Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

The potential relationship between Alzheimer's Disease (AD) and ferroptosis has received considerable attention, yet there is no comprehensive visualization analysis in this field. This study aimed to explore the research frontiers and hotspots through bibliometric analysis.

Methods

Literature related to AD and ferroptosis was collected from the Web of Science Core Collection. Data, including countries, authors, institutions, journals, and keywords, were analyzed by Tableau Public Desktop and Citespace software.

Results

A total of 305 articles published between January 1st, 2013, and December 31st, 2023, were included, and the number of articles on the relationship between AD and ferroptosis has increased annually, with the largest number reported from China (162 articles). The articles from Professor SJ Dixon were cited most frequently. Among the top ten most cited articles, four were published in top journals. The University of Melbourne emerged as the institution with the highest number of publications (27 articles). Among the journals, most of the articles were published in Frontiers in Aging Neuroscience (13 articles, accounting for 4.26%). The co-occurrence analysis of keywords revealed that major hotspots in this field contained oxidative stress, cell death, and lipid peroxidation. Keyword burst analysis indicated that antioxidant was the term with the longest duration of high interest, while clustering analysis showed that this research area primarily focused on amyloid precursor protein, drug development, and diagnostic models.

Conclusion

Bibliometric analyses were conducted to comprehensively present the research progress and trends on the relationship between AD and ferroptosis, providing valuable evidence for future research in related fields.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050348799241211072746
2024-12-23
2025-03-28
Loading full text...

Full text loading...

