Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Mitochondrial form and function are intricately linked through dynamic processes of fusion and fission, and disruptions in these processes are key drivers of neurodegenerative diseases, like Alzheimer’s. The inability of mitochondria to transition between their dynamic forms is a critical factor in the development of pathological states. In this paper, we focus on the importance of different types of mitochondrial phenotypes in nervous tissue, discussing how mitochondria in Alzheimer's disease are “stuck” in certain patterns and how this pattern maintains itself. Understanding the specific roles and transitions between mitochondrial forms, including tiny, networked, and hyperfused, is crucial in developing new therapies aimed at restoring mitochondrial homeostasis. By targeting these dynamics, we may be able to intervene early in the disease process, offering novel avenues for preventing or treating neurodegeneration.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050366194250107050650
2025-01-08
2025-05-07
Loading full text...

Full text loading...

References

  1. MonzelA.S. EnríquezJ.A. PicardM. Multifaceted mitochondria: Moving mitochondrial science beyond function and dysfunction.Nat. Metab.20235454656210.1038/s42255‑023‑00783‑137100996
    [Google Scholar]
  2. AbramichevaP.A. AndrianovaN.V. BabenkoV.A. ZorovaL.D. ZorovS.D. PevznerI.B. PopkovV.A. SemenovichD.S. YakupovaE.I. SilachevD.N. PlotnikovE.Y. SukhikhG.T. ZorovD.B. Mitochondrial network.Biochemistry (Mosc.)202388101596160710.1134/S000629792310014038105027
    [Google Scholar]
  3. GrelH. WoznicaD. RatajczakK. KalwarczykE. AnchimowiczJ. SwitlikW. OlejnikP. ZielonkaP. StobieckaM. JakielaS. Mitochondrial dynamics in neurodegenerative diseases: Unraveling the role of fusion and fission processes.Int. J. Mol. Sci.202324171303310.3390/ijms24171303337685840
    [Google Scholar]
  4. HoitzingH. JohnstonI.G. JonesN.S. What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research.BioEssays201537668770010.1002/bies.20140018825847815
    [Google Scholar]
  5. RafelskiS.M. Mitochondrial network morphology: Building an integrative, geometrical view.BMC Biol.20131117110.1186/1741‑7007‑11‑7123800141
    [Google Scholar]
  6. MishraP. ChanD.C. Metabolic regulation of mitochondrial dynamics.J. Cell Biol.2016212437938710.1083/jcb.20151103626858267
    [Google Scholar]
  7. MishraP. ChanD.C. Mitochondrial dynamics and inheritance during cell division, development and disease.Nat. Rev. Mol. Cell Biol.2014151063464610.1038/nrm387725237825
    [Google Scholar]
  8. ZininaA.N. VekshinN.L. Fluorimetric comparison of protomitochondria and mitochondria.Biochem. Suppl. Ser. A: Membr. Cell Biol.2008238038610.1134/S1990747808040120
    [Google Scholar]
  9. KrekhovaK.E. VekshinN.L. A number of properties of proto-mitochondria from rat liver.Biophysics (Oxf.)201863218318610.1134/S000635091802015X
    [Google Scholar]
  10. Ul FatimaN. AnanthanarayananV. Mitochondrial movers and shapers: Recent insights into regulators of fission, fusion and transport.Curr. Opin. Cell Biol.20238010215010.1016/j.ceb.2022.10215036580830
    [Google Scholar]
  11. AranK.R. SinghS. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease–A step towards mitochondria based therapeutic strategies.Aging Health Res.20233410016910.1016/j.ahr.2023.100169
