Skip to content
2000
image of Acetyl-L-Carnitine Aids in Preservation of Cholinergic Neurons and Memory in the Drosophila melanogaster Model of Alzheimer's Disease

Abstract

Background

The lack of effective therapy for the treatment of Alzheimer's disease demands both the search for new drugs and the reconsideration of already known substances currently used in other areas of medicine. offers the potential to model features of Alzheimer's disease, study disease mechanisms, and conduct drug screening.

Objectives

The purpose of this work was to analyze the neuroprotective properties of the drug “carnicetine”, which is an acetylated form of the natural low molecular weight compound L-carnitine. The drug is able to cross the blood-brain barrier and is currently used as a means of improving cellular metabolism.

Methods

Using tissue-specific drivers, direct expression of amyloid beta peptide (42 amino acids) was exhibited in certain groups of neurons in the brain, namely in dopaminergic and cholinergic neurons. The effect of acetyl-L-carnitine (carnicetine) on the death of these neurons and the memory of flies was analyzed.

Results

The expression of amyloid beta peptide in dopaminergic or cholinergic neurons resulted in neurodegeneration of cholinergic neurons in the brain and memory impairment. The use of carnicetine added to animal food made it possible to treat these disorders. At the same time, no effect on dopaminergic neurons was noted.

Conclusion

The data obtained confirmed the neuroprotective properties of the drug under study, demonstrating its participation in the restoration of the cholinergic system and the feasibility of using carnicetine for the treatment of Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050347906241203075930
2024-12-23
2025-01-29
Loading full text...

Full text loading...