References

  1. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  2. NehaW.Z. WaliZ. Pinky HattiwaleS.H. JamalA. ParvezS. GLP-1/Sigma/RAGE receptors: An evolving picture of Alzheimer’s disease pathology and treatment.Ageing Res. Rev.20249310213410.1016/j.arr.2023.10213438008402
    [Google Scholar]
  3. MayelleA. HazebrouckC. El HajM. MograbiD.C. AntoineP. Awareness for people with alzheimer’s disease: Profiles and weekly trajectories.Front. Aging Neurosci.20221378142610.3389/fnagi.2021.78142635095469
    [Google Scholar]
  4. AbdalkaderM. LampinenR. KanninenK.M. MalmT.M. LiddellJ.R. Targeting nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration.Front. Neurosci.20181246610.3389/fnins.2018.0046630042655
    [Google Scholar]
  5. YanN. ZhangJ. Iron metabolism, ferroptosis, and the links with alzheimer’s disease.Front. Neurosci.202013144310.3389/fnins.2019.0144332063824
    [Google Scholar]
  6. ZhengJ. ConradM. The metabolic underpinnings of ferroptosis.Cell Metab.202032692093710.1016/j.cmet.2020.10.01133217331
    [Google Scholar]
  7. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  8. SongX. LongD. Nrf2 and ferroptosis: A new research direction for neurodegenerative diseases.Front. Neurosci.20201426710.3389/fnins.2020.0026732372896
    [Google Scholar]
  9. YangK. MehoL.I. Citation analysis: A comparison of google scholar, scopus, and web of science.Proc. Am. Soc. Inf. Sci. Technol.200643111510.1002/meet.14504301185
    [Google Scholar]
  10. DonthuN. KumarS. MukherjeeD. PandeyN. LimW.M. How to conduct a bibliometric analysis: An overview and guidelines.J. Bus. Res.202113328529610.1016/j.jbusres.2021.04.070
    [Google Scholar]
  11. StockwellB.R. AngeliJ.P.F. BayirH. BushA.I. ConradM. DixonS.J. FuldaS. GascónS. HatziosS.K. KaganV.E. NoelK. JiangX. LinkermannA. MurphyM.E. OverholtzerM. OyagiA. PagnussatG.C. ParkJ. RanQ. RosenfeldC.S. SalnikowK. TangD. TortiF.M. TortiS.V. ToyokuniS. WoerpelK.A. ZhangD.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.02128985560
    [Google Scholar]
  12. XiuR. SunQ. LiB. WangY. Mapping research trends and hotspots in the link between alzheimer’s disease and gut microbes over the past decade: A bibliometric analysis.Nutrients20231514320310.3390/nu1514320337513621
    [Google Scholar]
  13. HeX. FeiC. WangZ. Advancements highlighted at alzheimer’s association international conference 2023(aaic).China J. Alzheimer’s Dis. Relat. Disord.202363200205
    [Google Scholar]
  14. SpeerR.E. KaruppagounderS.S. BassoM. SleimanS.F. KumarA. BrandD. SmirnovaN. GazaryanI. KhimS.J. RatanR.R. Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by “antioxidant” metal chelators: From ferroptosis to stroke.Free Radic. Biol. Med.201362263610.1016/j.freeradbiomed.2013.01.02623376032
    [Google Scholar]
  15. YangW.S. SriRamaratnamR. WelschM.E. ShimadaK. SkoutaR. ViswanathanV.S. CheahJ.H. ClemonsP.A. ShamjiA.F. ClishC.B. BrownL.M. GirottiA.W. CornishV.W. SchreiberS.L. StockwellB.R. Regulation of ferroptotic cancer cell death by GPX4.Cell20141561-231733110.1016/j.cell.2013.12.01024439385
    [Google Scholar]
  16. HambrightW.S. FonsecaR.S. ChenL. NaR. RanQ. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration.Redox Biol.20171281710.1016/j.redox.2017.01.02128212525
    [Google Scholar]
  17. BaoW.D. PangP. ZhouX.T. HuF. XiongW. ChenK. WangJ. WangF. XieD. HuY.Z. HanZ.T. ZhangH.H. WangW.X. NelsonP.T. ChenJ.G. LuY. ManH.Y. LiuD. ZhuL.Q. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease.Cell Death Differ.20212851548156210.1038/s41418‑020‑00685‑933398092
    [Google Scholar]
  18. ZhangY.H. WangD.W. XuS.F. ZhangS. FanY.G. YangY.Y. GuoS.Q. WangS. GuoT. WangZ.Y. GuoC. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice.Redox Biol.20181453554810.1016/j.redox.2017.11.00129126071
    [Google Scholar]
