Skip to content
2000
image of The Relationship between Alzheimer's Disease and Ferroptosis: A Bibliometric Study Based on Citespace

Abstract

Background

The potential relationship between Alzheimer's Disease (AD) and ferroptosis has received considerable attention, yet there is no comprehensive visualization analysis in this field. This study aimed to explore the research frontiers and hotspots through bibliometric analysis.

Methods

Literature related to AD and ferroptosis was collected from the Web of Science Core Collection. Data, including countries, authors, institutions, journals, and keywords, were analyzed by Tableau Public Desktop and Citespace software.

Results

A total of 305 articles published between January 1st, 2013, and December 31st, 2023, were included, and the number of articles on the relationship between AD and ferroptosis has increased annually, with the largest number reported from China (162 articles). The articles from Professor SJ Dixon were cited most frequently. Among the top ten most cited articles, four were published in top journals. The University of Melbourne emerged as the institution with the highest number of publications (27 articles). Among the journals, most of the articles were published in Frontiers in Aging Neuroscience (13 articles, accounting for 4.26%). The co-occurrence analysis of keywords revealed that major hotspots in this field contained oxidative stress, cell death, and lipid peroxidation. Keyword burst analysis indicated that antioxidant was the term with the longest duration of high interest, while clustering analysis showed that this research area primarily focused on amyloid precursor protein, drug development, and diagnostic models.

Conclusion

Bibliometric analyses were conducted to comprehensively present the research progress and trends on the relationship between AD and ferroptosis, providing valuable evidence for future research in related fields.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050348799241211072746
2024-12-23
2025-01-29
Loading full text...

Full text loading...

