Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and functional impairment. Despite extensive research, the exact etiology remains elusive. This review explores the multifaceted pathophysiology of AD, focusing on key hypotheses such as the cholinergic hypothesis, hyperphosphorylated Tau Protein and Amyloid β hypothesis, oxidative stress hypothesis, and the metal ion hypothesis. Understanding these mechanisms is crucial for developing effective therapeutic strategies. Current treatment options for AD have limitations, prompting the exploration of alternative approaches, including herbal interventions. Cholinesterase inhibitors, targeting the cholinergic hypothesis, have shown modest efficacy in managing symptoms. Blocking Amyloid β (Aβ) and targeting hyperphosphorylated tau protein are under investigation, with limited success in clinical trials. Oxidative stress, implicated in AD pathology, has led to the investigation of antioxidants. Natural products, such as , , and have demonstrated antioxidant properties, along with anti-inflammatory effects, offering potential neuroprotective benefits. Several herbal extracts, including , , and , have shown promise in preclinical studies. Compounds like Huperzine A, Melatonin, and Bryostatin exhibit neuroprotective effects through various mechanisms, including cholinergic modulation and anti-inflammatory properties. However, the use of herbal drugs for AD management faces limitations, including standardization issues, variable bioavailability, and potential interactions with conventional medications. Additionally, the efficacy and safety of many herbal products remain to be established through rigorous clinical trials. This review also highlights promising natural products currently in clinical trials, such as Resveratrol and Homotaurine, and their potential impact on AD progression. DHA, an omega-3 fatty acid, has shown cognitive benefits, while Nicotine is being explored for its neuroprotective effects. In conclusion, a comprehensive understanding of the complex pathophysiology of AD and the exploration of herbal interventions offer a holistic approach for managing this devastating disease. Future research should address the limitations associated with herbal drugs and further evaluate the efficacy of promising natural products in clinical settings.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050309057240404075003
2024-04-15
2025-06-21
Loading full text...

Full text loading...

References

  1. DecourtB. D’SouzaG.X. ShiJ. RitterA. SuazoJ. SabbaghM.N. The cause of Alzheimer’s disease: The theory of multipathology convergence to chronic neuronal stress.Aging Dis.2022131376010.14336/AD.2021.052935111361
    [Google Scholar]
  2. ImbimboB.P. LombardJ. PomaraN. Pathophysiology of Alzheimer’s disease.Neuroimaging Clin. N. Am.2005154727753, ix10.1016/j.nic.2005.09.00916443487
    [Google Scholar]
  3. LivingstonG. SommerladA. OrgetaV. JackC.Jr BennettD. BlennowK. Current and future treatments in Alzheimer's disease.Seminars in neurologyThieme Medical PublishersNew York, NY 10001, USA2019
    [Google Scholar]
  4. Di̇ndarN. YücelY.Y. Alzheimer’s, its diagnosis, treatment and future approaches.Curr. Res. Health Sci.20222022
    [Google Scholar]
  5. FerrariC. SorbiS. The complexity of Alzheimer’s disease: An evolving puzzle.Physiol. Rev.202110131047108110.1152/physrev.00015.202033475022
    [Google Scholar]
  6. ThakurK.A. KambojP. GoswamiK. AhujaK. Pathophysiology and management of Alzheimer’s disease: An overview.J. Anal. Pharm. Res.20187222623510.15406/japlr.2018.07.00230
    [Google Scholar]
  7. MulugetaE. KarlssonE. IslamA. KalariaR. MangatH. WinbladB. AdemA. Loss of muscarinic M4 receptors in hippocampus of Alzheimer patients.Brain Res.20039601-225926210.1016/S0006‑8993(02)03542‑412505680
    [Google Scholar]
  8. StanciuG.D. LucaA. RusuR.N. BildV. Beschea ChiriacS.I. SolcanC. BildW. AbabeiD.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement.Biomolecules20191014010.3390/biom1001004031888102
    [Google Scholar]
  9. SultzerD.L. MarderS.R. Older brains are different: Brain–behavior studies and their clinical utility.Am. J. Geriatr. Psychiatry2017251111210.1016/j.jagp.2016.10.00228231870
    [Google Scholar]
  10. ChaseT.N. FarlowM.R. SmithC.K. Donepezil plus solifenacin (CPC-201) treatment for Alzheimer’s disease.Neurotherapeutics201714240541610.1007/s13311‑016‑0511‑x28138837
    [Google Scholar]
  11. FunamotoS. TagamiS. OkochiM. KawashimaM.M. Successive cleavage of β-amyloid precursor protein by γ-secretase.Seminars in cell & developmental biologyElsevier2020
    [Google Scholar]
  12. LiuZ. ZhangA. SunH. HanY. KongL. WangX. Two decades of new drug discovery and development for Alzheimer’s disease.RSC Advances20177106046605810.1039/C6RA26737H
    [Google Scholar]
  13. MohamedT. ShakeriA. RaoP.P.N. Amyloid cascade in Alzheimer’s disease: Recent advances in medicinal chemistry.Eur. J. Med. Chem.201611325827210.1016/j.ejmech.2016.02.04926945113
    [Google Scholar]
  14. RamalingamM. KimS.J. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases.J. Neural Transm.2012119889191010.1007/s00702‑011‑0758‑722212484
    [Google Scholar]
  15. ShinW.S. DiJ. CaoQ. LiB. SeidlerP.M. MurrayK.A. BitanG. JiangL. Amyloid β-protein oligomers promote the uptake of tau fibril seeds potentiating intracellular tau aggregation.Alzheimers Res. Ther.20191118610.1186/s13195‑019‑0541‑931627745
    [Google Scholar]
  16. TramutolaA. LanzillottaC. PerluigiM. ButterfieldD.A. Oxidative stress, protein modification and Alzheimer disease.Brain Res. Bull.2017133889610.1016/j.brainresbull.2016.06.00527316747
    [Google Scholar]
  17. WeekleyC.M. HeC. Developing drugs targeting transition metal homeostasis.Curr. Opin. Chem. Biol.201737263210.1016/j.cbpa.2016.12.01128040658
    [Google Scholar]
  18. PrakashA. DhaliwalG.K. KumarP. MajeedA.B.A. Brain biometals and Alzheimer’s disease – Boon or bane?Int. J. Neurosci.201712729910810.3109/00207454.2016.117411827044501
    [Google Scholar]
  19. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments for Alzheimer’s disease.Ther. Adv. Neurol. Disord.201361193310.1177/175628561246167923277790