  19. BersukerK. HendricksJ.M. LiZ. MagtanongL. FordB. TangP.H. RobertsM.A. TongB. MaimoneT.J. ZoncuR. BassikM.C. NomuraD.K. DixonS.J. OlzmannJ.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis.Nature2019575778468869210.1038/s41586‑019‑1705‑231634900
    [Google Scholar]
  20. DollS. PronethB. TyurinaY.Y. PanziliusE. KobayashiS. IngoldI. IrmlerM. BeckersJ. AichlerM. WalchA. ProkischH. TrümbachD. MaoG. QuF. BayirH. FüllekrugJ. ScheelC.H. WurstW. SchickJ.A. KaganV.E. AngeliJ.P.F. ConradM. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.Nat. Chem. Biol.2017131919810.1038/nchembio.223927842070
    [Google Scholar]
  21. IngoldI. BerndtC. SchmittS. DollS. PoschmannG. BudayK. RoveriA. PengX. Porto FreitasF. SeibtT. MehrL. AichlerM. WalchA. LampD. JastrochM. MiyamotoS. WurstW. UrsiniF. ArnérE.S.J. Fradejas-VillarN. SchweizerU. ZischkaH. AngeliJ.P.F. ConradM. Selenium utilization by gpx4 is required to prevent hydroperoxide-induced ferroptosis.Cell20181723409422.e2110.1016/j.cell.2017.11.04829290465
    [Google Scholar]
  22. HirschhornT. StockwellB.R. The development of the concept of ferroptosis.Free Radic. Biol. Med.201913313014310.1016/j.freeradbiomed.2018.09.04330268886
    [Google Scholar]
  23. ChenZ. TaoS. LiX. ZengX. ZhangM. YaoQ. Anagliptin protects neuronal cells against endogenous amyloid β (Aβ)-induced cytotoxicity and apoptosis.Artif. Cells Nanomed. Biotechnol.20194712213222010.1080/21691401.2019.160997931159590
    [Google Scholar]
  24. MouY. WangJ. WuJ. HeD. ZhangC. DuanC. LiB. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer.J. Hematol. Oncol.20191213410.1186/s13045‑019‑0720‑y30925886
    [Google Scholar]
  25. LiuJ.L. FanY.G. YangZ.S. WangZ.Y. GuoC. Iron and alzheimer’s disease: From pathogenesis to therapeutic implications.Front. Neurosci.20181263210.3389/fnins.2018.0063230250423
    [Google Scholar]
  26. Benseny-CasesN. KlementievaO. CotteM. FerrerI. CladeraJ. Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human Alzheimer disease brains.Anal. Chem.20148624120471205410.1021/ac502667b25415602
    [Google Scholar]
  27. ChenK. JiangX. WuM. CaoX. BaoW. ZhuL.Q. Ferroptosis, a potential therapeutic target in alzheimer’s disease.Front. Cell Dev. Biol.2021970429810.3389/fcell.2021.70429834422824
    [Google Scholar]
  28. Peña-BautistaC. BaqueroM. VentoM. Cháfer-PericásC. Free radicals in Alzheimer’s disease: Lipid peroxidation biomarkers.Clin. Chim. Acta2019491859010.1016/j.cca.2019.01.02130685358
    [Google Scholar]
  29. LloretA. EsteveD. MonllorP. Cervera-FerriA. LloretA. The effectiveness of vitamin e treatment in alzheimer’s disease.Int. J. Mol. Sci.201920487910.3390/ijms2004087930781638
    [Google Scholar]
  30. Jiménez-JiménezF.J. Alonso-NavarroH. García-MartínE. AgúndezJ.A.G. Coenzyme q10 and dementia: A systematic review.Antioxidants202312253310.3390/antiox1202053336830090
    [Google Scholar]
  31. SalimS. Oxidative stress and the central nervous system.J. Pharmacol. Exp. Ther.2017360120120510.1124/jpet.116.23750327754930
    [Google Scholar]
  32. KocotJ. Luchowska-KocotD. KiełczykowskaM. MusikI. KurzepaJ. Does vitamin c influence neurodegenerative diseases and psychiatric disorders?Nutrients20179765910.3390/nu907065928654017
    [Google Scholar]
  33. KhanH. UllahH. AschnerM. CheangW.S. AkkolE.K. Neuroprotective effects of quercetin in Alzheimer’s disease.Biomolecules20191015910.3390/biom1001005931905923
    [Google Scholar]
  34. TianY. SongW. LiD. CaiL. ZhaoY. Resveratrol as a natural regulator of autophagy for prevention and treatment of cancer.OncoTargets Ther.2019128601860910.2147/OTT.S21304331802896
    [Google Scholar]
  35. WeltyF.K. Omega-3 fatty acids and cognitive function.Curr. Opin. Lipidol.2023341122110.1097/MOL.000000000000086236637075
    [Google Scholar]
  36. AjithT.A. A recent update on the effects of omega-3 fatty acids in Alzheimer’s disease.Curr. Clin. Pharmacol.201913425226010.2174/157488471366618080714564830084334
    [Google Scholar]