References

  1. Grabowska M.E. Huang A. Wen Z. Li B. Wei W.Q. Drug repurposing for Alzheimer’s disease from 2012–2022—a 10-year literature review. Front. Pharmacol. 2023 14 1257700 10.3389/fphar.2023.1257700 37745051
    [Google Scholar]
  2. Xu C. Mei Y. Yang R. Luo Q. Zhang J. Kou X. Hu J. Wang Y. Li Y. Chen R. Zhang Z. Yao Y. Sima J. Edaravone Dexborneol mitigates pathology in animal and cell culture models of Alzheimer’s disease by inhibiting neuroinflammation and neuronal necroptosis. Cell Biosci. 2024 14 1 55 10.1186/s13578‑024‑01230‑8 38678262
    [Google Scholar]
  3. Rahul Siddique Y.H. Neurodegenerative diseases and flavonoids: Special reference to kaempferol. CNS Neurol. Disord. Drug Targets 2021 20 4 327 342 10.2174/1871527320666210129122033 33511932
    [Google Scholar]
  4. Monteiro K.L.C. de Aquino T.M. da Silva-Júnior E.F. Natural compounds as inhibitors of Aβ peptide and Tau aggregation. CNS Neurol. Disord. Drug Targets 2023 2023 10.2174/0118715273273539231114095300 38018200
    [Google Scholar]
  5. Magi S. Preziuso A. Piccirillo S. Giampieri F. Cianciosi D. Orciani M. Amoroso S. The neuroprotective effect of L-carnitine against glyceraldehyde-induced metabolic impairment: Possible implications in Alzheimer’s Disease. Cells 2021 10 8 2109 10.3390/cells10082109 34440878
    [Google Scholar]
  6. Mota S.I. Pita I. Águas R. Tagorti S. Virmani A. Pereira F.C. Rego A.C. Mechanistic perspectives on differential mitochondrial-based neuroprotective effects of several carnitine forms in Alzheimer’s disease in vitro model. Arch. Toxicol. 2021 95 8 2769 2784 10.1007/s00204‑021‑03104‑1 34164711
    [Google Scholar]
  7. Pettegrew J.W. Levine J. McClure R.J. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: Relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol. Psychiatry 2000 5 6 616 632 10.1038/sj.mp.4000805 11126392
    [Google Scholar]
  8. Gharighnia S. Omidi A. Kashani I. Sepand M.R. Pour Beiranvand S. Ameliorative effects of acetyl-L-carnitine on corpus callosum and functional recovery in demyelinated mouse model. Int. J. Neurosci. 2024 134 4 409 419 10.1080/00207454.2022.2107515 35912879
    [Google Scholar]
  9. Salama A. Elgohary R. L-carnitine and Co Q10 ameliorate potassium dichromate -induced acute brain injury in rats targeting AMPK/AKT/NF-κβ. Int. Immunopharmacol. 2021 101 Pt B 107867 10.1016/j.intimp.2021.107867
    [Google Scholar]
  10. Verma N. Gupta J.K. Varshney K.K. Srivastava R. Ameliorative effect of acetyl L-carnitine in Alzheimer’s disease via downregulating of homocysteine levels in hyperhomocysteinemia induced cognitive deficit in mouse model. Drug Metab. Lett. 2021 14 3 219 231 10.2174/1872312814666211209102136 34886786
    [Google Scholar]
  11. Di Stefano G. Di Lionardo A. Galosi E. Truini A. Cruccu G. Acetyl-L-carnitine in painful peripheral neuropathy: A systematic review. J. Pain Res. 2019 12 1341 1351 10.2147/JPR.S190231 31118753
    [Google Scholar]
  12. Sarzi-Puttini P. Giorgi V. Di Lascio S. Fornasari D. Acetyl-L-carnitine in chronic pain: A narrative review. Pharmacol. Res. 2021 173 105874 10.1016/j.phrs.2021.105874 34500063
    [Google Scholar]
  13. Wang S.M. Han C. Lee S.J. Patkar A.A. Masand P.S. Pae C.U. A review of current evidence for acetyl-l-carnitine in the treatment of depression. J. Psychiatr. Res. 2014 53 30 37 10.1016/j.jpsychires.2014.02.005 24607292
    [Google Scholar]
  14. Gavrilova S.I. The therapeutic potential of acetyl-L-carnitine in the treatment of cognitive and depressive disorders in the elderly. Zh. Nevrol. Psikhiatr. 2018 118 6 37 45 10.17116/jnevro201811806237 30346432
    [Google Scholar]
  15. Pennisi M. Lanza G. Cantone M. D’Amico E. Fisicaro F. Puglisi V. Vinciguerra L. Bella R. Vicari E. Malaguarnera G. Acetyl-L-carnitine in dementia and other cognitive disorders: A critical update. Nutrients 2020 12 5 1389 10.3390/nu12051389 32408706
    [Google Scholar]
  16. Ferreira G.C. McKenna M.C. L-Carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem. Res. 2017 42 6 1661 1675 10.1007/s11064‑017‑2288‑7 28508995