    [Google Scholar]
  20. BostanciklioğluM. The role of gut microbiota in pathogenesis of Alzheimer’s disease.J. Appl. Microbiol.2019127495496710.1111/jam.1426430920075
    [Google Scholar]
  21. AragónS.S. The microbiota-gut-brain axis: From dysbiosis to neurodegenerative disease.Bachelor's theses; Universitat de Barcelona2022
    [Google Scholar]
  22. VogtN.M. KerbyR.L. Dill-McFarlandK.A. HardingS.J. MerluzziA.P. JohnsonS.C. CarlssonC.M. AsthanaS. ZetterbergH. BlennowK. BendlinB.B. ReyF.E. Gut microbiome alterations in Alzheimer’s disease.Sci. Rep.2017711353710.1038/s41598‑017‑13601‑y29051531
    [Google Scholar]
  23. SharmaK. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review).Mol. Med. Rep.20192021479148731257471
    [Google Scholar]
  24. DeardorffW.J. FeenE. GrossbergG.T. The use of cholinesterase inhibitors across all stages of Alzheimer’s disease.Drugs Aging201532753754710.1007/s40266‑015‑0273‑x26033268
    [Google Scholar]
  25. GrossbergG.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on.Curr. Ther. Res. Clin. Exp.200364421623510.1016/S0011‑393X(03)00059‑624944370
    [Google Scholar]
  26. NordbergA. BallardC. BullockR. ShoriD.T. SomogyiM. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease.Prim. Care Companion CNS Disord.20131522673110.4088/PCC.12r0141223930233
    [Google Scholar]
  27. ZhuY. WangJ. Wogonin increases β-amyloid clearance and inhibits tau phosphorylation via inhibition of mammalian target of rapamycin: potential drug to treat Alzheimer’s disease.Neurol. Sci.20153671181118810.1007/s10072‑015‑2070‑z25596147
    [Google Scholar]
  28. RodríguezM.S PerryG ZhuX BoehmJ. Amyloid Beta and tau proteins as therapeutic targets for Alzheimer’s disease treatment: Rethinking the current strategy.Int J Alzheimers Dis.2012201263018210.1155/2012/630182
    [Google Scholar]
  29. AdewusiE.A. SteenkampV. Medicinal plants and their derivatives with amyloid beta inhibitory activity as potential targets for drug discovery.Asian Pac. J. Trop. Dis.20155643044010.1016/S2222‑1808(15)60810‑6
    [Google Scholar]
  30. JokarS. KhazaeiS. BehnammaneshH. ShamlooA. ErfaniM. BeikiD. BaviO. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy.Biophys. Rev.201911690192510.1007/s12551‑019‑00606‑231713720
    [Google Scholar]
  31. IqbalK Tau pathology in Alzheimer disease and other tauopathies.Biochim. Biophys. Acta, Mol. Basis Dis.200517392-319821010.1016/j.bbadis.2004.09.008
    [Google Scholar]
  32. KadavathH. HofeleR.V. BiernatJ. KumarS. TepperK. UrlaubH. MandelkowE. ZweckstetterM. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers.Proc. Natl. Acad. Sci. USA2015112247501750610.1073/pnas.150408111226034266
    [Google Scholar]
  33. PrezelE. ElieA. DelarocheJ. MelletS.V. BoscC. SerreL. LieuvinF.A. AndrieuxA. VantardM. ArnalI. Tau can switch microtubule network organizations: From random networks to dynamic and stable bundles.Mol. Biol. Cell201829215416510.1091/mbc.E17‑06‑042929167379
    [Google Scholar]
  34. MadavY. WairkarS. PrabhakarB. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer’s disease.Brain Res. Bull.201914617118410.1016/j.brainresbull.2019.01.00430634016
    [Google Scholar]
  35. BrunelloC.A. MerezhkoM. UronenR.L. HuttunenH.J. Mechanisms of secretion and spreading of pathological tau protein.Cell. Mol. Life Sci.20207791721174410.1007/s00018‑019‑03349‑131667556
    [Google Scholar]
  36. WischikC.M. HarringtonC.R. StoreyJ.M.D. Tau-aggregation inhibitor therapy for Alzheimer’s disease.Biochem. Pharmacol.201488452953910.1016/j.bcp.2013.12.00824361915
    [Google Scholar]
  37. PerssonT PopescuBO MinguezC.A Oxidative stress in Alzheimer’s disease: Why did antioxidant therapy fail?Oxid Med Cell Longev2014201442731810.1155/2014/427318
    [Google Scholar]
  38. VeurinkG. PerryG. SinghS.K. Role of antioxidants and a nutrient rich diet in Alzheimer’s disease.Open Biol.202010620008410.1098/rsob.20008432543351
    [Google Scholar]
  39. FengY WangX. Antioxidant therapies for Alzheimer's disease.Oxid Med Cell Longev.2012201247293210.1155/2012/472932
    [Google Scholar]
  40. SinghSK SrikrishnaS CastellaniRJ PerryG Antioxidants in the prevention and treatment of Alzheimer’s disease.Nutritional Antioxidant Therapies: Treatments and PerspectivesSpringerCham, Switzerland201752355310.1007/978‑3‑319‑67625‑8_20
    [Google Scholar]
  41. SivaramanD. AnbuN. KabilanN. KumarM.P. ShanmugapriyaP. ChristianG. Review on current treatment strategy in Alzheimer’s disease and role of herbs in treating neurological disorders.Int J Trans Res Ind Med.2019113343
    [Google Scholar]
  42. YuQ. FangD. SwerdlowR.H. YuH. ChenJ.X. YanS.S. Antioxidants rescue mitochondrial transport in differentiated Alzheimer’s disease trans-mitochondrial cybrid cells.J. Alzheimers Dis.201654267969010.3233/JAD‑16053227567872
    [Google Scholar]
  43. ÁlvarezM.M. LozanoS.A. GomarS.F. LucesF.C. GaleanoP.H. GaratacheaN. LuciaA. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: A systematic review and meta-analysis of treatment effect.Drugs Aging201532213914710.1007/s40266‑015‑0239‑z25644018
    [Google Scholar]
  44. RabinoviciG.D. JagustW.J. Amyloid imaging in aging and dementia: Testing the amyloid hypothesis in vivo.Behav. Neurol.2009211-211712810.1155/2009/60983919847050
    [Google Scholar]
  45. ShadfarS. HwangC.J. LimM.S. ChoiD.Y. HongJ.T. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents.Arch. Pharm. Res.201538122106211910.1007/s12272‑015‑0648‑x26289122
    [Google Scholar]
  46. GaspariniL. OnginiE. WenkG. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: Old and new mechanisms of action.J. Neurochem.200491352153610.1111/j.1471‑4159.2004.02743.x15485484
    [Google Scholar]
  47. ChenX. DrewJ. BerneyW. LeiW. Neuroprotective natural products for Alzheimer’s disease.Cells2021106130910.3390/cells1006130934070275
    [Google Scholar]
  48. KhatoonSS RehmanM RahmanA The role of natural products in Alzheimer's and Parkinson's disease.Stud. Nat. Prod. Chem.2018566912710.1016/B978‑0‑444‑64058‑1.00003‑0
    [Google Scholar]
  49. ThuK.D. VuiD.T. HuyenN.N.T. DuyenD.K. TungT.B. The use of Huperzia species for the treatment of Alzheimer’s disease.J. Basic Clin. Physiol. Pharmacol.20203132019015910.1515/jbcpp‑2019‑015931778363