  37. ZubenkoG.S. SauerP. SOD-1 activity and platelet membrane fluidity in Alzheimer’s disease.Biol. Psychiatry198925667167810.1016/0006‑3223(89)90236‑92923930
    [Google Scholar]
  38. ShenY. ZhangG. WeiC. ZhaoP. WangY. LiM. SunL. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer’s disease.Neural Regen. Res.202520361363110.4103/NRR.NRR‑D‑23‑0134338886929
    [Google Scholar]
  39. BraidyN. ZarkaM. WelchJ. BridgeW. BridgeW. Therapeutic approaches to modulating glutathione levels as a pharmacological strategy in Alzheimer’s disease.Curr. Alzheimer Res.201512429831310.2174/156720501266615030216030825731620
    [Google Scholar]
  40. PocernichC.B. ButterfieldD.A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease.Biochim. Biophys. Acta Mol. Basis Dis.20121822562563010.1016/j.bbadis.2011.10.00322015471
    [Google Scholar]
  41. SeharU. RawatP. ReddyA.P. KopelJ. ReddyP.H. Amyloid beta in aging and Alzheimer’s disease.Int. J. Mol. Sci.202223211292410.3390/ijms23211292436361714
    [Google Scholar]
  42. SelfW.K. HoltzmanD.M. Emerging diagnostics and therapeutics for Alzheimer disease.Nat. Med.20232992187219910.1038/s41591‑023‑02505‑237667136
    [Google Scholar]
  43. BlazhenetsG. MaY. SörensenA. RückerG. SchillerF. EidelbergD. FringsL. MeyerP.T. Alzheimer’s Disease Neuroimaging Initiative Principal components analysis of brain metabolism predicts development of Alzheimer dementia.J. Nucl. Med.201960683784310.2967/jnumed.118.21909730389825
    [Google Scholar]
  44. HanS. HeZ. HuX. LiX. ZhengK. HuangY. XiaoP. XieQ. NiJ. LiuQ. Inhibiting nlrp3 inflammasome activation by cy-09 helps to restore cerebral glucose metabolism in 3×tg-ad mice.Antioxidants202312372210.3390/antiox1203072236978970
    [Google Scholar]
  45. TumminiaA. VinciguerraF. ParisiM. FrittittaL. Type 2 diabetes mellitus and alzheimer’s disease: Role of insulin signalling and therapeutic implications.Int. J. Mol. Sci.20181911330610.3390/ijms1911330630355995
    [Google Scholar]
  46. ChowH.M. ShiM. ChengA. GaoY. ChenG. SongX. SoR.W.L. ZhangJ. HerrupK. Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence.Nat. Neurosci.201922111806181910.1038/s41593‑019‑0505‑131636448
    [Google Scholar]
  47. PengD. XuS. ZouT. WangY. OuyangW. ZhangY. DongC. LiD. GuoJ. ShenQ. HuX. ZhouW. LiX. QinQ. Safety, tolerability, pharmacokinetics and effects of diet on AD16, a novel neuroinflammatory inhibitor for Alzheimer’s disease: A randomized phase 1 study.BMC Med.202321145910.1186/s12916‑023‑03126‑937996817
    [Google Scholar]
  48. FolchJ. BusquetsO. EttchetoM. Sánchez-LópezE. Castro-TorresR.D. VerdaguerE. GarciaM.L. OlloquequiJ. CasadesúsG. Beas-ZarateC. PelegriC. VilaplanaJ. AuladellC. CaminsA. Memantine for the treatment of dementia: A review on its current and future applications.J. Alzheimers Dis.20186231223124010.3233/JAD‑17067229254093
    [Google Scholar]
  49. XiaoZ. WuW. MaX. LiangX. LuJ. ZhengL. DingS. LeiQ. LuoJ. ChenK. DingD. ZhaoQ. Plasma aβ42/aβ40 and p-tau181 predict long-term clinical progression in a cohort with amnestic mild cognitive impairment.Clin. Chem.202268121552156310.1093/clinchem/hvac14936208187
    [Google Scholar]
  50. ZhouH. JiangJ. LuJ. WangM. ZhangH. ZuoC. Dual-model radiomic biomarkers predict development of mild cognitive impairment progression to alzheimer’s disease.Front. Neurosci.2018104512104510.3389/fnins.2018.0104530686995
    [Google Scholar]
  51. QiuS. JoshiP.S. MillerM.I. XueC. ZhouX. KarjadiC. ChangG.H. JoshiA.S. DwyerB. ZhuS. KakuM. ZhouY. AlderaziY.J. SwaminathanA. KedarS. Saint-HilaireM.H. AuerbachS.H. YuanJ. SartorE.A. AuR. KolachalamaV.B. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification.Brain202014361920193310.1093/brain/awaa13732357201
    [Google Scholar]
/content/journals/car/10.2174/0115672050348799241211072746
Loading
/content/journals/car/10.2174/0115672050348799241211072746
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test