    [Google Scholar]
  12. NissankaN. MoraesC.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease.FEBS Lett.2018592572874210.1002/1873‑3468.1295629281123
    [Google Scholar]
  13. KnottA.B. PerkinsG. SchwarzenbacherR. Bossy-WetzelE. Mitochondrial fragmentation in neurodegeneration.Nat. Rev. Neurosci.20089750551810.1038/nrn241718568013
    [Google Scholar]
  14. RenJ. XiangB. XuelingL. HanX. YangZ. ZhangM. ZhangY. Molecular mechanisms of mitochondrial homeostasis regulation in neurons and possible therapeutic approaches for Alzheimer’s disease.Heliyon20241017e3647010.1016/j.heliyon.2024.e3647039281517
    [Google Scholar]
  15. PantiyaP. ThonusinC. ChattipakornN. ChattipakornS.C. Mitochondrial abnormalities in neurodegenerative models and possible interventions: Focus on Alzheimer’s disease, Parkinson’s disease, Huntington’s disease.Mitochondrion202055144710.1016/j.mito.2020.08.00332828969
    [Google Scholar]
  16. ShangY. LiZ. CaiP. LiW. XuY. ZhaoY. XiaS. ShaoQ. WangH. Megamitochondria plasticity: Function transition from adaption to disease.Mitochondrion202371647510.1016/j.mito.2023.06.00137276954
    [Google Scholar]
  17. ChaplyginaA.V. ZhdanovaD.Y. Effects of mitochondrial fusion and fission regulation on mouse hippocampal primary cultures: Relevance to Alzheimer’s disease.Aging Pathobiol. Ther.20246181710.31491/APT.2024.03.132
    [Google Scholar]
  18. WakabayashiT. Megamitochondria formation-physiology and pathology.J. Cell. Mol. Med.20026449753810.1111/j.1582‑4934.2002.tb00452.x12611638
    [Google Scholar]
  19. HaoT. YuJ. WuZ. JiangJ. GongL. WangB. GuoH. ZhaoH. LuB. EngelenderS. HeH. SongZ. Hypoxia-reprogramed megamitochondrion contacts and engulfs lysosome to mediate mitochondrial self-digestion.Nat. Commun.2023141410510.1038/s41467‑023‑39811‑937433770
    [Google Scholar]
  20. AtlanteA. AmadoroG. LatinaV. ValentiD. Therapeutic potential of targeting mitochondria for Alzheimer’s disease treatment.J. Clin. Med.20221122674210.3390/jcm1122674236431219
    [Google Scholar]
  21. WangW. ZhaoF. MaX. PerryG. ZhuX. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances.Mol. Neurodegener.20201513010.1186/s13024‑020‑00376‑632471464
    [Google Scholar]
  22. PengY. GaoP. ShiL. ChenL. LiuJ. LongJ. Central and peripheral metabolic defects contribute to the pathogenesis of Alzheimer’s disease: Targeting mitochondria for diagnosis and prevention.Antioxid. Redox Signal.202032161188123610.1089/ars.2019.776332050773
    [Google Scholar]
  23. ZhuX. PerryG. SmithM.A. WangX. Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease.J. Alzheimers Dis.201333Suppl. 1S253S26222531428
    [Google Scholar]
  24. CalkinsM.J. ManczakM. MaoP. ShirendebU. ReddyP.H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease.Hum. Mol. Genet.201120234515452910.1093/hmg/ddr38121873260
    [Google Scholar]
  25. LiaoZ. ZhangQ. RenN. ZhaoH. ZhengX. Progress in mitochondrial and omics studies in Alzheimer’s disease research: From molecular mechanisms to therapeutic interventions.Front. Immunol.202415141893910.3389/fimmu.2024.141893939040111
    [Google Scholar]
  26. PickettE.K. RoseJ. McCroryC. McKenzieC.A. KingD. SmithC. GillingwaterT.H. HenstridgeC.M. Spires-JonesT.L. Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer’s disease.Acta Neuropathol.2018136574775710.1007/s00401‑018‑1903‑230191401
