Skip to content
2000
image of Visualization Analysis of Tau Protein in the Brain of Alzheimer’s Disease: A Scoping Literature Review

Abstract

Introduction

This study analyzed the current status, hotspots, and development trends of tau protein research in Alzheimer's disease (AD) and to provide a reference for future research in this field. CiteSpace software was used to scientifically measure and visualize the relevant articles in the field of tau protein in AD brain from the Web of Science Core Collection database from 1991 to 2022.

Method

A total of 568 articles were included, with an exponential growth in the number of articles published from 1991 to 2022, with an average of 17.8 articles per year. The United States is the most productive country in this field, accounting for 46.83% of the total literature. The New York State Institute for Basic Research is the most productive organization, followed by MRC Laboratory Molecular Biology in the UK. The most influential are Kings College London, University of California, San Francisco, and others. Iqbal K is the most productive author.

Result

The most productive journal is the Journal of Biological Chemistry, and the journal with the highest impact factor is Acta Neuropathologica. The journal with the highest cumulative impact factor is Nature. The research hotspots mainly focus on the formation and degradation mechanisms of tau protein paired helical filaments and abnormal phosphorylation, AD neurofibrillary tangles and degenerative changes, and model research, mainly involving tau protein abnormal phosphorylation, phosphorylation sites, dephosphorylation, aggregate helical filaments, neurofibrillary tangles mouse models.

Conclusion

The research frontier trends mainly focus on the study of pathological changes in tau protein, intervention mechanisms, and the development and practice of clinical therapeutic drugs.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050351995241223065923
2025-02-03
2025-03-27
Loading full text...

Full text loading...