    [Google Scholar]
  50. SinghA. DeshpandeP. GogiaN. Exploring the efficacy of natural products in alleviating Alzheimer’s disease.Neural Regen. Res.20191481321132910.4103/1673‑5374.25350930964049
    [Google Scholar]
  51. ManoharanS. GuilleminG.J. AbiramasundariR.S. EssaM.M. AkbarM. AkbarM.D. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, parkinson’s disease, and huntington’s disease: A mini review.Oxid. Med. Cell Longev.201620168590578
    [Google Scholar]
  52. BraidyN. EssaM.M. PoljakA. SelvarajuS. Al-AdawiS. ManivasagmT. ThenmozhiA.J. OoiL. SachdevP. GuilleminG.J. Consumption of pomegranates improves synaptic function in a transgenic mice model of Alzheimer’s disease.Oncotarget2016740645896460410.18632/oncotarget.1090527486879
    [Google Scholar]
  53. GauthierS. FeldmanH.H. SchneiderL.S. WilcockG.K. FrisoniG.B. HardlundJ.H. MoebiusH.J. BenthamP. KookK.A. WischikD.J. SchelterB.O. DavisC.S. StaffR.T. BracoudL. ShamsiK. StoreyJ.M.D. HarringtonC.R. WischikC.M. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: A randomised, controlled, double-blind, parallel-arm, phase 3 trial.Lancet2016388100622873288410.1016/S0140‑6736(16)31275‑227863809
    [Google Scholar]
  54. ZhangS.Q. ObregonD. EhrhartJ. DengJ. TianJ. HouH. GiuntaB. SawmillerD. TanJ. Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model.J. Neurosci. Res.20139191239124610.1002/jnr.2324423686791
    [Google Scholar]
  55. LiD.D. ZhangY.H. ZhangW. ZhaoP. Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease.Front. Neurosci.20191347210.3389/fnins.2019.0047231156366
    [Google Scholar]
  56. SaitoT. HisaharaS. IwaharaN. EmotoM.C. YokokawaK. SuzukiH. ManabeT. MatsumuraA. SuzukiS. MatsushitaT. KawamataJ. Sato-AkabaH. FujiiH.G. ShimohamaS. Early administration of galantamine from preplaque phase suppresses oxidative stress and improves cognitive behavior in APPswe/PS1dE9 mouse model of Alzheimer’s disease.Free Radic. Biol. Med.2019145203210.1016/j.freeradbiomed.2019.09.01431536772
    [Google Scholar]
  57. MalvajerdS.S. IzadiZ. AzadiA. KurdM. DerakhshankhahH. SharifzadehM. JavarA.H. HamidiM. Neuroprotective potential of curcumin-loaded nanostructured lipid carrier in an animal model of Alzheimer’s disease: Behavioral and biochemical evidence.J. Alzheimers Dis.201969367168610.3233/JAD‑19008331156160
    [Google Scholar]
  58. DurairajanS.S.K. LiuL.F. LuJ.H. ChenL.L. YuanQ. ChungS.K. HuangL. LiX.S. HuangJ.D. LiM. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model.Neurobiol. Aging201233122903291910.1016/j.neurobiolaging.2012.02.01622459600
    [Google Scholar]
  59. MadhavadasS. SubramanianS. Cognition enhancing effect of the aqueous extract of Cinnamomum zeylanicum on non-transgenic Alzheimer’s disease rat model: Biochemical, histological, and behavioural studies.Nutr. Neurosci.201720952653710.1080/1028415X.2016.119459327308892
    [Google Scholar]
  60. ManiR.J. MittalK. KatareD.P. Protective effects of quercetin in zebrafish model of Alzheimer’s disease.Asian J. Pharm.2018122S660
    [Google Scholar]
  61. AliF. RahulJ.S. NazF. AshafaqM. ShahidM. SiddiqueY.H. Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease.Neurosci. Lett.2019692909910.1016/j.neulet.2018.10.05330420334
    [Google Scholar]
  62. SchrottL.M. JacksonK. YiP. DietzF. JohnsonG.S. BastingT.F. PurdumG. TylerT. RiosJ.D. CastorT.P. AlexanderJ.S. Acute oral bryostatin-1 administration improves learning deficits in the APP/PS1 transgenic mouse model of Alzheimer’s disease.Curr. Alzheimer Res.2015121223110.2174/156720501266614121814190425523423
    [Google Scholar]
  63. JiaJ.J. ZengX.S. SongX.Q. ZhangP.P. ChenL. Diabetes mellitus and Alzheimer’s disease: The protection of epigallocatechin-3-gallate in streptozotocin injection-induced models.Front. Pharmacol.2017883410.3389/fphar.2017.0083429209211
    [Google Scholar]
  64. BalezR. SteinerN. EngelM. MuñozS.S. LumJ.S. WuY. WangD. VallottonP. SachdevP. O’ConnorM. SidhuK. MünchG. OoiL. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease.Sci. Rep.2016613145010.1038/srep3145027514990
    [Google Scholar]
  65. LaurentC. EddarkaouiS. DerisbourgM. LeboucherA. DemeyerD. CarrierS. SchneiderM. HamdaneM. MüllerC.E. BuéeL. BlumD. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology.Neurobiol. Aging20143592079209010.1016/j.neurobiolaging.2014.03.02724780254
    [Google Scholar]
  66. ChastainS.E. Therapeutic potential of catechins and derivatives for the prevention of Alzheimer’s diseaseUniversity of South Carolina2016
    [Google Scholar]
  67. SmachM. HafsaJ. CharfeddineB. DridiH. LimemK. Effects of sage extract on memory performance in mice and acetylcholinesterase activity.Annales pharmaceutiques francaisesElsevier2015
    [Google Scholar]
  68. OzarowskiM. MikolajczakP.L. PiaseckaA. KachlickiP. KujawskiR. BogaczA. Influence of the Melissa officinalis leaf extract on long-term memory in scopolamine animal model with assessment of mechanism of action.Evid. Based Complement. Alternat. Med.201620169729818
    [Google Scholar]
  69. HaseT. ShishidoS. YamamotoS. YamashitaR. NukimaH. TairaS. ToyodaT. AbeK. HamaguchiT. OnoK. ShinoharaN.M. YamadaM. KobayashiS. Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretion.Sci. Rep.201991871110.1038/s41598‑019‑45168‑131213631
    [Google Scholar]
  70. WesnesK.A. WardT. McGintyA. PetriniO. The memory enhancing effects of a Ginkgo biloba/Panax ginseng combination in healthy middle-aged volunteers.Psychopharmacology2000152435336110.1007/s00213000053311140327
    [Google Scholar]
  71. AhmedF. ManjunathS. ChandraN.S.J.N. Acetylcholine and memory-enhancing activity of Ficus racemosa bark.Pharmacognosy Res.20113424624910.4103/0974‑8490.8974422224047
    [Google Scholar]
  72. AhmedO.M. Tinospora cordifolia.Naturally Occurring Chemicals Against Alzheimer’s DiseaseElsevier202135135810.1016/B978‑0‑12‑819212‑2.00029‑3
    [Google Scholar]
  73. RubioJ. QiongW. LiuX. JiangZ. DangH. ChenS.-L. Aqueous extract of black maca (Lepidium meyenii) on memory impairment induced by ovariectomy in mice.Evid Based Complement Alternat Med.20112011253958
    [Google Scholar]
