Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

This study analyzed the current status, hotspots, and development trends of tau protein research in Alzheimer’s disease (AD) and to provide a reference for future research in this field. CiteSpace software was used to scientifically measure and visualize the relevant articles in the field of tau protein in AD brain from the Web of Science Core Collection database from 1991 to 2022.

Methods

A total of 568 articles were included, with an exponential growth in the number of articles published from 1991 to 2022, with an average of 17.8 articles per year. The United States is the most productive country in this field, accounting for 46.83% of the total literature. The New York State Institute for Basic Research is the most productive organization, followed by MRC Laboratory Molecular Biology in the UK. The most influential are Kings College London, University of California, San Francisco, and others. Iqbal K is the most productive author.

Results

The most productive journal is the Journal of Biological Chemistry, and the journal with the highest impact factor is Acta Neuropathologica. The journal with the highest cumulative impact factor is Nature. The research hotspots mainly focus on the formation and degradation mechanisms of tau protein paired helical filaments and abnormal phosphorylation, AD neurofibrillary tangles and degenerative changes, and model research, mainly involving tau protein abnormal phosphorylation, phosphorylation sites, dephosphorylation, aggregate helical filaments, neurofibrillary tangles mouse models.

Conclusion

The research frontier trends mainly focus on the study of pathological changes in tau protein, intervention mechanisms, and the development and practice of clinical therapeutic drugs.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050351995241223065923
2025-02-03
2025-05-13
Loading full text...

Full text loading...