    [Google Scholar]
  27. DuH. GuoL. YanS. SosunovA.A. McKhannG.M. ShiDu YanS. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model.Proc. Natl. Acad. Sci. USA201010743186701867510.1073/pnas.100658610720937894
    [Google Scholar]
  28. BurrinhaT. CunhaC. HallM.J. Lopes-da-SilvaM. SeabraM.C. Guimas AlmeidaC. Deacidification of endolysosomes by neuronal aging drives synapse loss.Traffic202324833435410.1111/tra.1288937218497
    [Google Scholar]
  29. Farfel-BeckerT. RoneyJ.C. ChengX.T. LiS. CuddyS.R. ShengZ.H. Neuronal soma-derived degradative lysosomes are continuously delivered to distal axons to maintain local degradation capacity.Cell Rep.20192815164.e410.1016/j.celrep.2019.06.01331269450
    [Google Scholar]
  30. LustbaderJ.W. CirilliM. LinC. XuH.W. TakumaK. WangN. CaspersenC. ChenX. PollakS. ChaneyM. TrincheseF. LiuS. Gunn-MooreF. LueL.F. WalkerD.G. KuppusamyP. ZewierZ.L. ArancioO. SternD. YanS.S. WuH. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease.Science2004304566944845210.1126/science.109123015087549
    [Google Scholar]
  31. ManczakM. AnekondaT.S. HensonE. ParkB.S. QuinnJ. ReddyP.H. Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: Implications for free radical generation and oxidative damage in disease progression.Hum. Mol. Genet.20061591437144910.1093/hmg/ddl06616551656
    [Google Scholar]
  32. DehkordiS.K. WalkerJ. SahE. BennettE. AtrianF. FrostB. WoostB. BennettR.E. OrrT.C. ZhouY. AndheyP.S. ColonnaM. SudmantP.H. XuP. WangM. ZhangB. ZareH. OrrM.E. Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology.Nat Aging20211121107111610.1038/s43587‑021‑00142‑335531351
    [Google Scholar]
  33. Moreno-GarcíaA. KunA. CaleroO. MedinaM. CaleroM. An overview of the role of lipofuscin in age-related neurodegeneration.Front. Neurosci.20181246410.3389/fnins.2018.0046430026686
    [Google Scholar]
  34. SerwerP. WrightE.T. HunterB. Additions to alpha-sheet based hypotheses for the cause of Alzheimer’s disease.J. Alzheimers Dis.202288242943810.3233/JAD‑22031135662126
    [Google Scholar]
  35. WangL. GuoL. LuL. SunH. ShaoM. BeckS.J. LiL. RamachandranJ. DuY. DuH. Synaptosomal mitochondrial dysfunction in 5xFAD mouse model of Alzheimer’s disease.PLoS One2016113e015044110.1371/journal.pone.015044126942905
    [Google Scholar]
  36. SharmaN. BanerjeeR. DavisR.L. Early mitochondrial defects in the 5xFAD mouse model of Alzheimer’s disease.J. Alzheimers Dis.20239141323133810.3233/JAD‑22088436617782
    [Google Scholar]
  37. WangX. SuB. SiedlakS.L. MoreiraP.I. FujiokaH. WangY. CasadesusG. ZhuX. Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins.Proc. Natl. Acad. Sci. USA200810549193181932310.1073/pnas.080487110519050078
    [Google Scholar]
  38. ZhangC. RissmanR.A. FengJ. Characterization of ATP alternations in an Alzheimer’s disease transgenic mouse model.J. Alzheimers Dis.201544237537810.3233/JAD‑14189025261448
    [Google Scholar]
  39. JungE.S. AnK. Seok HongH. KimJ.H. Mook-JungI. Astrocyte-originated ATP protects Aβ(1-42)-induced impairment of synaptic plasticity.J. Neurosci.20123293081308710.1523/JNEUROSCI.6357‑11.201222378880
    [Google Scholar]