    [Google Scholar]
  17. Masi F. Leggio B. Nanni G. Scheggi S. De Montis M.G. Tagliamonte A. Grappi S. Gambarana C. Effects of long-term acetyl-L-carnitine administration in rats—II: Protection against the disrupting effect of stress on the acquisition of appetitive behavior. Neuropsychopharmacology 2003 28 4 683 693 10.1038/sj.npp.1300078
    [Google Scholar]
  18. Lodeiro M. Ibáñez C. Cifuentes A. Simó C. Cedazo-Mínguez Á. Decreased cerebrospinal fluid levels of L-carnitine in non-apolipoprotein E4 carriers at early stages of Alzheimer’s disease. J. Alzheimers Dis. 2014 41 1 223 232 10.3233/JAD‑132063 24595197
    [Google Scholar]
  19. Cristofano A. Sapere N. La Marca G. Angiolillo A. Vitale M. Corbi G. Scapagnini G. Intrieri M. Russo C. Corso G. Di Costanzo A. Serum levels of acyl-carnitines along the continuum from normal to Alzheimer’s dementia. PLoS One 2016 11 5 e0155694 10.1371/journal.pone.0155694 27196316
    [Google Scholar]
  20. Parnetti L. Gaiti A. Mecocci P. Cadini D. Senin U. Pharmacokinetics of IV and oral acetyl-L-carnitine in a multiple dose regimen in patients with senile dementia of Alzheimer type. Eur. J. Clin. Pharmacol. 1992 42 1 89 93 10.1007/BF00314926 1541322
    [Google Scholar]
  21. Pettegrew J.W. Klunk W.E. Panchalingam K. Kanfer J.N. McClure R.J. Clinical and neurochemical effects of acetyl-L-carnitine in Alzheimer’s disease. Neurobiol. Aging 1995 16 1 1 4 10.1016/0197‑4580(95)80001‑8 7723928
    [Google Scholar]
  22. Montgomery S.A. Thal L.J. Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer's disease. Int. Clin. Psychopharmacol. 2003 18 2 61 71 10.1097/00004850‑200303000‑00001 12598816
    [Google Scholar]
  23. Gavrilova S.I. Kalyn IaB. Kolykhalov I.V. Roshchina I.F. Selezneva N.D. [Acetyl-L-carnitine (carnicetine) in the treatment of early stages of Alzheimer’s disease and vascular dementia]. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova 2011 111 9 16 22 22027664
    [Google Scholar]
  24. Onofrj M. Ciccocioppo F. Varanese S. di Muzio A. Calvani M. Chiechio S. Osio M. Thomas A. Acetyl- L -carnitine: from a biological curiosity to a drug for the peripheral nervous system and beyond. Expert Rev. Neurother. 2013 13 8 925 936 10.1586/14737175.2013.814930 23965166
    [Google Scholar]
  25. Traina G. The neurobiology of acetyl-L-carnitine. Front. Biosci. 2016 21 7 1314 1329 10.2741/4459 27100509
    [Google Scholar]
  26. Tanaka T. Chung H.L. Exploiting fly models to investigate rare human neurological disorders. Neural Regen. Res. 2025 20 1 21 28 10.4103/NRR.NRR‑D‑23‑01847 38767473
    [Google Scholar]
  27. Lin J. Mele S. Piper M.D.W. Johnson T.K. A simple method for quantifying larval locomotion in Drosophila melanogaster. Methods Mol Biol. 2024 2746 101 108 10.1007/978‑1‑0716‑3585‑8_8
    [Google Scholar]
  28. Latypova E.M. Timoshenko S.I. Kislik G.A. Vitek M.P. Schwarzman A.L. Sarantseva S.V. Investigation of neuroprotective activity of apolipoprotein E peptide mimetic Cog1410 in transgenic lines of Drosophila melanogaster. Biomeditsinskaya khimiya. 2014 60 4 515 521 10.18097/pbmc20146004515
    [Google Scholar]
  29. Golomidov I. Bolshakova O. Komissarov A. Sharoyko V. Slepneva Е. Slobodina A. Latypova E. Zherebyateva O. Tennikova T. Sarantseva S. The neuroprotective effect of fullerenols on a model of Parkinson’s disease in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 2020 523 2 446 451 10.1016/j.bbrc.2019.12.075 31879013
    [Google Scholar]
  30. Contreras E.G. Klämbt C. The Drosophila blood-brain barrier emerges as a model for understanding human brain diseases. Neurobiol. Dis. 2023 180 106071 106071 10.1016/j.nbd.2023.106071 36898613
    [Google Scholar]
  31. Murthy M.N. Shyamala B.V. Ashwagandha- Withania somnifera (L.) Dunal as a multipotent neuroprotective remedy for genetically induced motor dysfunction and cellular toxicity in human neurodegenerative disease models of Drosophila. J. Ethnopharmacol. 2024 318 Pt A 116897 10.1016/j.jep.2023.116897 37442493
    [Google Scholar]