References

  1. Ben Miled A. Yeferny T. Rabeh A.B. MRI images analysis method for early stage Alzheimer’s disease detection. Int J Comput Sci Net. 2020 20 214 220 10.48550/arXiv.2012.00830
    [Google Scholar]
  2. Ramanan V.K. Wang X. Przybelski S.A. Raghavan S. Heckman M.G. Batzler A. Kosel M.L. Hohman T.J. Knopman D.S. Graff-Radford J. Lowe V.J. Mielke M.M. Jack C.R. Jr Petersen R.C. Ross O.A. Vemuri P. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun. 2020 2 2 fcaa159 10.1093/braincomms/fcaa159 33426524
    [Google Scholar]
  3. Abbondante S. Baglietto-Vargas D. Rodriguez-Ortiz C.J. Estrada-Hernandez T. Medeiros R. LaFerla F.M. Genetic ablation of tau mitigates cognitive impairment induced by type 1 diabetes. Am. J. Pathol. 2014 184 3 819 826 10.1016/j.ajpath.2013.11.021 24412516
    [Google Scholar]
  4. Quinn J.P. Corbett N.J. Kellett K.A.B. Hooper N.M. Tau proteolysis in the pathogenesis of tauopathies: Neurotoxic fragments and novel biomarkers. J. Alzheimers Dis. 2018 63 1 13 33 10.3233/JAD‑170959 29630551
    [Google Scholar]
  5. Iqbal K. Alonso A.C. Chen S. Chohan M.O. El-Akkad E. Gong C.X. Khatoon S. Li B. Liu F. Rahman A. Tanimukai H. Grundke-Iqbal I. Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta 2005 1739 2-3 198 210 10.1016/j.bbadis.2004.09.008 15615638
    [Google Scholar]
  6. Dolan P.J. Johnson G.V.W. A caspase cleaved form of tau is preferentially degraded through the autophagy pathway. J. Biol. Chem. 2010 285 29 21978 21987 10.1074/jbc.M110.110940 20466727
    [Google Scholar]
  7. Iqbal K. Gong C.X. Liu F. Hyperphosphorylation-induced tau oligomers. Front. Neurol. 2013 4 112 10.3389/fneur.2013.00112 23966973
    [Google Scholar]
  8. Iqbal K. Liu F. Gong C.X. Recent developments with tau-based drug discovery. Expert Opin. Drug Discov. 2018 13 5 399 410 10.1080/17460441.2018.1445084 29493301
    [Google Scholar]
  9. Sengupta A. Novak M. Grundke-Iqbal I. Iqbal K. Regulation of phosphorylation of tau by cyclin‐dependent kinase 5 and glycogen synthase kinase‐3 at substrate level. FEBS Lett. 2006 580 25 5925 5933 10.1016/j.febslet.2006.09.060 17045592
    [Google Scholar]
  10. Abisambra J. Jinwal U.K. Miyata Y. Rogers J. Blair L. Li X. Seguin S.P. Wang L. Jin Y. Bacon J. Brady S. Cockman M. Guidi C. Zhang J. Koren J. Young Z.T. Atkins C.A. Zhang B. Lawson L.Y. Weeber E.J. Brodsky J.L. Gestwicki J.E. Dickey C.A. Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biol. Psychiatry 2013 74 5 367 374 10.1016/j.biopsych.2013.02.027 23607970
    [Google Scholar]
  11. Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006 57 3 359 377 10.1002/asi.20317
    [Google Scholar]
  12. Su H.N. Lee P.C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 2010 85 1 65 79 10.1007/s11192‑010‑0259‑8
    [Google Scholar]
  13. Chen C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004 101 Suppl 1 Suppl. 1 5303 5310 10.1073/pnas.0307513100 14724295
    [Google Scholar]
  14. Chen C. Ibekwe-SanJuan F. Hou J. The structure and dynamics of cocitation clusters: A multiple‐perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 2010 61 7 1386 1409 10.1002/asi.21309
    [Google Scholar]
  15. Small H. Co-Citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973 24 4 265 269 10.1002/asi.4630240406
    [Google Scholar]
  16. Lee V.M.Y. Balin B.J. Otvos L. Jr Trojanowski J.Q. A68: A major subunit of paired helical filaments and derivatized forms of normal Tau. Science 1991 251 4994 675 678 10.1126/science.1899488 1899488
    [Google Scholar]
  17. Gong C.X. Lidsky T. Wegiel J. Zuck L. Grundke-Iqbal I. Iqbal K. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J. Biol. Chem. 2000 275 8 5535 5544 10.1074/jbc.275.8.5535 10681533
    [Google Scholar]
  18. Iqbal K. Alonso A.C. Gong C.X. Khatoon S. Singh T.J. Grundke-Iqbal I. Mechanism of neurofibrillary degeneration in Alzheimer’s disease. Mol. Neurobiol. 1994 9 1-3 119 123 10.1007/BF02816111 7888088
    [Google Scholar]
  19. Iqbal K. Grundke-Iqbal I. Alzheimer neurofibrillary degeneration: Significance, etiopathogenesis, therapeutics and prevention. J. Cell. Mol. Med. 2008 12 1 38 55 10.1111/j.1582‑4934.2008.00225.x 18194444
    [Google Scholar]
  20. Iqbal K. Grundke-Iqbal I. Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer’s disease. Mol. Neurobiol. 1991 5 2-4 399 410 10.1007/BF02935561 1726645
    [Google Scholar]