  40. HaugheyN.J. MattsonM.P. Alzheimer’s amyloid β-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes.Neuromolecular Med.20033317318010.1385/NMM:3:3:17312835512
    [Google Scholar]
  41. van Gijsel-BonnelloM. BarangerK. BenechP. RiveraS. KhrestchatiskyM. de ReggiM. GharibB. Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer’s disease: Alleviation by pantethine.PLoS One2017124e017536910.1371/journal.pone.017536928410378
    [Google Scholar]
  42. JainP. WadhwaP. JadhavH. Reactive astrogliosis: Role in Alzheimer’s disease.CNS Neurol. Disord. Drug Targets201514787287910.2174/187152731466615071310473826166438
    [Google Scholar]
  43. WangX. SuB. LeeH. LiX. PerryG. SmithM.A. ZhuX. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease.J. Neurosci.200929289090910310.1523/JNEUROSCI.1357‑09.200919605646
    [Google Scholar]
  44. SuB. WangX. BondaD. PerryG. SmithM. ZhuX. Abnormal mitochondrial dynamics-a novel therapeutic target for Alzheimer’s disease?Mol. Neurobiol.2010412-3879610.1007/s12035‑009‑8095‑720101529
    [Google Scholar]
  45. OsbornL.M. KamphuisW. WadmanW.J. HolE.M. Astrogliosis: An integral player in the pathogenesis of Alzheimer’s disease.Prog. Neurobiol.201614412114110.1016/j.pneurobio.2016.01.00126797041
    [Google Scholar]
  46. ZyśkM. BerettaC. NaiaL. DakhelA. PåvéniusL. BrismarH. LindskogM. AnkarcronaM. ErlandssonA. Amyloid-β accumulation in human astrocytes induces mitochondrial disruption and changed energy metabolism.J. Neuroinflammation20232014310.1186/s12974‑023‑02722‑z36803838
    [Google Scholar]
  47. LampinenR. BelayaI. SavelevaL. LiddellJ.R. RaitD. HuuskonenM.T. GiniatullinaR. SorvariA. SoppelaL. MikhailovN. BoccuniI. GiniatullinR. Cruz-HacesM. KonovalovaJ. KoskuviM. DomanskyiA. HämäläinenR.H. GoldsteinsG. KoistinahoJ. MalmT. ChewS. RillaK. WhiteA.R. Marsh-ArmstrongN. KanninenK.M. Neuron-astrocyte transmitophagy is altered in Alzheimer’s disease.Neurobiol. Dis.202217010575310.1016/j.nbd.2022.10575335569719
    [Google Scholar]
  48. TashiroR. OzakiD. Bautista-GarridoJ. SunG. ObertasL. MobleyA.S. KimG.S. AronowskiJ. JungJ.E. Young astrocytic mitochondria attenuate the elevated level of CCL11 in the aged mice, contributing to cognitive function improvement.Int. J. Mol. Sci.2023246518710.3390/ijms2406518736982260
    [Google Scholar]
  49. CaiJ. ChenY. SheY. HeX. FengH. SunH. YinM. GaoJ. ShengC. LiQ. XiaoM. Aerobic exercise improves astrocyte mitochondrial quality and transfer to neurons in a mouse model of Alzheimer’s disease.Brain Pathol.2024e1331610.1111/bpa.1331639462160
    [Google Scholar]
  50. KimD.K. Mook-JungI. The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer’s disease.BMB Rep.2019521267968810.5483/BMBRep.2019.52.12.28231722781
    [Google Scholar]
  51. KimJ. YooI.D. LimJ. MoonJ.S. Pathological phenotypes of astrocytes in Alzheimer’s disease.Exp. Mol. Med.2024561959910.1038/s12276‑023‑01148‑038172603
    [Google Scholar]
  52. LiY. LiT. ChenT. LiC. YuW. XuY. ZengX. ZhengF. The role of microglia with mitochondrial dysfunction and its therapeutic prospects in Alzheimer’s disease.J. Integr. Neurosci.20242359110.31083/j.jin230509138812394
    [Google Scholar]
  53. LampinenR. BelayaI. BoccuniI. KanninenT.M. Mitochondrial FunctionK.M. Alzheimer’s Disease: Focus on Astrocytes.Chapter 7 GentileM.T. D’AmatoL.C. RijekaIntechOpen2017
    [Google Scholar]