  32. Okenve-Ramos P. Gosling R. Chojnowska-Monga M. Gupta K. Shields S. Alhadyian H. Collie C. Gregory E. Sanchez-Soriano N. Neuronal ageing is promoted by the decay of the microtubule cytoskeleton. PLoS Biol. 2024 22 3 e3002504 10.1371/journal.pbio.3002504 38478582
    [Google Scholar]
  33. Bukhari H. Nithianandam V. Battaglia R.A. Cicalo A. Sarkar S. Comjean A. Hu Y. Leventhal M.J. Dong X. Feany M.B. Transcriptional programs mediating neuronal toxicity and altered glial-neuronal signaling in a Drosophila knock-in tauopathy model. bioRxiv 2024.02.02.578624 2024 10.1101/2024.02.02.578624
    [Google Scholar]
  34. Afsheen S. Rehman A.S. Jamal A. Khan N. Parvez S. Understanding role of pesticides in development of Parkinson’s disease: Insights from Drosophila and rodent models. Ageing Res. Rev. 2024 98 102340 10.1016/j.arr.2024.102340 38759892
    [Google Scholar]
  35. Nitta Y. Sugie A. Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis. Fly (Austin) 2022 16 1 275 298 10.1080/19336934.2022.2087484 35765969
    [Google Scholar]
  36. Leventhal M.J. Zanella C.A. Kang B. Peng J. Gritsch D. Liao Z. Bukhari H. Wang T. Pao P.C. Danquah S. Benetatos J. Nehme R. Farhi S. Tsai L.H. Dong X. Scherzer C.R. Feany M.B. Fraenkel E. A systems-biology approach connects aging mechanisms with Alzheimer’s disease pathogenesis. bioRxiv 2024.03.17.585262 2024 10.1101/2024.03.17.585262
    [Google Scholar]
  37. Koon A.C. Chan H.Y.E. Drosophila melanogaster as a model organism to study RNA toxicity of repeat expansion-associated neurodegenerative and neuromuscular diseases. Front. Cell. Neurosci. 2017 11 70 70 10.3389/fncel.2017.00070 28377694
    [Google Scholar]
  38. Iijima K. Liu H.P. Chiang A.S. Hearn S.A. Konsolaki M. Zhong Y. Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila : A potential model for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2004 101 17 6623 6628 10.1073/pnas.0400895101 15069204
    [Google Scholar]
  39. Botella J.A. Bayersdorfer F. Schneuwly S. Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson’s disease. Neurobiol. Dis. 2008 30 1 65 73 10.1016/j.nbd.2007.11.013 18243716
    [Google Scholar]
  40. Tully T. Quinn W.G. Classical conditioning and retention in normal and mutantDrosophila melanogaster. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 1985 157 2 263 277 10.1007/BF01350033 3939242
    [Google Scholar]
  41. Bolshakova O.I. Zhuk A.A. Rodin D.I. Kislik G.A. Sarantseva S.V. Effect of human APP gene overexpression on Drosophila melanogaster cholinergic and dopaminergic brain neurons. Russ. J. Genet. Appl. Res. 2014 4 2 113 121 10.1134/S2079059714020026
    [Google Scholar]
  42. Iijima-Ando K. Iijima K. Transgenic Drosophila models of Alzheimer’s disease and tauopathies. Brain Struct. Funct. 2010 214 2-3 245 262 10.1007/s00429‑009‑0234‑4 19967412
    [Google Scholar]
  43. Slobodina A.D. Bolshakova O.I. Komissarov A.E. Surina N.V. Landa S.B. Melent’ev P.A. Sarantseva S.V. Study of the Neuroprotective Properties of Fullerenol C60(OH)30 with a Model of Alzheimer’s Disease. Nanotechnol. Russ. 2020 15 2 212 217 10.1134/S1995078020020184
    [Google Scholar]
  44. Perez S.E. Lazarov O. Koprich J.B. Chen E.Y. Rodriguez-Menendez V. Lipton J.W. Sisodia S.S. Mufson E.J. Nigrostriatal dysfunction in familial Alzheimer’s disease-linked APPswe/PS1DeltaE9 transgenic mice. J. Neurosci. 2005 25 44 10220 10229 10.1523/JNEUROSCI.2773‑05.2005 16267229
    [Google Scholar]
  45. Martorana A. Koch G. Is dopamine involved in Alzheimer’s disease? Front. Aging Neurosci. 2014 6 252 10.3389/fnagi.2014.00252 25309431
    [Google Scholar]
  46. Hampel H. Mesulam M.M. Cuello A.C. Farlow M.R. Giacobini E. Grossberg G.T. Khachaturian A.S. Vergallo A. Cavedo E. Snyder P.J. Khachaturian Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018 141 7 1917 1933 10.1093/brain/awy132 29850777
    [Google Scholar]
  47. Butterfield D.A. Abdul H.M. Opii W. Newman S.F. Joshi G. Ansari M.A. Sultana R. REVIEW: Pin1 in Alzheimer’s disease. J. Neurochem. 2006 98 6 1697 1706 10.1111/j.1471‑4159.2006.03995.x 16945100
