim O.J. Oh S.H. Lee S. Reum Lee H.A. Lee K.O. Lee B.Y. Kim N.K. Extracellular vesicles released from neprilysin gene-modified human umbilical cord-derived mesenchymal stem cell enhance therapeutic effects in an alzheimer’s disease animal model. Stem Cells Int. 2021 2021 1 20 10.1155/2021/5548630 34899919
    [Google Scholar]
  83. Bodart-Santos V. Pinheiro L.S. da Silva-Junior A.J. Froza R.L. Ahrens R. Gonçalves R.A. Andrade M.M. Chen Y. Alcantara C.L. Grinberg L.T. Leite R.E.P. Ferreira S.T. Fraser P.E. De Felice F.G. Alzheimer’s disease brain‐derived extracellular vesicles reveal altered synapse‐related proteome and induce cognitive impairment in mice. Alzheimers Dement. 2023 19 12 5418 5436 10.1002/alz.13134 37204850
    [Google Scholar]
  84. Wang S.S. Jia J. Wang Z. Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in alzheimer’s disease mice. J. Alzheimers Dis. 2018 61 3 1005 1013 10.3233/JAD‑170848 29254100
    [Google Scholar]
  85. Apodaca L.A. Baddour A.A.D. Garcia C. Jr Alikhani L. Giedzinski E. Ru N. Agrawal A. Acharya M.M. Baulch J.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of alzheimer’s disease. Alzheimers Res. Ther. 2021 13 1 57 10.1186/s13195‑021‑00791‑x 33676561
    [Google Scholar]
/content/journals/car/10.2174/0115672050365314250112042136
Loading
/content/journals/car/10.2174/0115672050365314250112042136
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Alzheimer’s disease ; treatment ; Extracellular vesicles (EVs) ; neurodegeneration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test