References

  1. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  2. Neha W.Z. Wali Z. Pinky Hattiwale S.H. Jamal A. Parvez S. GLP-1/Sigma/RAGE receptors: An evolving picture of Alzheimer’s disease pathology and treatment. Ageing Res. Rev. 2024 93 102134 10.1016/j.arr.2023.102134 38008402
    [Google Scholar]
  3. Mayelle A. Hazebrouck C. El Haj M. Mograbi D.C. Antoine P. Awareness for people with alzheimer’s disease: Profiles and weekly trajectories. Front. Aging Neurosci. 2022 13 781426 10.3389/fnagi.2021.781426 35095469
    [Google Scholar]
  4. Abdalkader M. Lampinen R. Kanninen K.M. Malm T.M. Liddell J.R. Targeting nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front. Neurosci. 2018 12 466 10.3389/fnins.2018.00466 30042655
    [Google Scholar]
  5. Yan N. Zhang J. Iron metabolism, ferroptosis, and the links with alzheimer’s disease. Front. Neurosci. 2020 13 1443 10.3389/fnins.2019.01443 32063824
    [Google Scholar]
  6. Zheng J. Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020 32 6 920 937 10.1016/j.cmet.2020.10.011 33217331
    [Google Scholar]
  7. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. Morrison B. III Stockwell B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  8. Song X. Long D. Nrf2 and ferroptosis: A new research direction for neurodegenerative diseases. Front. Neurosci. 2020 14 267 10.3389/fnins.2020.00267 32372896
    [Google Scholar]
  9. Yang K. Meho L.I. Citation analysis: A comparison of google scholar, scopus, and web of science. Proc. Am. Soc. Inf. Sci. Technol. 2006 43 1 1 15 10.1002/meet.14504301185
    [Google Scholar]
  10. Donthu N. Kumar S. Mukherjee D. Pandey N. Lim W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021 133 285 296 10.1016/j.jbusres.2021.04.070
    [Google Scholar]
  11. Stockwell B.R. Friedmann Angeli J.P. Bayir H. Bush A.I. Conrad M. Dixon S.J. Fulda S. Gascón S. Hatzios S.K. Kagan V.E. Noel K. Jiang X. Linkermann A. Murphy M.E. Overholtzer M. Oyagi A. Pagnussat G.C. Park J. Ran Q. Rosenfeld C.S. Salnikow K. Tang D. Torti F.M. Torti S.V. Toyokuni S. Woerpel K.A. Zhang D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017 171 2 273 285 10.1016/j.cell.2017.09.021 28985560
    [Google Scholar]
  12. Xiu R. Sun Q. Li B. Wang Y. Mapping research trends and hotspots in the link between alzheimer’s disease and gut microbes over the past decade: A bibliometric analysis. Nutrients 2023 15 14 3203 10.3390/nu15143203 37513621
    [Google Scholar]
  13. He X. Fei C. Wang Z. Advancements highlighted at alzheimer’s association international conference 2023(aaic). China J. Alzheimer’s Dis. Relat. Disord. 2023 6 3 200 205
    [Google Scholar]
  14. Speer R.E. Karuppagounder S.S. Basso M. Sleiman S.F. Kumar A. Brand D. Smirnova N. Gazaryan I. Khim S.J. Ratan R.R. Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by “antioxidant” metal chelators: From ferroptosis to stroke. Free Radic. Biol. Med. 2013 62 26 36 10.1016/j.freeradbiomed.2013.01.026 23376032
    [Google Scholar]
  15. Yang W.S. SriRamaratnam R. Welsch M.E. Shimada K. Skouta R. Viswanathan V.S. Cheah J.H. Clemons P.A. Shamji A.F. Clish C.B. Brown L.M. Girotti A.W. Cornish V.W. Schreiber S.L. Stockwell B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014 156 1-2 317 331 10.1016/j.cell.2013.12.010 24439385
    [Google Scholar]
  16. Hambright W.S. Fonseca R.S. Chen L. Na R. Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 2017 12 8 17 10.1016/j.redox.2017.01.021 28212525
    [Google Scholar]
  17. Bao W.D. Pang P. Zhou X.T. Hu F. Xiong W. Chen K. Wang J. Wang F. Xie D. Hu Y.Z. Han Z.T. Zhang H.H. Wang W.X. Nelson P.T. Chen J.G. Lu Y. Man H.Y. Liu D. Zhu L.Q. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 2021 28 5 1548 1562 10.1038/s41418‑020‑00685‑9 33398092
    [Google Scholar]
  18. Zhang Y.H. Wang D.W. Xu S.F. Zhang S. Fan Y.G. Yang Y.Y. Guo S.Q. Wang S. Guo T. Wang Z.Y. Guo C. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol. 2018 14 535 548 10.1016/j.redox.2017.11.001 29126071
    [Google Scholar]