  74. SumanthM MamathaK. Learning and memory enhancing activity of Ficus carica (Fig): An experimental study in rats.Drug Dev Ther.201451232394002.139624
    [Google Scholar]
  75. LeeS.T. ChuK. SimJ.Y. HeoJ.H. KimM. Panax ginseng enhances cognitive performance in Alzheimer disease.Alzheimer Dis. Assoc. Disord.200822322222610.1097/WAD.0b013e31816c92e618580589
    [Google Scholar]
  76. JadhavK.S. MaratheP.A. RegeN.N. RautS.B. ParekarR.R. Effect of Jyotiṣmatī seed oil on spatial and fear memory using scopolamine induced amnesia in mice.Anc. Sci. Life201534313013310.4103/0257‑7941.15714926120226
    [Google Scholar]
  77. ManiV. ParleM. Memory-enhancing activity of Coriandrum sativum in rats.Pharmacology20092827839
    [Google Scholar]
  78. JoshiH. ParleM. Nardostachys jatamansi improves learning and memory in mice.J. Med. Food20069111311810.1089/jmf.2006.9.11316579738
    [Google Scholar]
  79. SutalangkaC. WattanathornJ. MuchimapuraS. MeeT.W. Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia.Oxid Med Cell Longev20132013695936
    [Google Scholar]
  80. KulkarniP.D. GhaisasM.M. ChivateN.D. SankpalP.S. Memory enhancing activity of Cissampelos pariera in mice.Int. J. Pharm. Pharm. Sci.201132206211
    [Google Scholar]
  81. YadavM.K. SinghS.K. SinghM. MishraS.S. SinghA.K. TripathiJ.S. TripathiY.B. Neuroprotective activity of Evolvulus alsinoides & Centella asiatica Ethanolic extracts in scopolamine-induced amnesia in Swiss albino mice.Open Access Maced. J. Med. Sci.2019771059106610.3889/oamjms.2019.24731049081
    [Google Scholar]
  82. ParleM. DhingraD. KulkarniS.K. Improvement of mouse memory by Myristica fragrans seeds.J. Med. Food20047215716110.1089/109662004122419315298762
    [Google Scholar]
  83. UabunditN. WattanathornJ. MucimapuraS. IngkaninanK. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model.J. Ethnopharmacol.20101271263110.1016/j.jep.2009.09.05619808086
    [Google Scholar]
  84. DesaiS. PandeyC. MulgaonkarS. Memory-strengthening activity of aqueous liquorice extractand glabridin extract inbehavioral models.Int. J. Pharm. Sci. Rev. Res.201216120124
    [Google Scholar]
  85. LeeY.J. ChoiD.Y. HanS.B. KimY.H. KimK.H. HwangB.Y. KangJ.K. LeeB.J. OhK.W. HongJ.T. Inhibitory effect of ethanol extract of Magnolia officinalis on memory impairment and amyloidogenesis in a transgenic mouse model of Alzheimer’s disease via regulating β-secretase activity.Phytother. Res.201226121884189210.1002/ptr.464322431473
    [Google Scholar]
  86. JayaprakasamB. PadmanabhanK. NairM.G. Withanamides in Withania somnifera fruit protect PC-12 cells from β-amyloid responsible for Alzheimer’s disease.Phytother. Res.201024685986310.1002/ptr.303319957250
    [Google Scholar]
  87. ChoiB.W. RyuG. ParkS.H. KimE.S. ShinJ. RohS.S. ShinH.C. LeeB.H. Anticholinesterase activity of plastoquinones from Sargassum sagamianum : Lead compounds for Alzheimer’s disease therapy.Phytother. Res.200721542342610.1002/ptr.209017236179
    [Google Scholar]
  88. GolechhaM. BhatiaJ. AryaD.S. Studies on effects of Emblica officinalis (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice.J. Environ. Biol.20123319510023033650
    [Google Scholar]
  89. TangH. WangJ. ZhaoL. ZhaoX. Rhodiola rosea L extract shows protective activity against Alzheimer’s disease in 3xTg-AD mice.Trop. J. Pharm. Res.201716350951410.4314/tjpr.v16i3.3
    [Google Scholar]
  90. KangI.J. JeonY.E. YinX.F. NamJ.S. YouS.G. HongM.S. JangB.G. KimM.J. Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid, and reduces beta-amyloid mediated neuronal death.Food Chem. Toxicol.20114992252225910.1016/j.fct.2011.06.02321693162
    [Google Scholar]
  91. PandeyS.N. RangraN.K. SinghS. AroraS. GuptaV. Evolving role of natural products from traditional medicinal herbs in the treatment of Alzheimer’s disease.ACS Chem. Neurosci.202112152718272810.1021/acschemneuro.1c0020634010562
    [Google Scholar]
  92. ZengG. ZhangZ. LuL. XiaoD. ZongS. HeJ. Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats.Rejuvenation Res.201316212413310.1089/rej.2012.138923374025
    [Google Scholar]
  93. HagerK. BasemanA.S. NyeJ.S. BrashearH.R. HanJ. SanoM. DavisB. RichardsH.M. Effect of concomitant use of memantine on mortality and efficacy outcomes of galantamine-treated patients with Alzheimer’s disease: Post-hoc analysis of a randomized placebo-controlled study.Alzheimers Res. Ther.2016814710.1186/s13195‑016‑0214‑x27846868
    [Google Scholar]
  94. BlautzikJ. KeeserD. PaoliniM. KirschV. BermanA. CoatesU. ReiserM. TeipelS.J. MeindlT. Functional connectivity increase in the default-mode network of patients with Alzheimer׳s disease after long-term treatment with Galantamine.Eur. Neuropsychopharmacol.201626360261310.1016/j.euroneuro.2015.12.00626796681
    [Google Scholar]
  95. NakagawaR. TakashiO. KobayashiH. YamaokaT. YajimaT. TanimuraA. KatoT. YoshizawaK. Long-term effect of galantamine on cognitive function in patients with Alzheimer’s disease versus a simulated disease trajectory: An observational study in the clinical setting.Neuropsychiatr. Dis. Treat.2017131115112410.2147/NDT.S13314528458553
    [Google Scholar]
  96. HabtemariamS. Molecular pharmacology of rosmarinic and salvianolic acids: Potential seeds for Alzheimer’s and vascular dementia drugs.Int. J. Mol. Sci.201819245810.3390/ijms1902045829401682
    [Google Scholar]
  97. MeradM SoufiW GhalemS BoukliF BaigM AhmadK Molecular interaction of acetylcholinesterase with carnosic acid derivatives: A neuroinformatics study.CNS Neurol Disord Drug Targets201413344044610.2174/18715273113126660157
    [Google Scholar]
  98. RatheeS PatilUK JainSK Exploring the potential of dietary phytochemicals in cancer prevention: A comprehensive review.J Explor Res Pharmacol.202491344710.14218/JERP.2023.00050
    [Google Scholar]
  99. GangulyR. HazraR. RayK. GuhaD. Effect of Moringa oleifera in experimental model of Alzheimer’s disease: Role of antioxidants.Ann. Neurosci.2005123333610.5214/ans.0972.7531.2005.120301
    [Google Scholar]
  100. MahamanY.A.R. HuangF. WuM. WangY. WeiZ. BaoJ. SalissouM.T.M. KeD. WangQ. LiuR. WangJ.Z. ZhangB. ChenD. WangX. Moringa oleifera alleviates homocysteine-induced Alzheimer’s disease-like pathology and cognitive impairments.J. Alzheimers Dis.20186331141115910.3233/JAD‑18009129710724
