Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer's disease (AD) is an alarmingly prevalent worldwide neurological disorder that affects millions of people and has severe effects on cognitive functions. The amyloid hypothesis, which links AD to Aβ (amyloid beta) plaque aggregation, is a well-acknowledged theory. The β-secretase (BACE1) is the main cause of Aβ production, which makes it a possible target for therapy. FDA-approved therapies for AD do exist, but none of them explicitly target BACE1, and their effectiveness is constrained and accompanied by adverse effects.

Materials and Methods

We determined the essential chemical components of medicinal herbs by conducting a thorough literature research for BACE1. Computational methods like molecular docking, ADMET (Absorption, distribution, metabolism, excretion, toxicity) screening, molecular dynamic simulations, and MMPBSA analysis were performed in order to identify the most promising ligands for β-secretase.

Results

The results suggested that withasomniferol, tinosporide, and curcumin had better binding affinity with BACE1, suggesting their potential as therapeutic candidates against Alzheimer’s disease.

Conclusion

Herbal therapeutics have immense applications in the treatment of chronic diseases like Alzheimer’s disease, and there is an urgent need to assess their efficacy as therapeutics.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050323622240705043337
2024-07-15
2025-06-17
Loading full text...

Full text loading...

References

  1. Alzheimer’s Association2016 Alzheimer’s disease facts and figures.Alzheimers Dement.201612445950910.1016/j.jalz.2016.03.00127570871
    [Google Scholar]
  2. PrinceMJ WA GuerchetMM AliGC WuY-T PrinaM. World Alzheimer Report 2015 The Global Impact of Dementia An analysis of prevalence, incidence, cost and trends.2015Available from: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf
  3. 2024 Alzheimer’s disease facts and figures.Alzheimers Dement.20242053708382110.1002/alz.1380938689398
    [Google Scholar]
  4. LynchC. World Alzheimer Report 2019: Attitudes to dementia, a global survey.Alzheimers Dement.202016S10e03825510.1002/alz.038255
    [Google Scholar]
  5. LiX. FengX. SunX. HouN. HanF. LiuY. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019.Front. Aging Neurosci.20221493748610.3389/fnagi.2022.93748636299608
    [Google Scholar]
  6. FerriC.P. PrinceM. BrayneC. BrodatyH. FratiglioniL. GanguliM. HallK. HasegawaK. HendrieH. HuangY. JormA. MathersC. MenezesP.R. RimmerE. ScazufcaM. Global prevalence of dementia: a Delphi consensus study.Lancet200536695032112211710.1016/S0140‑6736(05)67889‑016360788
    [Google Scholar]
  7. ParoniG. BiscegliaP. SeripaD. Understanding the amyloid hypothesis in Alzheimer’s disease.J. Alzheimers Dis.201968249351010.3233/JAD‑18080230883346
    [Google Scholar]
  8. HardyJ. AllsopD. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease.Trends Pharmacol. Sci.1991121038338810.1016/0165‑6147(91)90609‑V1763432
    [Google Scholar]
  9. HardyJ.A. HigginsG.A. Alzheimer’s disease: the amyloid cascade hypothesis.Science1992256505418418510.1126/science.15660671566067
    [Google Scholar]
  10. SelkoeD.J. The molecular pathology of Alzheimer’s disease.Neuron19916448749810.1016/0896‑6273(91)90052‑21673054
    [Google Scholar]
  11. BarageS.H. SonawaneK.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease.Neuropeptides20155211810.1016/j.npep.2015.06.00826149638
    [Google Scholar]
  12. YanknerB.A. LuT. Amyloid beta-protein toxicity and the pathogenesis of Alzheimer disease.J. Biol. Chem.200928484755475910.1074/jbc.R80001820018957434
    [Google Scholar]
  13. PalopJ.J. MuckeL. Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks.Nat. Neurosci.201013781281810.1038/nn.258320581818