References

  1. Ben MiledA. YefernyT. RabehA.B. MRI images analysis method for early stage Alzheimer’s disease detection.Int J Comput Sci Net.20202021422010.48550/arXiv.2012.00830
    [Google Scholar]
  2. RamananV.K. WangX. PrzybelskiS.A. RaghavanS. HeckmanM.G. BatzlerA. KoselM.L. HohmanT.J. KnopmanD.S. Graff-RadfordJ. LoweV.J. MielkeM.M. JackC.R.Jr PetersenR.C. RossO.A. VemuriP. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition.Brain Commun.202022fcaa15910.1093/braincomms/fcaa15933426524
    [Google Scholar]
  3. AbbondanteS. Baglietto-VargasD. Rodriguez-OrtizC.J. Estrada-HernandezT. MedeirosR. LaFerlaF.M. Genetic ablation of tau mitigates cognitive impairment induced by type 1 diabetes.Am. J. Pathol.2014184381982610.1016/j.ajpath.2013.11.02124412516
    [Google Scholar]
  4. QuinnJ.P. CorbettN.J. KellettK.A.B. HooperN.M. Tau proteolysis in the pathogenesis of tauopathies: Neurotoxic fragments and novel biomarkers.J. Alzheimers Dis.2018631133310.3233/JAD‑17095929630551
    [Google Scholar]
  5. IqbalK. AlonsoA.C. ChenS. ChohanM.O. El-AkkadE. GongC.X. KhatoonS. LiB. LiuF. RahmanA. TanimukaiH. Grundke-IqbalI. Tau pathology in Alzheimer disease and other tauopathies.Biochim. Biophys. Acta200517392-319821010.1016/j.bbadis.2004.09.00815615638
    [Google Scholar]
  6. DolanP.J. JohnsonG.V.W. A caspase cleaved form of tau is preferentially degraded through the autophagy pathway.J. Biol. Chem.201028529219782198710.1074/jbc.M110.11094020466727
    [Google Scholar]
  7. IqbalK. GongC.X. LiuF. Hyperphosphorylation-induced tau oligomers.Front. Neurol.2013411210.3389/fneur.2013.0011223966973
    [Google Scholar]
  8. IqbalK. LiuF. GongC.X. Recent developments with tau-based drug discovery.Expert Opin. Drug Discov.201813539941010.1080/17460441.2018.144508429493301
    [Google Scholar]
  9. SenguptaA. NovakM. Grundke-IqbalI. IqbalK. Regulation of phosphorylation of tau by cyclin-dependent kinase 5 and glycogen synthase kinase-3 at substrate level.FEBS Lett.2006580255925593310.1016/j.febslet.2006.09.06017045592
    [Google Scholar]
  10. AbisambraJ. JinwalU.K. MiyataY. RogersJ. BlairL. LiX. SeguinS.P. WangL. JinY. BaconJ. BradyS. CockmanM. GuidiC. ZhangJ. KorenJ. YoungZ.T. AtkinsC.A. ZhangB. LawsonL.Y. WeeberE.J. BrodskyJ.L. GestwickiJ.E. DickeyC.A. Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau.Biol. Psychiatry201374536737410.1016/j.biopsych.2013.02.02723607970
    [Google Scholar]
  11. ChenC. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature.J. Am. Soc. Inf. Sci. Technol.200657335937710.1002/asi.20317
    [Google Scholar]
  12. SuH.N. LeeP.C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight.Scientometrics2010851657910.1007/s11192‑010‑0259‑8
    [Google Scholar]
  13. ChenC. Searching for intellectual turning points: Progressive knowledge domain visualization.Proc. Natl. Acad. Sci. USA2004101Suppl 15303531010.1073/pnas.030751310014724295
    [Google Scholar]
  14. ChenC. Ibekwe-SanJuanF. HouJ. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis.J. Am. Soc. Inf. Sci. Technol.20106171386140910.1002/asi.21309
    [Google Scholar]
  15. SmallH. Co-Citation in the scientific literature: A new measure of the relationship between two documents.J. Am. Soc. Inf. Sci.197324426526910.1002/asi.4630240406
    [Google Scholar]
  16. LeeV.M.Y. BalinB.J. OtvosL.Jr TrojanowskiJ.Q. A68: A major subunit of paired helical filaments and derivatized forms of normal Tau.Science1991251499467567810.1126/science.18994881899488
    [Google Scholar]
  17. GongC.X. LidskyT. WegielJ. ZuckL. Grundke-IqbalI. IqbalK. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease.J. Biol. Chem.200027585535554410.1074/jbc.275.8.553510681533
    [Google Scholar]
  18. IqbalK. AlonsoA.C. GongC.X. KhatoonS. SinghT.J. Grundke-IqbalI. Mechanism of neurofibrillary degeneration in Alzheimer’s disease.Mol. Neurobiol.199491-311912310.1007/BF028161117888088
    [Google Scholar]
  19. IqbalK. Grundke-IqbalI. Alzheimer neurofibrillary degeneration: Significance, etiopathogenesis, therapeutics and prevention.J. Cell. Mol. Med.2008121385510.1111/j.1582‑4934.2008.00225.x18194444
    [Google Scholar]
  20. IqbalK. Grundke-IqbalI. Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer’s disease.Mol. Neurobiol.199152-439941010.1007/BF029355611726645