    [Google Scholar]
  101. SinghD. N-butanol fraction of Myristica fragrans attenuates scopolamine-induced memory impairment in the experimental model of Alzheimer’s disease in mice.J. Neurol. Sci.2019405727310.1016/j.jns.2019.10.1698
    [Google Scholar]
  102. MalishevR. Shaham-NivS. NandiS. KolushevaS. GazitE. JelinekR. Bacoside-A, an Indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions.ACS Chem. Neurosci.20178488489110.1021/acschemneuro.6b0043828094495
    [Google Scholar]
  103. CalabreseC. GregoryW.L. LeoM. KraemerD. BoneK. OkenB. Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: A randomized, double-blind, placebo-controlled trial.J. Altern. Complement. Med.200814670771310.1089/acm.2008.001818611150
    [Google Scholar]
  104. AbedonB. AuddyB. HazraJ. MitraA. GhosalS. A standardized Withania somnifera extract significantly reduces stress-related parameters in chronically stressed humans: A double-blind, randomized, placebo-controlled study.Jana.2008115056
    [Google Scholar]
  105. RyuG. ParkS.H. KimE.S. ChoiB.W. RyuS.Y. LeeB.H. Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown algaSargassum sagamianum.Arch. Pharm. Res.2003261079679910.1007/BF0298002214609125
    [Google Scholar]
  106. ChoiB.W. LeeH.S. ShinH.C. LeeB.H. Multifunctional activity of polyphenolic compounds associated with a potential for Alzheimer’s disease therapy from Ecklonia cava.Phytother. Res.201529454955310.1002/ptr.528225640212
    [Google Scholar]
  107. ChirumboloS. BjørklundG. Commentary: The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease.Front. Neurol.2016714110.3389/fneur.2016.0014127618870
    [Google Scholar]
  108. LiY. ZhaoJ. HölscherC. Therapeutic potential of baicalein in Alzheimer’s disease and Parkinson’s disease.CNS Drugs201731863965210.1007/s40263‑017‑0451‑y28634902
    [Google Scholar]
  109. ZhouL. TanS. ShanY. WangY.G. CaiW. HuangX. LiaoX. LiH. ZhangL. ZhangB. LuZ. Baicalein improves behavioral dysfunction induced by Alzheimer’s disease in rats.Neuropsychiatr. Dis. Treat.2016123145315210.2147/NDT.S11746928003750
    [Google Scholar]
  110. GuX.H. XuL.J. LiuZ.Q. WeiB. YangY.J. XuG.G. YinX.P. WangW. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease.Behav. Brain Res.201631130932110.1016/j.bbr.2016.05.05227233830
    [Google Scholar]
  111. ElshafieM.M. NawarI.A. AlgamalM.A. AhmadS.M. Evaluation of the biological effects for adding cinnamon volatile oil and TBHQ as antioxidant on rats’ lipid profiles.Asian J. Plant Sci.2012113100108
    [Google Scholar]
  112. RaoP.V. GanS.H. Cinnamon: A multifaceted medicinal plant.Evid Based Complement Alternat Med.2014201464294210.1155/2014/642942
    [Google Scholar]
  113. SihogluT.A. OzaslanM. Anti-Alzheimer, anti-diabetic, skin-whitening, and antioxidant activities of the essential oil of Cinnamomum zeylanicum.Ind. Crops Prod.202014511206910.1016/j.indcrop.2019.112069
    [Google Scholar]
  114. MomtazS. HassaniS. KhanF. ZiaeeM. AbdollahiM. Cinnamon, a promising prospect towards Alzheimer’s disease.Pharmacol. Res.201813024125810.1016/j.phrs.2017.12.01129258915
    [Google Scholar]
  115. SamarghandianS. FarkhondehT. Pourbagher-ShahriA.M. AshrafizadehM. FolgadoS.L. SanatiR.A. KhazdairM.R. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders.Neural Regen. Res.202015101792179810.4103/1673‑5374.28030032246619
    [Google Scholar]
  116. IdeK. MatsuokaN. YamadaH. FurushimaD. KawakamiK. Effects of tea catechins on Alzheimer’s disease: Recent updates and perspectives.Molecules2018239235710.3390/molecules2309235730223480
    [Google Scholar]
  117. JiangZ. ZhangJ. CaiY. HuangJ. YouL. Catechin attenuates traumatic brain injury-induced blood–brain barrier damage and improves longer-term neurological outcomes in rats.Exp. Physiol.2017102101269127710.1113/EP08652028678393
    [Google Scholar]
  118. MartinezP.K. AhmedR. MelaciniG. Catechins as tools to understand the molecular basis of neurodegeneration.Molecules20202516357110.3390/molecules2516357132781559
    [Google Scholar]
  119. BhalodiK. KothariC.S. Tinospora cordifolia: A new perspective on Alzheimer’s disease and green nanotechnology.Nat. Prod. J.20231322639
    [Google Scholar]
  120. ChakravarthiK.K. AvadhaniR. NarayanR.S. Effect of Glycyrrhiza glabra root extract on learning and memory in wistar albino rats.Drug Invention Today201247387390
    [Google Scholar]
  121. KumarS. MaheshwariK.K. SinghV. Protective effects of Punica granatum seeds extract against aging and scopolamine induced cognitive impairments in mice.Afr. J. Tradit. Complement. Altern. Med.200861495620162041
    [Google Scholar]
  122. FatimaF. RizviD.A. AbidiA. AhmadA. ShuklaP. QadeerF. A study of the neuroprotective role of Punica granatum and rosuvastatin in scopolamine induced cognitive deficit in rats.Int. J. Basic Clin. Pharmacol.1773201762319003
    [Google Scholar]
  123. AlíaM. RamosS. MateosR. SerranoG.A.B. BravoL. GoyaL. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide.Toxicol. Appl. Pharmacol.2006212211011810.1016/j.taap.2005.07.01416126241
    [Google Scholar]
  124. ZhangX.W. ChenJ.Y. OuyangD. LuJ.H. Quercetin in animal models of Alzheimer’s disease: A systematic review of preclinical studies.Int. J. Mol. Sci.202021249310.3390/ijms2102049331941000
    [Google Scholar]
  125. GuáquetaS.A.M. MancoM.J.I. PinedaR.J.R. RodriguezL.M. OsorioE. GómezC.G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice.Neuropharmacology20159313414510.1016/j.neuropharm.2015.01.02725666032
    [Google Scholar]
  126. YuX LiY MuX. Effect of quercetin on PC12 Alzheimer's disease cell model induced by Aβ25-35 and its mechanism based on Sirtuin1/Nrf2/HO-1 pathway.Biomed Res Int.202020208210578
    [Google Scholar]
  127. KhanH. UllahH. AschnerM. CheangW.S. AkkolE.K. Neuroprotective effects of quercetin in Alzheimer’s disease.Biomolecules20191015910.3390/biom1001005931905923
    [Google Scholar]
  128. PaulaP.C. AngelicaM.S.G. LuisC.H. PatriciaG.C.G. Preventive effect of quercetin in a triple transgenic Alzheimer’s disease mice model.Molecules20192412228710.3390/molecules2412228731226738
    [Google Scholar]