  21. Yu Y. Zhang L. Li X. Run X. Liang Z. Li Y. Liu Y. Lee M.H. Grundke-Iqbal I. Iqbal K. Vocadlo D.J. Liu F. Gong C.X. Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation. PLoS One 2012 7 4 e35277 10.1371/journal.pone.0035277 22536363
    [Google Scholar]
  22. Chun W. Waldo G.S. Johnson G.V.W. Split GFP complementation assay for quantitative measurement of tau aggregation in situ. Methods Mol. Biol. 2010 670 109 123 10.1007/978‑1‑60761‑744‑0_9 20967587
    [Google Scholar]
  23. Zhang J. Johnson G.V.W. Tau protein is hyperphosphorylated in a site-specific manner in apoptotic neuronal PC12 cells. J. Neurochem. 2000 75 6 2346 2357 10.1046/j.1471‑4159.2000.0752346.x 11080186
    [Google Scholar]
  24. Miller M.L. Johnson G.V.W. Transglutaminase cross-linking of the tau protein. J. Neurochem. 1995 65 4 1760 1770 10.1046/j.1471‑4159.1995.65041760.x 7561874
    [Google Scholar]
  25. Gorantla N.V. Khandelwal P. Poddar P. Chinnathambi S. Global conformation of tau protein mapped by raman spectroscopy. Methods Mol. Biol. 2017 1523 21 31 10.1007/978‑1‑4939‑6598‑4_2 27975242
    [Google Scholar]
  26. Vanmechelen E. Vanderstichele H. Davidsson P. Van Kerschaver E. Van Der Perre B. Sjögren M. Andreasen N. Blennow K. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: A sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci. Lett. 2000 285 1 49 52 10.1016/S0304‑3940(00)01036‑3 10788705
    [Google Scholar]
  27. Townsend D.J. Mala B. Hughes E. Hussain R. Siligardi G. Fullwood N.J. Middleton D.A. Circular dichroism spectroscopy identifies the β-adrenoceptor agonist salbutamol as a direct inhibitor of tau filament formation in vitro. ACS Chem. Neurosci. 2020 11 14 2104 2116 10.1021/acschemneuro.0c00154 32520518
    [Google Scholar]
  28. Pooler A.M. Polydoro M. Wegmann S. Nicholls S.B. Spires-Jones T.L. Hyman B.T. Propagation of tau pathology in Alzheimer’s disease: Identification of novel therapeutic targets. Alzheimers Res. Ther. 2013 5 5 49 10.1186/alzrt214 24152385
    [Google Scholar]
  29. Bloom G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014 71 4 505 508 10.1001/jamaneurol.2013.5847 24493463
    [Google Scholar]
  30. Sayas C.L. Ávila J. GSK-3 and tau: A key duet in Alzheimer’s disease. Cells 2021 10 4 721 10.3390/cells10040721 33804962
    [Google Scholar]
  31. Zhang X. Wang J. Zhang Z. Ye K. Tau in neurodegenerative diseases: Molecular mechanisms, biomarkers, and therapeutic strategies. Transl. Neurodegener. 2024 13 1 40 10.1186/s40035‑024‑00429‑6 39107835
    [Google Scholar]
  32. Ittner L.M. Ke Y.D. Delerue F. Bi M. Gladbach A. van Eersel J. Wölfing H. Chieng B.C. Christie M.J. Napier I.A. Eckert A. Staufenbiel M. Hardeman E. Götz J. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 2010 142 3 387 397 10.1016/j.cell.2010.06.036 20655099
    [Google Scholar]
  33. Grundke-Iqbal I. Iqbal K. Tung Y.C. Quinlan M. Wisniewski H.M. Binder L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986 83 13 4913 4917 10.1073/pnas.83.13.4913 3088567
    [Google Scholar]
  34. Goedert M. Wischik C.M. Crowther R.A. Walker J.E. Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule-associated protein tau. Proc. Natl. Acad. Sci. USA 1988 85 11 4051 4055 10.1073/pnas.85.11.4051 3131773
    [Google Scholar]
  35. Pluta R. A look at the etiology of Alzheimer’s disease based on the brain ischemia model. Curr. Alzheimer Res. 2024 21 3 166 182 10.2174/0115672050320921240627050736 38963100
    [Google Scholar]
  36. Ramakrishna K. Karuturi P. Siakabinga Q. T A G. Krishnamurthy S. Singh S. Kumari S. Kumar G.S. Sobhia M.E. Rai S.N. Indole-3 carbinol and diindolylmethane mitigated β-Amyloid-induced neurotoxicity and acetylcholinesterase enzyme activity: In silico, in vitro, and network pharmacology study. Diseases 2024 12 8 184 10.3390/diseases12080184 39195183
    [Google Scholar]
  37. Singh M. Agarwal V. Pancham P. Jindal D. Agarwal S. Rai S. Singh S. Gupta V. A comprehensive review and androgen deprivation therapy and its impact on Alzheimer’s disease risk in older men with prostate cancer. Degener. Neurol. Neuromuscul. Dis. 2024 14 33 46 10.2147/DNND.S445130 38774717
    [Google Scholar]
  38. Tripathi P. Lodhi A. Rai S. Nandi N. Dumoga S. Yadav P. Tiwari A. Singh S. El-Shorbagi A.N. Chaudhary S. Review of pharmacotherapeutic targets in Alzheimer’s disease and its management using traditional medicinal plants. Degener. Neurol. Neuromuscul. Dis. 2024 14 47 74 10.2147/DNND.S452009 38784601