    [Google Scholar]
  14. WangD. ChenF. HanZ. YinZ. GeX. LeiP. Relationship between amyloid-β deposition and blood–brain barrier dysfunction in alzheimer’s disease.Front. Cell. Neurosci.20211569547910.3389/fncel.2021.69547934349624
    [Google Scholar]
  15. HampelH. HardyJ. BlennowK. ChenC. PerryG. KimS.H. VillemagneV.L. AisenP. VendruscoloM. IwatsuboT. MastersC.L. ChoM. LannfeltL. CummingsJ.L. VergalloA. The amyloid-β pathway in alzheimer’s disease.Mol. Psychiatry202126105481550310.1038/s41380‑021‑01249‑034456336
    [Google Scholar]
  16. MurphyM.P. LeVineH.III Alzheimer’s disease and the amyloid-beta peptide.J. Alzheimers Dis.201019131132310.3233/JAD‑2010‑122120061647
    [Google Scholar]
  17. BitanG. KirkitadzeM.D. LomakinA. VollersS.S. BenedekG.B. TeplowD.B. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways.Proc. Natl. Acad. Sci.2003100133033510.1073/pnas.22268169912506200
    [Google Scholar]
  18. WolfeM.S. The role of tau in neurodegenerative diseases and its potential as a therapeutic target.Scientifica2012201212010.6064/2012/79602424278740
    [Google Scholar]
  19. IqbalK. LiuF. GongC.X. AlonsoA.C. Grundke-IqbalI. Mechanisms of tau-induced neurodegeneration.Acta Neuropathol.20091181536910.1007/s00401‑009‑0486‑319184068
    [Google Scholar]
  20. KentS.A. Spires-JonesT.L. DurrantC.S. The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics.Acta Neuropathol.2020140441744710.1007/s00401‑020‑02196‑w32728795
    [Google Scholar]
  21. UmedaT. RamserE.M. YamashitaM. NakajimaK. MoriH. SilvermanM.A. TomiyamaT. Intracellular amyloid β oligomers impair organelle transport and induce dendritic spine loss in primary neurons.Acta Neuropathol. Commun.2015315110.1186/s40478‑015‑0230‑226293809
    [Google Scholar]
  22. BallatoreC. LeeV.M.Y. TrojanowskiJ.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders.Nat. Rev. Neurosci.20078966367210.1038/nrn219417684513
    [Google Scholar]
  23. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.20160621027025652
    [Google Scholar]
  24. AlbertMS Changes in cognition.Neurobiol. Aging20113201S58S6310.1016/j.neurobiolaging.2011.09.010
    [Google Scholar]
  25. BatureF. GuinnB. PangD. PappasY. Signs and symptoms preceding the diagnosis of Alzheimer’s disease: A systematic scoping review of literature from 1937 to 2016.BMJ Open201778e01574610.1136/bmjopen‑2016‑01574628851777
    [Google Scholar]
  26. SchachterA.S. DavisK.L. Alzheimer’s disease.Dialogues Clin. Neurosci.2000229110010.31887/DCNS.2000.2.2/asschachter22034442
    [Google Scholar]
  27. MaryamR.S. SaharJ. HastonoS.P. HarimurtiK. Common symptoms of Alzheimer’s dementia that are easily recognizable by families.Dement. Neuropsychol.202115218619110.1590/1980‑57642021dn15‑02000534345359
    [Google Scholar]
  28. LiuX. LiuY. JiS. Secretases related to amyloid precursor protein processing.Membranes2021111298310.3390/membranes1112098334940484
    [Google Scholar]
  29. ChowV.W. MattsonM.P. WongP.C. GleichmannM. An overview of APP processing enzymes and products.Neuromolecular Med.201012111210.1007/s12017‑009‑8104‑z20232515
    [Google Scholar]
  30. ColeS.L. VassarR. The Alzheimer’s disease β-secretase enzyme, BACE1.Mol. Neurodegener.2007212210.1186/1750‑1326‑2‑2218005427
    [Google Scholar]
  31. PetersF. SalihogluH. RodriguesE. HerzogE. BlumeT. FilserS. DorostkarM. ShimshekD.R. BroseN. NeumannU. HermsJ. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology.Acta Neuropathol.2018135569571010.1007/s00401‑017‑1804‑929327084
    [Google Scholar]
  32. StockleyJ.H. O’NeillC. Understanding BACE1: essential protease for amyloid-β production in Alzheimer’s disease.Cell. Mol. Life Sci.200865203265328910.1007/s00018‑008‑8271‑318695942
    [Google Scholar]