  129. BadshahH. IkramM. AliW. AhmadS. HahmJ.R. KimM.O. Caffeine may abrogate LPS-induced oxidative stress and neuroinflammation by regulating Nrf2/TLR4 in adult mouse brains.Biomolecules201991171910.3390/biom911071931717470
    [Google Scholar]
  130. CorralB.R. JohanssonB. LlortG.L. Long-term treatment with low-dose caffeine worsens BPSD-like profile in 3xTg-AD mice model of Alzheimer’s disease and affects mice with normal aging.Front. Pharmacol.201897910.3389/fphar.2018.0007929497377
    [Google Scholar]
  131. EskelinenM.H. KivipeltoM. Caffeine as a protective factor in dementia and Alzheimer’s disease.J. Alzheimers Dis.201020S1S167S17410.3233/JAD‑2010‑140420182054
    [Google Scholar]
  132. HoriY. TakedaS. ChoH. WegmannS. ShoupT.M. TakahashiK. IrimiaD. ElmalehD.R. HymanB.T. HudryE. A food and drug administration-approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease.J. Biol. Chem.201529041966197810.1074/jbc.M114.58660225468905
    [Google Scholar]
  133. HussainA. TabrezE.S. MavrychV. BolgovaO. PeelaJ.R. Caffeine: A potential protective agent against cognitive decline in Alzheimer's disease.Crit. Rev. Eukaryot. Gene Expr.2018281677210.1615/CritRevEukaryotGeneExpr.2018021391
    [Google Scholar]
  134. AlamaB HaqueE Anti-Alzheimer and antioxidant activity of Celastrus paniculatus seed.Iran. J. Pharm. Sci.2011714956
    [Google Scholar]
  135. SundaramoorthyM.K.P PackiamK.K. In vitro enzyme inhibitory and cytotoxic studies with Evolvulus alsinoides (Linn.) Linn. Leaf extract: A plant from ayurveda recognized as dasapushpam for the management of Alzheimer’s disease and diabetes mellitus.BMC Complement. Med. Ther.2020201112
    [Google Scholar]
  136. TaranalliA.D. CheeramkuzhyT.C. Influence of clitoria ternatea extracts on memory and central cholinergic activity in rats.Pharm. Biol.2000381515610.1076/1388‑0209(200001)3811‑BFT05121214440
    [Google Scholar]
  137. FathyM.M. EidH.H. HusseinM.A. AhmedH.H. HusseinA.A. The role of Zingiber officinale in the treatment of Alzheimer’s disease: In-vitro and in-vivo evidences.Res. J. Pharm. Biol. Chem. Sci.201565735749
    [Google Scholar]
  138. XicotaL. MoratoR.J. DierssenM. de la TorreR. Potential role of (-)-epigallocatechin-3-gallate (EGCG) in the secondary prevention of Alzheimer disease.Curr. Drug Targets201618217419510.2174/138945011666615082511365526302801
    [Google Scholar]
  139. RasoulijaziH. JoghataeiM. NoubakhtM. RoughaniM. The beneficial effect of (-)-epigallocatechin-3-gallate in an experimental model of Alzheimer’s disease in rat.Behav. Anal.20072007
    [Google Scholar]
  140. ChangX. RongC. ChenY. YangC. HuQ. MoY. ZhangC. GuX. ZhangL. HeW. ChengS. HouX. SuR. LiuS. DunW. WangQ. FangS. (−)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer׳s disease model mice by upregulating neprilysin expression.Exp. Cell Res.2015334113614510.1016/j.yexcr.2015.04.00425882496
    [Google Scholar]
  141. GuérouxM. FleauC. SlozeckM. LaguerreM. PianetI. Epigallocatechin 3-gallate as an inhibitor of tau phosphorylation and aggregation: A molecular and structural insight.J. Prev. Alzheimers Dis.20174421822529181486
    [Google Scholar]
  142. GopinathH. KarthikeyanK. Turmeric: A condiment, cosmetic and cure.Indian J. Dermatol. Venereol. Leprol.2018841162110.4103/ijdvl.IJDVL_1143_1629243674
    [Google Scholar]
  143. MukhopadhyayC.D. RuidasB. ChaudhuryS.S. Role of curcumin in treatment of Alzheimer disease.Int. J. Neurorehabilitation20174274237610.4172/2376‑0281.1000274
    [Google Scholar]
  144. BanerjeeR. Beneficial role of curcumin in preventing the aggregation of the amyloid-β peptide in Alzheimer’s disease.Curcumin for Neurological and Psychiatric DisordersElsevier2019345363
    [Google Scholar]
  145. FarkhondehT. SamarghandianS. ShahriP.A.M. SedaghatM. The impact of curcumin and its modified formulations on Alzheimer’s disease.J. Cell. Physiol.201923410169531696510.1002/jcp.2841130847942
    [Google Scholar]
  146. GoozeeK.G. ShahT.M. SohrabiH.R. Rainey-SmithS.R. BrownB. VerdileG. MartinsR.N. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease.Br. J. Nutr.2016115344946510.1017/S000711451500468726652155
    [Google Scholar]
  147. ChenY. ChenY. LiangY. ChenH. JiX. HuangM. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance.Biomed. Pharmacother.202012110967010.1016/j.biopha.2019.10967031810131
    [Google Scholar]
  148. SinghA.K. SinghS.K. NandiM.K. MishraG. MauryaA. RaiA. Berberine: A plant-derived alkaloid with therapeutic potential to combat Alzheimer’s disease.Cent. Nerv. Syst. Agents Med. Chem.201919315417010.2174/1871524919666190820160053
    [Google Scholar]
  149. HuangM. JiangX. LiangY. LiuQ. ChenS. GuoY. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease.Exp. Gerontol.201791253310.1016/j.exger.2017.02.00428223223
    [Google Scholar]
  150. FuX. ZhangJ. GuoL. XuY. SunL. WangS. FengY. GouL. ZhangL. LiuY. Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats.Pharmacol. Biochem. Behav.201412612213010.1016/j.pbb.2014.09.00525220684
    [Google Scholar]
  151. ChoiJ.S. IslamM.N. AliM.Y. KimY.M. ParkH.J. SohnH.S. JungH.A. The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities.Arch. Pharm. Res.201437101354136310.1007/s12272‑014‑0351‑324988985
    [Google Scholar]
  152. KedeiN. LewinN.E. GéczyT. SeleznevaJ. BraunD.C. ChenJ. HerrmannM.A. HeldmanM.R. LimL. MannanP. GarfieldS.H. PoudelY.B. CumminsT.J. RudraA. BlumbergP.M. KeckG.E. Biological profile of the less lipophilic and synthetically more accessible bryostatin 7 closely resembles that of bryostatin 1.ACS Chem. Biol.20138476777710.1021/cb300671s23369356
    [Google Scholar]
  153. NelsonT.J. SunM.K. LimC. SenA. KhanT. ChirilaF.V. AlkonD.L. Bryostatin effects on cognitive function and PKCɛ in Alzheimer’s disease phase IIa and expanded access trials.J. Alzheimers Dis.201758252153510.3233/JAD‑17016128482641
    [Google Scholar]
  154. SangZ. WangK. ShiJ. ChengX. ZhuG. WeiR. MaQ. YuL. ZhaoY. TanZ. LiuW. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202018711195810.1016/j.ejmech.2019.11195831865014
    [Google Scholar]