  19. Bersuker K. Hendricks J.M. Li Z. Magtanong L. Ford B. Tang P.H. Roberts M.A. Tong B. Maimone T.J. Zoncu R. Bassik M.C. Nomura D.K. Dixon S.J. Olzmann J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019 575 7784 688 692 10.1038/s41586‑019‑1705‑2 31634900
    [Google Scholar]
  20. Doll S. Proneth B. Tyurina Y.Y. Panzilius E. Kobayashi S. Ingold I. Irmler M. Beckers J. Aichler M. Walch A. Prokisch H. Trümbach D. Mao G. Qu F. Bayir H. Füllekrug J. Scheel C.H. Wurst W. Schick J.A. Kagan V.E. Angeli J.P.F. Conrad M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 2017 13 1 91 98 10.1038/nchembio.2239 27842070
    [Google Scholar]
  21. Ingold I. Berndt C. Schmitt S. Doll S. Poschmann G. Buday K. Roveri A. Peng X. Porto Freitas F. Seibt T. Mehr L. Aichler M. Walch A. Lamp D. Jastroch M. Miyamoto S. Wurst W. Ursini F. Arnér E.S.J. Fradejas-Villar N. Schweizer U. Zischka H. Friedmann Angeli J.P. Conrad M. Selenium utilization by gpx4 is required to prevent hydroperoxide-induced ferroptosis. Cell 2018 172 3 409 422.e21 10.1016/j.cell.2017.11.048 29290465
    [Google Scholar]
  22. Hirschhorn T. Stockwell B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med. 2019 133 130 143 10.1016/j.freeradbiomed.2018.09.043 30268886
    [Google Scholar]
  23. Chen Z. Tao S. Li X. Zeng X. Zhang M. Yao Q. Anagliptin protects neuronal cells against endogenous amyloid β (Aβ)-induced cytotoxicity and apoptosis. Artif. Cells Nanomed. Biotechnol. 2019 47 1 2213 2220 10.1080/21691401.2019.1609979 31159590
    [Google Scholar]
  24. Mou Y. Wang J. Wu J. He D. Zhang C. Duan C. Li B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol. 2019 12 1 34 10.1186/s13045‑019‑0720‑y 30925886
    [Google Scholar]
  25. Liu J.L. Fan Y.G. Yang Z.S. Wang Z.Y. Guo C. Iron and alzheimer’s disease: From pathogenesis to therapeutic implications. Front. Neurosci. 2018 12 632 10.3389/fnins.2018.00632 30250423
    [Google Scholar]
  26. Benseny-Cases N. Klementieva O. Cotte M. Ferrer I. Cladera J. Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human Alzheimer disease brains. Anal. Chem. 2014 86 24 12047 12054 10.1021/ac502667b 25415602
    [Google Scholar]
  27. Chen K. Jiang X. Wu M. Cao X. Bao W. Zhu L.Q. Ferroptosis, a potential therapeutic target in alzheimer’s disease. Front. Cell Dev. Biol. 2021 9 704298 10.3389/fcell.2021.704298 34422824
    [Google Scholar]
  28. Peña-Bautista C. Baquero M. Vento M. Cháfer-Pericás C. Free radicals in Alzheimer’s disease: Lipid peroxidation biomarkers. Clin. Chim. Acta 2019 491 85 90 10.1016/j.cca.2019.01.021 30685358
    [Google Scholar]
  29. Lloret A. Esteve D. Monllor P. Cervera-Ferri A. Lloret A. The effectiveness of vitamin e treatment in alzheimer’s disease. Int. J. Mol. Sci. 2019 20 4 879 10.3390/ijms20040879 30781638
    [Google Scholar]
  30. Jiménez-Jiménez F.J. Alonso-Navarro H. García-Martín E. Agúndez J.A.G. Coenzyme q10 and dementia: A systematic review. Antioxidants 2023 12 2 533 10.3390/antiox12020533 36830090
    [Google Scholar]
  31. Salim S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther. 2017 360 1 201 205 10.1124/jpet.116.237503 27754930
    [Google Scholar]
  32. Kocot J. Luchowska-Kocot D. Kiełczykowska M. Musik I. Kurzepa J. Does vitamin c influence neurodegenerative diseases and psychiatric disorders? Nutrients 2017 9 7 659 10.3390/nu9070659 28654017
    [Google Scholar]
  33. Khan H. Ullah H. Aschner M. Cheang W.S. Akkol E.K. Neuroprotective effects of quercetin in alzheimer’s disease. Biomolecules 2019 10 1 59 10.3390/biom10010059 31905923
    [Google Scholar]
  34. Tian Y. Song W. Li D. Cai L. Zhao Y. Resveratrol as a natural regulator of autophagy for prevention and treatment of cancer. OncoTargets Ther. 2019 12 8601 8609 10.2147/OTT.S213043 31802896
    [Google Scholar]
  35. Welty F.K. Omega-3 fatty acids and cognitive function. Curr. Opin. Lipidol. 2023 34 1 12 21 10.1097/MOL.0000000000000862 36637075
    [Google Scholar]
  36. Ajith T.A. A recent update on the effects of omega-3 fatty acids in alzheimer’s disease. Curr. Clin. Pharmacol. 2019 13 4 252 260 10.2174/1574884713666180807145648 30084334
    [Google Scholar]
  37. Zubenko G.S. Sauer P. SOD-1 activity and platelet membrane fluidity in Alzheimer’s disease. Biol. Psychiatry 1989 25 6 671 678 10.1016/0006‑3223(89)90236‑9 2923930