    [Google Scholar]
  39. Rai S.N. Singh C. Singh A. Singh M.P. Singh B.K. Mitochondrial dysfunction: A potential therapeutic target to treat Alzheimer’s disease. Mol. Neurobiol. 2020 57 7 3075 3088 10.1007/s12035‑020‑01945‑y 32462551
    [Google Scholar]
  40. Tanimukai H. Grundke-Iqbal I. Iqbal K. Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease. Am. J. Pathol. 2005 166 6 1761 1771 10.1016/S0002‑9440(10)62486‑8 15920161
    [Google Scholar]
  41. Frost B. Jacks R.L. Diamond M.I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 2009 284 19 12845 12852 10.1074/jbc.M808759200 19282288
    [Google Scholar]
  42. Schindowski K. Bretteville A. Leroy K. Bégard S. Brion J.P. Hamdane M. Buée L. Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am. J. Pathol. 2006 169 2 599 616 10.2353/ajpath.2006.060002 16877359
    [Google Scholar]
  43. Odfalk K.F. Bieniek K.F. Hopp S.C. Microglia: Friend and foe in tauopathy. Prog. Neurobiol. 2022 216 102306 10.1016/j.pneurobio.2022.102306 35714860
    [Google Scholar]
  44. Permanne B. Sand A. Ousson S. Nény M. Hantson J. Schubert R. Wiessner C. Quattropani A. Beher D. O-GlcNAcase inhibitor ASN90 is a multimodal drug candidate for tau and α-synuclein proteinopathies. ACS Chem. Neurosci. 2022 13 8 1296 1314 10.1021/acschemneuro.2c00057 35357812
    [Google Scholar]
  45. Rudenko L.K. Wallrabe H. Periasamy A. Siller K.H. Svindrych Z. Seward M.E. Best M.N. Bloom G.S. Intraneuronal tau misfolding induced by extracellular Amyloid-β oligomers. J. Alzheimers Dis. 2019 71 4 1125 1138 10.3233/JAD‑190226 31524157
    [Google Scholar]
  46. Zhao J. Wu H. Tang X. Tau internalization: A complex step in tau propagation. Ageing Res. Rev. 2021 67 101272 10.1016/j.arr.2021.101272 33571704
    [Google Scholar]
  47. Wysocka A. Palasz E. Steczkowska M. Niewiadomska G. Dangerous liaisons: Tau interaction with muscarinic receptors. Curr. Alzheimer Res. 2020 17 3 224 237 10.2174/1567205017666200424134311 32329686
    [Google Scholar]
  48. Das R. Balmik A.A. Chinnathambi S. Effect of melatonin on tau aggregation and tau-mediated cell surface morphology. Int. J. Biol. Macromol. 2020 152 30 39 10.1016/j.ijbiomac.2020.01.296 32044365
    [Google Scholar]
  49. Lagalwar S. Mechanisms of tunneling nanotube-based propagation of neurodegenerative disease proteins. Front. Mol. Neurosci. 2022 15 957067 10.3389/fnmol.2022.957067 35909452
    [Google Scholar]
  50. Clark C. Dayon L. Masoodi M. Bowman G.L. Popp J. An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer’s disease. Alzheimers Res. Ther. 2021 13 1 71 10.1186/s13195‑021‑00814‑7 33794997
    [Google Scholar]
  51. Sheng Y. Harrison P.J. Vogirala V. Yang Z. Strain-Damerell C. Frosio T. Himes B.A. Siebert C.A. Zhang P. Clare D.K. Application of super-resolution and correlative double sampling in cryo-electron microscopy. Faraday Discuss. 2022 240 0 261 276 10.1039/D2FD00049K 35938521
    [Google Scholar]
  52. Iqbal I. Saqib F. Mubarak Z. Latif M.F. Wahid M. Nasir B. Shahzad H. Sharifi-Rad J. Mubarak M.S. Alzheimer’s disease and drug delivery across the blood–brain barrier: Approaches and challenges. Eur. J. Med. Res. 2024 29 1 313 10.1186/s40001‑024‑01915‑3 38849950
    [Google Scholar]
  53. Congdon E.E. Ji C. Tetlow A.M. Jiang Y. Sigurdsson E.M. Tau-targeting therapies for Alzheimer disease: Current status and future directions. Nat. Rev. Neurol. 2023 19 12 715 736 10.1038/s41582‑023‑00883‑2 37875627
    [Google Scholar]
  54. Bellotti C. Samudyata S. Thams S. Sellgren C.M. Rostami E. Organoids and chimeras: The hopeful fusion transforming traumatic brain injury research. Acta Neuropathol Commun. 2024 12 1 141 10.1186/s40478‑024‑01845‑5 39215375
    [Google Scholar]
  55. Tripathi P.N. Srivastava P. Sharma P. Tripathi M.K. Seth A. Tripathi A. Rai S.N. Singh S.P. Shrivastava S.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg. Chem. 2019 85 82 96 10.1016/j.bioorg.2018.12.017 30605887
    [Google Scholar]
  56. Srivastava P. Tripathi P.N. Sharma P. Rai S.N. Singh S.P. Srivastava R.K. Shankar S. Shrivastava S.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur. J. Med. Chem. 2019 163 116 135 10.1016/j.ejmech.2018.11.049 30503937
    [Google Scholar]
/content/journals/car/10.2174/0115672050351995241223065923
Loading
/content/journals/car/10.2174/0115672050351995241223065923
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test