  155. NamsiA. NuryT. HamdouniH. YammineA. VejuxA. FasseurV.D. LatruffeN. KoukiM.O. LizardG. Induction of neuronal differentiation of murine N2a cells by two polyphenols present in the mediterranean diet mimicking neurotrophins activities: Resveratrol and apigenin.Diseases2018636710.3390/diseases603006730037152
    [Google Scholar]
  156. SahuA. RatheeS. JainS.K. PatilU.K. Exploring the promising role of guggulipid in Rheumatoid arthritis management: An in-depth analysis.Curr. Rheumatol. Rev.2024205469-48710.2174/011573397128098424010111520338284718
    [Google Scholar]
  157. ManiV. ParleM. RamasamyK. MajeedA.A.B. Reversal of memory deficits by Coriandrum sativum leaves in mice.J. Sci. Food Agric.201191118619210.1002/jsfa.417120848667
    [Google Scholar]
  158. LiuQ.F. LeeJ.H. KimY.M. LeeS. HongY.K. HwangS. OhY. LeeK. YunH.S. LeeI.S. JeonS. ChinY.W. KooB.S. ChoK.S. In vivo screening of traditional medicinal plants for neuroprotective activity against Aβ42 cytotoxicity by using Drosophila models of Alzheimer’s disease.Biol. Pharm. Bull.201538121891190110.1248/bpb.b15‑0045926458335
    [Google Scholar]
  159. RahmanH. MuralidharanP. Nardostacys Jatamansi DC Protects from the loss of memory and cognition deficits in sleep deprived Alzheimer’s disease (Ad) mice model.Int. J. Pharm. Sci. Rev. Res.201053160167
    [Google Scholar]
  160. LiuQ.F. JeonY. SungY. LeeJ.H. JeongH. KimY.M. YunH.S. ChinY.W. JeonS. ChoK.S. KooB.S. Nardostachys jatamansi ethanol extract ameliorates Aβ42 cytotoxicity.Biol. Pharm. Bull.201841447047710.1248/bpb.b17‑0075029398668
    [Google Scholar]
  161. HoiC.P. HoY.P. BaumL. ChowA.H.L. Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells.Phytother. Res.201024101538154210.1002/ptr.317820878707
    [Google Scholar]
  162. LeeY.K. YukD.Y. KimT.I. KimY.H. KimK.T. KimK.H. LeeB.J. NamS.Y. HongJ.T. Protective effect of the ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity.J. Nat. Med.200963327428210.1007/s11418‑009‑0330‑z19343477
    [Google Scholar]
  163. MaG. ZhengQ. XuM. ZhouX. LuL. LiZ. ZhengG.Q. Rhodiola rosea L. improves learning and memory function: Preclinical evidence and possible mechanisms.Front. Pharmacol.20189141510.3389/fphar.2018.0141530564123
    [Google Scholar]
  164. AndradeS. RamalhoM.J. LoureiroJ.A. PereiraM.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies.Int. J. Mol. Sci.2019209231310.3390/ijms2009231331083327
    [Google Scholar]
  165. ArabH. MahjoubS. TilakiH.K. MoghadasiM. The effect of green tea consumption on oxidative stress markers and cognitive function in patients with Alzheimer’s disease: A prospective intervention study.Caspian J. Intern. Med.20167318819427757204
    [Google Scholar]
  166. RemingtonR. ChanA. LeporeA. KotlyaE. SheaT.B. Apple juice improved behavioral but not cognitive symptoms in moderate-to-late stage Alzheimer’s disease in an open-label pilot study.Am. J. Alzheimers Dis. Other Demen.201025436737110.1177/153331751036347020338990
    [Google Scholar]
  167. AkhondzadehS. ShafieeS.M. HarirchianM.H. ToghaM. CheraghmakaniH. RazeghiS. HejaziS.S. YousefiM.H. AlimardaniR. JamshidiA. RezazadehS.A. YousefiA. ZareF. MoradiA. VossoughiA. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease.Psychopharmacology2010207463764310.1007/s00213‑009‑1706‑119838862
    [Google Scholar]
  168. ScholeyA.B. TildesleyN.T.J. BallardC.G. WesnesK.A. TaskerA. PerryE.K. KennedyD.O. An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers.Psychopharmacology2008198112713910.1007/s00213‑008‑1101‑318350281
    [Google Scholar]
  169. de la OrtíR.J.E. PardoG.M.P. DrehmerE. CantusS.D. RochinaJ.M. AguilarM.A. Hu YangI. Improvement of main cognitive functions in patients with Alzheimer’s disease after treatment with coconut oil enriched mediterranean diet: A pilot study.J. Alzheimers Dis.201865257758710.3233/JAD‑18018430056419
    [Google Scholar]
  170. BachinskayaN. HoerrR. IhlR. Alleviating neuropsychiatric symptoms in dementia: the effects of Ginkgo biloba extract EGb 761. Findings from a randomized controlled trial.Neuropsychiatr. Dis. Treat.2011720921521573082
    [Google Scholar]
  171. HerrschaftH. NacuA. LikhachevS. SholomovI. HoerrR. SchlaefkeS. Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: A randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg.J. Psychiatr. Res.201246671672310.1016/j.jpsychires.2012.03.00322459264
    [Google Scholar]
  172. IhlR. TribanekM. BachinskayaN. GroupG.S. Efficacy and tolerability of a once daily formulation of Ginkgo biloba extract EGb 761® in Alzheimer’s disease and vascular dementia: Results from a randomised controlled trial.Pharmacopsychiatry2012452414610.1055/s‑0031‑129121722086747
    [Google Scholar]
  173. GavrilovaS.I. PreussU.W. WongJ.W.M. HoerrR. KaschelR. BachinskayaN. Efficacy and safety of Ginkgo biloba extract EGb 761 ® in mild cognitive impairment with neuropsychiatric symptoms: A randomized, placebo-controlled, double-blind, multi- center trial.Int. J. Geriatr. Psychiatry201429101087109510.1002/gps.410324633934
    [Google Scholar]
  174. BarbagalloM MarottaF DominguezLJ Oxidative stress in patients with Alzheimer’s disease: Effect of extracts of fermented papaya powder.Mediators Inflamm.2015201562480110.1155/2015/624801
    [Google Scholar]
  175. KrikorianR. ShidlerM.D. NashT.A. KaltW. TymchukV.M.R. HaleS.B. JosephJ.A. Blueberry supplementation improves memory in older adults.J. Agric. Food Chem.20105873996400010.1021/jf902933220047325
    [Google Scholar]
  176. AkhondzadehS. NoroozianM. MohammadiM. OhadiniaS. JamshidiA.H. KhaniM. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomised, placebo controlled trial.J. Neurol. Neurosurg. Psychiatry200374786386610.1136/jnnp.74.7.86312810768
    [Google Scholar]
  177. XuS-S. GaoZ.X. WengZ. DuZ.M. XuW.A. YangJ.S. ZhangM.L. TongZ.H. FangY.S. ChaiX.S. Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease.Chung Kuo Yao Li Hsueh Pao19951653913958701750
    [Google Scholar]
  178. XuS-S. CaiZ-Y. QuZ-W. YangR-M. CaiY-L. WangG-Q. SuX.Q. ZhongX.S. ChengR.Y. XuW.A. LiJ.X. FengB. Huperzine-A in capsules and tablets for treating patients with Alzheimer disease.Chung Kuo Yao Li Hsueh Pao199920648649010678137
    [Google Scholar]