    [Google Scholar]
  38. Shen Y. Zhang G. Wei C. Zhao P. Wang Y. Li M. Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer’s disease. Neural Regen. Res. 2025 20 3 613 631 10.4103/NRR.NRR‑D‑23‑01343 38886929
    [Google Scholar]
  39. Braidy N. Zarka M. Welch J. Bridge W. Bridge W. Therapeutic approaches to modulating glutathione levels as a pharmacological strategy in Alzheimer’s disease. Curr. Alzheimer Res. 2015 12 4 298 313 10.2174/1567205012666150302160308 25731620
    [Google Scholar]
  40. Pocernich C.B. Butterfield D.A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim. Biophys. Acta Mol. Basis Dis. 2012 1822 5 625 630 10.1016/j.bbadis.2011.10.003 22015471
    [Google Scholar]
  41. Sehar U. Rawat P. Reddy A.P. Kopel J. Reddy P.H. Amyloid beta in aging and alzheimer’s disease. Int. J. Mol. Sci. 2022 23 21 12924 10.3390/ijms232112924 36361714
    [Google Scholar]
  42. Self W.K. Holtzman D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med. 2023 29 9 2187 2199 10.1038/s41591‑023‑02505‑2 37667136
    [Google Scholar]
  43. Blazhenets G. Ma Y. Sörensen A. Rücker G. Schiller F. Eidelberg D. Frings L. Meyer P.T. Alzheimer’s Disease Neuroimaging Initiative Principal components analysis of brain metabolism predicts development of alzheimer dementia. J. Nucl. Med. 2019 60 6 837 843 10.2967/jnumed.118.219097 30389825
    [Google Scholar]
  44. Han S. He Z. Hu X. Li X. Zheng K. Huang Y. Xiao P. Xie Q. Ni J. Liu Q. Inhibiting nlrp3 inflammasome activation by cy-09 helps to restore cerebral glucose metabolism in 3×tg-ad mice. Antioxidants 2023 12 3 722 10.3390/antiox12030722 36978970
    [Google Scholar]
  45. Tumminia A. Vinciguerra F. Parisi M. Frittitta L. Type 2 diabetes mellitus and alzheimer’s disease: Role of insulin signalling and therapeutic implications. Int. J. Mol. Sci. 2018 19 11 3306 10.3390/ijms19113306 30355995
    [Google Scholar]
  46. Chow H.M. Shi M. Cheng A. Gao Y. Chen G. Song X. So R.W.L. Zhang J. Herrup K. Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat. Neurosci. 2019 22 11 1806 1819 10.1038/s41593‑019‑0505‑1 31636448
    [Google Scholar]
  47. Peng D. Xu S. Zou T. Wang Y. Ouyang W. Zhang Y. Dong C. Li D. Guo J. Shen Q. Hu X. Zhou W. Li X. Qin Q. Safety, tolerability, pharmacokinetics and effects of diet on AD16, a novel neuroinflammatory inhibitor for Alzheimer’s disease: A randomized phase 1 study. BMC Med. 2023 21 1 459 10.1186/s12916‑023‑03126‑9 37996817
    [Google Scholar]
  48. Folch J. Busquets O. Ettcheto M. Sánchez-López E. Castro-Torres R.D. Verdaguer E. Garcia M.L. Olloquequi J. Casadesús G. Beas-Zarate C. Pelegri C. Vilaplana J. Auladell C. Camins A. Memantine for the treatment of dementia: A review on its current and future applications. J. Alzheimers Dis. 2018 62 3 1223 1240 10.3233/JAD‑170672 29254093
    [Google Scholar]
  49. Xiao Z. Wu W. Ma X. Liang X. Lu J. Zheng L. Ding S. Lei Q. Luo J. Chen K. Ding D. Zhao Q. Plasma aβ42/aβ40 and p-tau181 predict long-term clinical progression in a cohort with amnestic mild cognitive impairment. Clin. Chem. 2022 68 12 1552 1563 10.1093/clinchem/hvac149 36208187
    [Google Scholar]
  50. Zhou H. Jiang J. Lu J. Wang M. Zhang H. Zuo C. Dual-model radiomic biomarkers predict development of mild cognitive impairment progression to alzheimer’s disease. Front. Neurosci. 2018 1045 12 ••• 10.3389/fnins.2018.01045 30686995
    [Google Scholar]
  51. Qiu S. Joshi P.S. Miller M.I. Xue C. Zhou X. Karjadi C. Chang G.H. Joshi A.S. Dwyer B. Zhu S. Kaku M. Zhou Y. Alderazi Y.J. Swaminathan A. Kedar S. Saint-Hilaire M.H. Auerbach S.H. Yuan J. Sartor E.A. Au R. Kolachalama V.B. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain 2020 143 6 1920 1933 10.1093/brain/awaa137 32357201
    [Google Scholar]
/content/journals/car/10.2174/0115672050348799241211072746
Loading
/content/journals/car/10.2174/0115672050348799241211072746
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: bibliometric analysis ; major hotspot ; oxidative stress ; Ferroptosis ; Alzheimer's disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test