  54. RosenbergN. RevaM. BindaF. RestivoL. DepierreP. PuyalJ. BriquetM. BernardinelliY. RocherA.B. MarkramH. ChattonJ.Y. Overexpression of UCP4 in astrocytic mitochondria prevents multilevel dysfunctions in a mouse model of Alzheimer’s disease.Glia202371495797310.1002/glia.2431736537556
    [Google Scholar]
  55. RaulinA.C. DossS.V. TrottierZ.A. IkezuT.C. BuG. LiuC.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies.Mol. Neurodegener.20221717210.1186/s13024‑022‑00574‑436348357
    [Google Scholar]
  56. MahanT.E. WangC. BaoX. ChoudhuryA. UlrichJ.D. HoltzmanD.M. Selective reduction of astrocyte apoE3 and apoE4 strongly reduces Aβ accumulation and plaque-related pathology in a mouse model of amyloidosis.Mol. Neurodegener.20221711310.1186/s13024‑022‑00516‑035109920
    [Google Scholar]
  57. BertholetA.M. DelerueT. MilletA.M. MoulisM.F. DavidC. DaloyauM. Arnauné-PelloquinL. DavezacN. MilsV. MiquelM.C. RojoM. BelenguerP. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity.Neurobiol. Dis.20169031910.1016/j.nbd.2015.10.01126494254
    [Google Scholar]
  58. ChenY. GuoS. TangY. MouC. HuX. ShaoF. YanW. WuQ. Mitochondrial fusion and fission in neuronal death induced by cerebral ischemia-reperfusion and its clinical application: A mini-review.Med. Sci. Monit.202026e92865110.12659/MSM.92865133156817
    [Google Scholar]
  59. MeyerJ.N. LeuthnerT.C. LuzA.L. Mitochondrial fusion, fission, and mitochondrial toxicity.Toxicology2017391425310.1016/j.tox.2017.07.01928789970
    [Google Scholar]
  60. MaryA. EysertF. CheclerF. ChamiM. Mitophagy in Alzheimer’s disease: Molecular defects and therapeutic approaches.Mol. Psychiatry202328120221610.1038/s41380‑022‑01631‑635665766
    [Google Scholar]
  61. OrrM.E. OddoS. Autophagic/lysosomal dysfunction in Alzheimer’s disease.Alzheimers Res. Ther.2013555310.1186/alzrt21724171818
    [Google Scholar]
  62. ChungK.M. HernándezN. SproulA.A. YuW.H. Alzheimer’s disease and the autophagic-lysosomal system.Neurosci. Lett.2019697495810.1016/j.neulet.2018.05.01729758300
    [Google Scholar]
  63. WangQ. WangY. LiS. ShiJ. PACAP–Sirtuin3 alleviates cognitive impairment through autophagy in Alzheimer’s disease.Alzheimers Res. Ther.202315118410.1186/s13195‑023‑01334‑237891608
    [Google Scholar]
  64. TumurbaatarB. FracassiA. ScadutoP. GuptarakJ. WoltjerR. JupiterD. TaglialatelaG. Preserved autophagy in cognitively intact non-demented individuals with Alzheimer’s neuropathology.Alzheimers Dement.202319125355537010.1002/alz.1307437191183
    [Google Scholar]
  65. ZhangW. XuC. SunJ. ShenH.M. WangJ. YangC. Impairment of the autophagy–lysosomal pathway in Alzheimer’s diseases: Pathogenic mechanisms and therapeutic potential.Acta Pharm. Sin. B20221231019104010.1016/j.apsb.2022.01.00835530153
    [Google Scholar]
  66. OnyangoI.G. BennettJ.P. StokinG.B. Mitochondrially-targeted therapeutic strategies for Alzheimer’s disease.Curr. Alzheimer Res.2021181075377110.2174/156720501866621120812585534879805
    [Google Scholar]
  67. ReddyP.H. Inhibitors of mitochondrial fission as a therapeutic strategy for diseases with oxidative stress and mitochondrial dysfunction.J. Alzheimers Dis.201440224525610.3233/JAD‑13206024413616
    [Google Scholar]