  33. De StrooperB. VassarR. GoldeT. The secretases: Enzymes with therapeutic potential in Alzheimer disease.Nat. Rev. Neurol.2010629910710.1038/nrneurol.2009.21820139999
    [Google Scholar]
  34. O’BrienR.J. WongP.C. Amyloid precursor protein processing and Alzheimer’s disease.Annu. Rev. Neurosci.201134118520410.1146/annurev‑neuro‑061010‑11361321456963
    [Google Scholar]
  35. ToulokhonovaL. MetzlerW.J. WitmerM.R. CopelandR.A. MarcinkevicieneJ. Kinetic studies on beta-site amyloid precursor protein-cleaving enzyme (BACE). Confirmation of an iso mechanism.J. Biol. Chem.200327874582458910.1074/jbc.M21047120012458195
    [Google Scholar]
  36. ShimizuH. TosakiA. KanekoK. HisanoT. SakuraiT. NukinaN. Crystal structure of an active form of BACE1, an enzyme responsible for amyloid beta protein production.Mol. Cell. Biol.200828113663367110.1128/MCB.02185‑0718378702
    [Google Scholar]
  37. BarmanA. PrabhakarR. Computational insights into substrate and site specificities, catalytic mechanism, and protonation states of the catalytic Asp Dyad of β -Secretase.Scientifica2014201411110.1155/2014/59872825309776
    [Google Scholar]
  38. Hernández-RodríguezM. Correa-BasurtoJ. GutiérrezA. VitoricaJ. Rosales-HernándezM.C. Asp32 and Asp228 determine the selective inhibition of BACE1 as shown by docking and molecular dynamics simulations.Eur. J. Med. Chem.20161241142115410.1016/j.ejmech.2016.08.02827639619
    [Google Scholar]
  39. Elman-ShinaK. EfratiS. Ischemia as a common trigger for Alzheimer’s disease.Front. Aging Neurosci.202214101277910.3389/fnagi.2022.101277936225888
    [Google Scholar]
  40. WangY.B. XieJ.Q. LiuW. ZhangR.Z. HuangS.H. XingY.H. BACE1 gene silencing alleviates isoflurane anesthesia-induced postoperative cognitive dysfunction in immature rats by activating the PI3K/Akt signaling pathway.Mol. Med. Rep.20181854259427010.3892/mmr.2018.945330221701
    [Google Scholar]
  41. HaddadH.W. MaloneG.W. ComardelleN.J. DegueureA.E. PoliwodaS. KayeR.J. MurnaneK.S. KayeA.M. KayeA.D. Aduhelm, a novel anti-amyloid monoclonal antibody, for the treatment of Alzheimer’s Disease: A comprehensive review.Health Psychol. Res.20221023702310.52965/001c.3702335910244
    [Google Scholar]
  42. LleóA. Current therapeutic options for Alzheimer’s disease.Curr. Genomics20078855055810.2174/13892020778376954919415128
    [Google Scholar]
  43. GlymourM.M. WeuveJ. DufouilC. MayedaE.R. Aduhelm, the newly approved medication for alzheimer disease: what epidemiologists can learn and what epidemiology can offer.Am. J. Epidemiol.202219181347135110.1093/aje/kwac06335388413
    [Google Scholar]
  44. 2024 Alzheimer's disease facts and figures.Alzheimers Dement202420537083821
    [Google Scholar]
  45. GanguliM. DodgeH.H. ShenC. PandavR.S. DeKoskyS.T. Alzheimer disease and mortality: A 15-year epidemiological study.Arch. Neurol.200562577978410.1001/archneur.62.5.77915883266
    [Google Scholar]
  46. BrookmeyerR. CorradaM.M. CurrieroF.C. KawasC. Survival following a diagnosis of Alzheimer disease.Arch. Neurol.200259111764176710.1001/archneur.59.11.176412433264
    [Google Scholar]
  47. PengY JinH XueY-h ChenQ YaoS-y DuM-q Current and future therapeutic strategies for Alzheimer’s disease: an overview of drug development bottlenecks.Front Aging Neurosci.202315120657210.3389/fnagi.2023.1206572
    [Google Scholar]
  48. AlhazmiH.A. AlbrattyM. An update on the novel and approved drugs for Alzheimer disease.Saudi Pharm. J.202230121755176410.1016/j.jsps.2022.10.00436601504
    [Google Scholar]
  49. KimH. Neuroprotective herbs for stroke therapy in traditional eastern medicine.Neurol. Res.200527328730110.1179/016164105X2523415845212
    [Google Scholar]
  50. LiuH.T. HoY.S. Anticancer effect of curcumin on breast cancer and stem cells.Food Sci. Hum. Wellness20187213413710.1016/j.fshw.2018.06.001