    [Google Scholar]
  21. YuY. ZhangL. LiX. RunX. LiangZ. LiY. LiuY. LeeM.H. Grundke-IqbalI. IqbalK. VocadloD.J. LiuF. GongC.X. Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation.PLoS One201274e3527710.1371/journal.pone.003527722536363
    [Google Scholar]
  22. ChunW. WaldoG.S. JohnsonG.V.W. Split GFP complementation assay for quantitative measurement of tau aggregation in situ.Methods Mol. Biol.201067010912310.1007/978‑1‑60761‑744‑0_920967587
    [Google Scholar]
  23. ZhangJ. JohnsonG.V.W. Tau protein is hyperphosphorylated in a site-specific manner in apoptotic neuronal PC12 cells.J. Neurochem.20007562346235710.1046/j.1471‑4159.2000.0752346.x11080186
    [Google Scholar]
  24. MillerM.L. JohnsonG.V.W. Transglutaminase cross-linking of the tau protein.J. Neurochem.19956541760177010.1046/j.1471‑4159.1995.65041760.x7561874
    [Google Scholar]
  25. GorantlaN.V. KhandelwalP. PoddarP. ChinnathambiS. Global conformation of tau protein mapped by raman spectroscopy.Methods Mol. Biol.20171523213110.1007/978‑1‑4939‑6598‑4_227975242
    [Google Scholar]
  26. VanmechelenE. VandersticheleH. DavidssonP. Van KerschaverE. Van Der PerreB. SjögrenM. AndreasenN. BlennowK. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: A sandwich ELISA with a synthetic phosphopeptide for standardization.Neurosci. Lett.20002851495210.1016/S0304‑3940(00)01036‑310788705
    [Google Scholar]
  27. TownsendD.J. MalaB. HughesE. HussainR. SiligardiG. FullwoodN.J. MiddletonD.A. Circular dichroism spectroscopy identifies the β-adrenoceptor agonist salbutamol as a direct inhibitor of tau filament formation in vitro.ACS Chem. Neurosci.202011142104211610.1021/acschemneuro.0c0015432520518
    [Google Scholar]
  28. PoolerA.M. PolydoroM. WegmannS. NichollsS.B. Spires-JonesT.L. HymanB.T. Propagation of tau pathology in Alzheimer’s disease: Identification of novel therapeutic targets.Alzheimers Res. Ther.2013554910.1186/alzrt21424152385
    [Google Scholar]
  29. BloomG.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis.JAMA Neurol.201471450550810.1001/jamaneurol.2013.584724493463
    [Google Scholar]
  30. SayasC.L. ÁvilaJ. GSK-3 and tau: A key duet in Alzheimer’s disease.Cells202110472110.3390/cells1004072133804962
    [Google Scholar]
  31. ZhangX. WangJ. ZhangZ. YeK. Tau in neurodegenerative diseases: Molecular mechanisms, biomarkers, and therapeutic strategies.Transl. Neurodegener.20241314010.1186/s40035‑024‑00429‑639107835
    [Google Scholar]
  32. IttnerL.M. KeY.D. DelerueF. BiM. GladbachA. van EerselJ. WölfingH. ChiengB.C. ChristieM.J. NapierI.A. EckertA. StaufenbielM. HardemanE. GötzJ. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models.Cell2010142338739710.1016/j.cell.2010.06.03620655099
    [Google Scholar]
  33. Grundke-IqbalI. IqbalK. TungY.C. QuinlanM. WisniewskiH.M. BinderL.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology.Proc. Natl. Acad. Sci. USA198683134913491710.1073/pnas.83.13.49133088567
    [Google Scholar]
  34. GoedertM. WischikC.M. CrowtherR.A. WalkerJ.E. KlugA. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule-associated protein tau.Proc. Natl. Acad. Sci. USA198885114051405510.1073/pnas.85.11.40513131773
    [Google Scholar]
  35. PlutaR. A look at the etiology of Alzheimer’s disease based on the brain ischemia model.Curr. Alzheimer Res.202421316618210.2174/011567205032092124062705073638963100
    [Google Scholar]
  36. RamakrishnaK. KaruturiP. SiakabingaQ. T AG. KrishnamurthyS. SinghS. KumariS. KumarG.S. SobhiaM.E. RaiS.N. Indole-3 carbinol and diindolylmethane mitigated β-Amyloid-induced neurotoxicity and acetylcholinesterase enzyme activity: In silico, in vitro, and network pharmacology study.Diseases202412818410.3390/diseases1208018439195183
    [Google Scholar]
  37. SinghM. AgarwalV. PanchamP. JindalD. AgarwalS. RaiS. SinghS. GuptaV. A comprehensive review and androgen deprivation therapy and its impact on Alzheimer’s disease risk in older men with prostate cancer.Degener. Neurol. Neuromuscul. Dis.202414334610.2147/DNND.S44513038774717
    [Google Scholar]
  38. TripathiP. LodhiA. RaiS. NandiN. DumogaS. YadavP. TiwariA. SinghS. El-ShorbagiA.N. ChaudharyS. Review of pharmacotherapeutic targets in Alzheimer’s disease and its management using traditional medicinal plants.Degener. Neurol. Neuromuscul. Dis.202414477410.2147/DNND.S45200938784601