  68. BondaD.J. SmithM.A. PerryG. LeeH.G. WangX. ZhuX. The mitochondrial dynamics of Alzheimer’s disease and Parkinson’s disease offer important opportunities for therapeutic intervention.Curr. Pharm. Des.201117313374338010.2174/13816121179807256221902671
    [Google Scholar]
  69. BhattiJ.S. KaurS. MishraJ. DibbantiH. SinghA. ReddyA.P. BhattiG.K. ReddyP.H. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Basis Dis.20231869716679810.1016/j.bbadis.2023.16679837392948
    [Google Scholar]
  70. BordtE.A. ZhangN. WaddellJ. PolsterB.M. The non-specific Drp1 inhibitor Mdivi-1 has modest biochemical antioxidant activity.Antioxidants202211345010.3390/antiox1103045035326100
    [Google Scholar]
  71. ReddyP.H. ManczakM. YinX. Mitochondria-division inhibitor 1 protects against Amyloid-β induced mitochondrial fragmentation and synaptic damage in Alzheimer’s disease.J. Alzheimers Dis.201758114716210.3233/JAD‑17005128409745
    [Google Scholar]
  72. LinY. WangD. LiB. WangJ. XuL. SunX. JiK. YanC. LiuF. ZhaoY. Targeting DRP1 with Mdivi-1 to correct mitochondrial abnormalities in ADOA+ syndrome.JCI Insight2024915e18058210.1172/jci.insight.18058238916953
    [Google Scholar]
  73. WangW. YinJ. MaX. ZhaoF. SiedlakS.L. WangZ. TorresS. FujiokaH. XuY. PerryG. ZhuX. Inhibition of mitochondrial fragmentation protects against Alzheimer’s disease in rodent model.Hum. Mol. Genet.201726214118413110.1093/hmg/ddx29928973308
    [Google Scholar]
  74. LiuX. SongL. YuJ. HuangF. LiY. MaC. Mdivi-1: A promising drug and its underlying mechanisms in the treatment of neurodegenerative diseases.Histol. Histopathol.202237650551235199329
    [Google Scholar]
  75. MishraE. ThakurM.K. Mdivi-1 rescues memory decline in scopolamine-induced amnesic male mice by ameliorating mitochondrial dynamics and hippocampal plasticity.Mol. Neurobiol.20236095426544910.1007/s12035‑023‑03397‑637314656
    [Google Scholar]
  76. QiX. QvitN. SuY-C. Mochly-RosenD. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity.J. Cell Sci.2013126Pt 378980223239023
    [Google Scholar]
  77. WangL. LiuM. GaoJ. SmithA.M. FujiokaH. LiangJ. PerryG. WangX. Mitochondrial fusion suppresses Tau pathology-induced neurodegeneration and cognitive decline.J. Alzheimers Dis.20218431057106910.3233/JAD‑21517534602490
    [Google Scholar]
  78. PengK. YangL. WangJ. YeF. DanG. ZhaoY. CaiY. CuiZ. AoL. LiuJ. ZouZ. SaiY. CaoJ. The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1α regulates rotenone-induced dopaminergic neurotoxicity.Mol. Neurobiol.20175453783379710.1007/s12035‑016‑9944‑927271125
    [Google Scholar]
  79. WangD. WangJ. BonamyG.M.C. MeeusenS. BruschR.G. TurkC. YangP. SchultzP.G. A small molecule promotes mitochondrial fusion in mammalian cells.Angew. Chem. Int. Ed.201251379302930510.1002/anie.20120458922907892
    [Google Scholar]
  80. ZengK.W. WangJ.K. WangL.C. GuoQ. LiuT.T. WangF.J. FengN. ZhangX.W. LiaoL.X. ZhaoM.M. LiuD. JiangY. TuP. Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity.Signal Transduct. Target. Ther.2021617110.1038/s41392‑020‑00447‑633602894
    [Google Scholar]
/content/journals/car/10.2174/0115672050366194250107050650
Loading
/content/journals/car/10.2174/0115672050366194250107050650
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer's disease; fission; fusion; Mitochondria; mitochondrial phenotypes; mitophagy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test