    [Google Scholar]
  51. YangF. LimG.P. BegumA.N. UbedaO.J. SimmonsM.R. AmbegaokarS.S. ChenP.P. KayedR. GlabeC.G. FrautschyS.A. ColeG.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo.J. Biol. Chem.200528075892590110.1074/jbc.M40475120015590663
    [Google Scholar]
  52. KushwahS MauryaNS KushwahaS ScottiL ChawadeA ManiA Herbal therapeutics for Alzheimer's disease: ancient indian medicine system from the modern viewpoint.Curr. Neuropharmacol.2023214764776
    [Google Scholar]
  53. JayaprakasamB. PadmanabhanK. NairM.G. Withanamides in Withania somnifera fruit protect PC-12 cells from β-amyloid responsible for Alzheimer’s disease.Phytother. Res.201024685986310.1002/ptr.303319957250
    [Google Scholar]
  54. UpadhyayA. KumarK. KumarA. MishraH. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) validation of the Ayurvedic pharmacology through experimental and clinical studies.Int. J. Ayurveda Res.20101211212110.4103/0974‑7788.6440520814526
    [Google Scholar]
  55. MishraR. ManchandaS. GuptaM. KaurT. SainiV. SharmaA. KaurG. Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats.Sci. Rep.2016612556410.1038/srep2556427146164
    [Google Scholar]
  56. AgarwalA. MaliniS. BairyK. RaoM.S. Effect of Tinospora cordifolia on learning and memory in normal and memory deficit rats.Indian J. Pharmacol.2002345339349
    [Google Scholar]
  57. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  58. MueggeI. HealdS.L. BrittelliD. Simple selection criteria for drug-like chemical matter.J. Med. Chem.200144121841184610.1021/jm015507e11384230
    [Google Scholar]
  59. BhalS.K. KassamK. PeirsonI.G. PearlG.M. The rule of five revisited: applying log D in place of log P in drug-likeness filters.Mol. Pharm.20074455656010.1021/mp070020917530776
    [Google Scholar]
  60. TianS. WangJ. LiY. LiD. XuL. HouT. The application of in silico drug-likeness predictions in pharmaceutical research.Adv. Drug Deliv. Rev.20158621010.1016/j.addr.2015.01.00925666163
    [Google Scholar]
  61. SaliA BlundellTL Comparative protein modelling by satisfaction of spatial restraints.J. Mol. Biol.19932343779815
    [Google Scholar]
  62. LaskowskiR. RullmannJ.A.C. MacArthurM. KapteinR. ThorntonJ. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR.J. Biomol. NMR19968447748610.1007/BF002281489008363
    [Google Scholar]
  63. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363W36710.1093/nar/gky47329860391
    [Google Scholar]
  64. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  65. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  66. ShakerB. YuM.S. SongJ.S. AhnS. RyuJ.Y. OhK.S. NaD. LightBBB: computational prediction model of blood– brain-barrier penetration based on LightGBM.Bioinformatics20213781135113910.1093/bioinformatics/btaa91833112379
    [Google Scholar]
  67. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  68. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab25533893803
    [Google Scholar]
  69. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.2029116211538
    [Google Scholar]
  70. VanommeslaegheK. HatcherE. AcharyaC. KunduS. ZhongS. ShimJ. DarianE. GuvenchO. LopesP. VorobyovI. MackerellA.D.Jr CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields.J. Comput. Chem.201031467169010.1002/jcc.2136719575467
    [Google Scholar]
  71. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  72. SunM. GaoY. GuoC. CaoF. SongZ. XiY. YuA. LiA. ZhaiG. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle.J. Nanopart. Res.20101283111312210.1007/s11051‑010‑9907‑4
    [Google Scholar]
/content/journals/car/10.2174/0115672050323622240705043337
Loading
/content/journals/car/10.2174/0115672050323622240705043337
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test