  179. RafiiM.S. WalshS. LittleJ.T. BehanK. ReynoldsB. WardC. JinS. ThomasR. AisenP.S. A phase II trial of huperzine A in mild to moderate Alzheimer disease.Neurology201176161389139410.1212/WNL.0b013e318216eb7b21502597
    [Google Scholar]
  180. BruscoL.I. MárquezM. CardinaliD.P. Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer’s disease.Neuroendocrinol. Lett.2000211394211455329
    [Google Scholar]
  181. BruscoL.I. MárquezM. CardinaliD.P. Monozygotic twins with Alzheimer’s disease treated with melatonin: Case report.J. Pineal Res.199825426026310.1111/j.1600‑079X.1998.tb00396.x9885996
    [Google Scholar]
  182. WadeA.G. FarmerM. HarariG. FundN. LaudonM. NirT. MaromF.A. ZisapelN. Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: a 6-month, randomized, placebo-controlled, multicenter trial.Clin. Interv. Aging2014994796124971004
    [Google Scholar]
  183. FurioA.M. BruscoL.I. CardinaliD.P. Possible therapeutic value of melatonin in mild cognitive impairment: A retrospective study.J. Pineal Res.200743440440910.1111/j.1600‑079X.2007.00491.x17910609
    [Google Scholar]
  184. FarlowM.R. ThompsonR.E. WeiL.J. TuchmanA.J. GrenierE. CrockfordD. WilkeS. BenisonJ. AlkonD.L. A randomized, double-blind, placebo-controlled, phase II study assessing safety, tolerability, and efficacy of bryostatin in the treatment of moderately severe to severe Alzheimer’s disease.J. Alzheimers Dis.201967255557010.3233/JAD‑18075930530975
    [Google Scholar]
  185. BaumL. LamC.W.K. CheungS.K.K. KwokT. LuiV. TsohJ. LamL. LeungV. HuiE. NgC. WooJ. ChiuH.F.K. GogginsW.B. ZeeB.C.Y. ChengK.F. FongC.Y.S. WongA. MokH. ChowM.S.S. HoP.C. IpS.P. HoC.S. YuX.W. LaiC.Y.L. ChanM.H. SzetoS. ChanI.H.S. MokV. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease.J. Clin. Psychopharmacol.200828111011310.1097/jcp.0b013e318160862c18204357
    [Google Scholar]
  186. ZhuC.W. GrossmanH. NeugroschlJ. ParkerS. BurdenA. LuoX. SanoM. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study.Alzheimers Dement.20184160961610.1016/j.trci.2018.09.00930480082
    [Google Scholar]
  187. TurnerR.S. ThomasR.G. CraftS. van DyckC.H. MintzerJ. ReynoldsB.A. BrewerJ.B. RissmanR.A. RamanR. AisenP.S. MintzerJ. ReynoldsB.A. KarlawishJ. GalaskoD. HeidebrinkJ. AggarwalN. Graff-RadfordN. SanoM. PetersenR. BellK. DoodyR. SmithA. BernickC. PorteinssonA. TariotP. MulnardR. LernerA. SchneiderL. BurnsJ. RaskindM. FerrisS. JichaG. QuicenoM. ObisesanT. RosenbergP. WeintraubD. KieburtzK. MillerB. KryscioR. AlexopoulisG. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease.Neurology201585161383139110.1212/WNL.000000000000203526362286
    [Google Scholar]
  188. WhiteH.K. LevinE.D. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease.Psychopharmacology1999143215816510.1007/s00213005093110326778
    [Google Scholar]
  189. WilsonA.L. LangleyL.K. MonleyJ. BauerT. RottundaS. McFallsE. KoveraC. McCartenJ.R. Nicotine patches in Alzheimer’s disease: Pilot study on learning, memory, and safety.Pharmacol. Biochem. Behav.1995512-350951410.1016/0091‑3057(95)00043‑V7667377
    [Google Scholar]
  190. JonesG.M.M. SahakianB.J. LevyR. WarburtonD.M. GrayJ.A. Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease.Psychopharmacology1992108448549410.1007/BF022474261410164
    [Google Scholar]
  191. AisenP.S. SaumierD. BriandR. LaurinJ. GervaisF. TremblayP. GarceauD. A phase II study targeting amyloid-β with 3APS in mild-to-moderate Alzheimer disease.Neurology200667101757176310.1212/01.wnl.0000244346.08950.6417082468
    [Google Scholar]
  192. MartoranaA. LorenzoD.F. ManentiG. SempriniR. KochG. Homotaurine induces measurable changes of short latency afferent inhibition in a group of mild cognitive impairment individuals.Front. Aging Neurosci.2014625410.3389/fnagi.2014.0025425295005
    [Google Scholar]
  193. AisenP.S. GauthierS. FerrisS.H. SaumierD. HaineD. GarceauD. DuongA. SuhyJ. OhJ. LauW.C. SampalisJ. Tramiprosate in mild-to-moderate Alzheimer’s disease – a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study).Arch. Med. Sci.20111110211110.5114/aoms.2011.2061222291741
    [Google Scholar]
  194. LeeL.K. ShaharS. ChinA.V. YusoffN.A.M. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebo-controlled trial.Psychopharmacology2013225360561210.1007/s00213‑012‑2848‑022932777
    [Google Scholar]
  195. QuinnJ.F. RamanR. ThomasR.G. MauroY.K. NelsonE.B. Van DyckC. GalvinJ.E. EmondJ. JackC.R.Jr WeinerM. ShintoL. AisenP.S. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: A randomized trial.JAMA2010304171903191110.1001/jama.2010.151021045096
    [Google Scholar]
  196. Yurko-MauroK. McCarthyD. RomD. NelsonE.B. RyanA.S. BlackwellA. SalemN.Jr StedmanM. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline.Alzheimers Dement.20106645646410.1016/j.jalz.2010.01.01320434961
    [Google Scholar]
  197. FirenzuoliF. GoriL. Herbal medicine today: Clinical and research issues.Evid. Based Complement. Alternat. Med.20074S1374010.1093/ecam/nem09618227931
    [Google Scholar]
  198. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.0017724454289
    [Google Scholar]
  199. PatelV. ZhangX. TautivaN. NyaberaA. OwaO. BaidyaM. SungH. TaunkP. AbdollahiS. CharlesS. GonnellaR. GadiN. DuongK. FawverJ. RanC. JalonenT. MurrayI. Small molecules and Alzheimer’s disease: Misfolding, metabolism and imaging.Curr. Alzheimer Res.201512544546110.2174/156720501266615050414564625938871
    [Google Scholar]
  200. AndradeB.P. GrossoC. ValentaoP. BernardoJ. Flavonoids in neurodegeneration: Limitations and strategies to cross CNS barriers.Curr. Med. Chem.201623364151417410.2174/092986732366616080909493427516197
    [Google Scholar]
  201. HeT.T. UngC.O.L. HuH. WangY.T. Good manufacturing practice (GMP) regulation of herbal medicine in comparative research: China GMP, cGMP, WHO-GMP, PIC/S and EU-GMP.Eur. J. Integr. Med.201571556610.1016/j.eujim.2014.11.007
    [Google Scholar]
  202. ChokevivatV. ChuthaputtiA. The role of Thai traditional medicine in health promotion.Proceedings of the 6th Global Conference on Health PromotionCiteseer Princeton, NJ, USA 2005
    [Google Scholar]
/content/journals/car/10.2174/0115672050309057240404075003
Loading
/content/journals/car/10.2174/0115672050309057240404075003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test