    [Google Scholar]
  39. RaiS.N. SinghC. SinghA. SinghM.P. SinghB.K. Mitochondrial dysfunction: A potential therapeutic target to treat Alzheimer’s disease.Mol. Neurobiol.20205773075308810.1007/s12035‑020‑01945‑y32462551
    [Google Scholar]
  40. TanimukaiH. Grundke-IqbalI. IqbalK. Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease.Am. J. Pathol.200516661761177110.1016/S0002‑9440(10)62486‑815920161
    [Google Scholar]
  41. FrostB. JacksR.L. DiamondM.I. Propagation of tau misfolding from the outside to the inside of a cell.J. Biol. Chem.200928419128451285210.1074/jbc.M80875920019282288
    [Google Scholar]
  42. SchindowskiK. BrettevilleA. LeroyK. BégardS. BrionJ.P. HamdaneM. BuéeL. Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits.Am. J. Pathol.2006169259961610.2353/ajpath.2006.06000216877359
    [Google Scholar]
  43. OdfalkK.F. BieniekK.F. HoppS.C. Microglia: Friend and foe in tauopathy.Prog. Neurobiol.202221610230610.1016/j.pneurobio.2022.10230635714860
    [Google Scholar]
  44. PermanneB. SandA. OussonS. NényM. HantsonJ. SchubertR. WiessnerC. QuattropaniA. BeherD. O-GlcNAcase inhibitor ASN90 is a multimodal drug candidate for tau and α-synuclein proteinopathies.ACS Chem. Neurosci.20221381296131410.1021/acschemneuro.2c0005735357812
    [Google Scholar]
  45. RudenkoL.K. WallrabeH. PeriasamyA. SillerK.H. SvindrychZ. SewardM.E. BestM.N. BloomG.S. Intraneuronal tau misfolding induced by extracellular Amyloid-β oligomers.J. Alzheimers Dis.20197141125113810.3233/JAD‑19022631524157
    [Google Scholar]
  46. ZhaoJ. WuH. TangX. Tau internalization: A complex step in tau propagation.Ageing Res. Rev.20216710127210.1016/j.arr.2021.10127233571704
    [Google Scholar]
  47. WysockaA. PalaszE. SteczkowskaM. NiewiadomskaG. Dangerous liaisons: Tau interaction with muscarinic receptors.Curr. Alzheimer Res.202017322423710.2174/156720501766620042413431132329686
    [Google Scholar]
  48. DasR. BalmikA.A. ChinnathambiS. Effect of melatonin on tau aggregation and tau-mediated cell surface morphology.Int. J. Biol. Macromol.2020152303910.1016/j.ijbiomac.2020.01.29632044365
    [Google Scholar]
  49. LagalwarS. Mechanisms of tunneling nanotube-based propagation of neurodegenerative disease proteins.Front. Mol. Neurosci.20221595706710.3389/fnmol.2022.95706735909452
    [Google Scholar]
  50. ClarkC. DayonL. MasoodiM. BowmanG.L. PoppJ. An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer’s disease.Alzheimers Res. Ther.20211317110.1186/s13195‑021‑00814‑733794997
    [Google Scholar]
  51. ShengY. HarrisonP.J. VogiralaV. YangZ. Strain-DamerellC. FrosioT. HimesB.A. SiebertC.A. ZhangP. ClareD.K. Application of super-resolution and correlative double sampling in cryo-electron microscopy.Faraday Discuss.2022240026127610.1039/D2FD00049K35938521
    [Google Scholar]
  52. IqbalI. SaqibF. MubarakZ. LatifM.F. WahidM. NasirB. ShahzadH. Sharifi-RadJ. MubarakM.S. Alzheimer’s disease and drug delivery across the blood–brain barrier: Approaches and challenges.Eur. J. Med. Res.202429131310.1186/s40001‑024‑01915‑338849950
    [Google Scholar]
  53. CongdonE.E. JiC. TetlowA.M. JiangY. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease: Current status and future directions.Nat. Rev. Neurol.2023191271573610.1038/s41582‑023‑00883‑237875627
    [Google Scholar]
  54. BellottiC. SamudyataS. ThamsS. SellgrenC.M. RostamiE. Organoids and chimeras: The hopeful fusion transforming traumatic brain injury research.Acta Neuropathol Commun.202412114110.1186/s40478‑024‑01845‑539215375
    [Google Scholar]
  55. TripathiP.N. SrivastavaP. SharmaP. TripathiM.K. SethA. TripathiA. RaiS.N. SinghS.P. ShrivastavaS.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory.Bioorg. Chem.201985829610.1016/j.bioorg.2018.12.01730605887
    [Google Scholar]
  56. SrivastavaP. TripathiP.N. SharmaP. RaiS.N. SinghS.P. SrivastavaR.K. ShankarS. ShrivastavaS.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory.Eur. J. Med. Chem.201916311613510.1016/j.ejmech.2018.11.04930503937
    [Google Scholar]
/content/journals/car/10.2174/0115672050351995241223065923
Loading
/content/journals/car/10.2174/0115672050351995241223065923
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test