    [Google Scholar]
  48. Schliebs R. Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural Transm. (Vienna) 2006 113 11 1625 1644 10.1007/s00702‑006‑0579‑2 17039298
    [Google Scholar]
  49. Perry E.K. Morris C.M. Court J.A. Cheng A. Fairbairn A.F. McKeith I.G. Irving D. Brown A. Perry R.H. Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: Possible index of early neuropathology. Neuroscience 1995 64 2 385 395 10.1016/0306‑4522(94)00410‑7 7700528
    [Google Scholar]
  50. Exley R. McIntosh J.M. Marks M.J. Maskos U. Cragg S.J. Striatal α5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum. J. Neurosci. 2012 32 7 2352 2356 10.1523/JNEUROSCI.4985‑11.2012 22396410
    [Google Scholar]
  51. Nagori K. Pradhan M. Sharma M. Ajazuddin Badwaik H.R. Nakhate K.T. Current progress on central cholinergic receptors as therapeutic targets for Alzheimer’s disease. Curr. Alzheimer Res. 2024 21 1 50 68 10.2174/0115672050306008240321034006 38529600
    [Google Scholar]
  52. Trukhan D.I. Role and location of l-carnitine in cytoprotection and correction of metabolic processes in patients with metabolic syndrome. Medical Council 2017 12 12 182 187 10.21518/2079‑701X‑2017‑12‑182‑187
    [Google Scholar]
  53. Abdul H.M. Calabrese V. Calvani M. Butterfield D.A. Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1–42-mediated oxidative stress and neurotoxicity: Implications for Alzheimer’s disease. J. Neurosci. Res. 2006 84 2 398 408 10.1002/jnr.20877 16634066
    [Google Scholar]
  54. Mohmmad Abdul H. Butterfield D.A. Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and α-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: Implications for Alzheimer’s disease. Free Radic. Biol. Med. 2007 42 3 371 384 10.1016/j.freeradbiomed.2006.11.006 17210450
    [Google Scholar]
  55. Epis R. Marcello E. Gardoni F. Longhi A. Calvani M. Iannuccelli M. Cattabeni F. Canonico P.L. Di Luca M. Modulatory effect of acetyl-l-carnitine on amyloid precursor protein metabolism in hippocampal neurons. Eur. J. Pharmacol. 2008 597 1-3 51 56 10.1016/j.ejphar.2008.09.001 18801359
    [Google Scholar]
  56. Chauhan N. Siegel G.J. Effect of PPF and ALCAR on the Induction of NGF- and p75-mRNA and on APP processing in Tg2576 brain. Neurochem. Int. 2003 43 3 225 233 10.1016/S0197‑0186(03)00006‑8 12689602
    [Google Scholar]
  57. Shenk J.C. Liu J. Fischbach K. Xu K. Puchowicz M. Obrenovich M.E. Gasimov E. Alvarez L.M. Ames B.N. LaManna J.C. Aliev G. The effect of acetyl-L-carnitine and R-α-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer’s disease. J. Neurol. Sci. 2009 283 1-2 199 206 10.1016/j.jns.2009.03.002 19342064
    [Google Scholar]
  58. Ahmed H.H. Modulatory effects of vitamin E, acetyl-l-carnitine and α-lipoic acid on new potential biomarkers for Alzheimer’s disease in rat model. Exp. Toxicol. Pathol. 2012 64 6 549 556 10.1016/j.etp.2010.11.012 21183322
    [Google Scholar]
  59. Wadie C.M. Ali R.H. Mohamed A.E.H.A. Labib J.M.W. Sabaa A.R. Awad H.E.A. Abou-Bakr D.A. A comparative study of acetyl- l -carnitine and caloric restriction impact on hippocampal autophagy, apoptosis, neurogenesis, and astroglial function in AlCl 3 -induced Alzheimer’s in rats. Can. J. Physiol. Pharmacol. 2023 101 5 244 257 10.1139/cjpp‑2022‑0304 36988119
    [Google Scholar]
  60. Tork Y.J. Naseri E. Basir H.S. Komaki A. Protective effects of L-carnitine against beta-amyloid-induced memory impairment and anxiety-like behavior in a rat model of Alzheimer’s disease. Eur. J. Pharmacol. 2024 982 176879 10.1016/j.ejphar.2024.176879 39128806
    [Google Scholar]
  61. Singh S. Mishra A. Shukla S. ALCAR exerts neuroprotective and pro-neurogenic effects by inhibition of glial activation and oxidative stress via activation of the Wnt/β-catenin signaling in parkinsonian rats. Mol. Neurobiol. 2016 53 7 4286 4301 10.1007/s12035‑015‑9361‑5 26223802
    [Google Scholar]
  62. Singh S. Mishra A. Srivastava N. Shukla R. Shukla S. Acetyl-l-carnitine via upegulating dopamine d1 receptor and attenuating microglial activation prevents neuronal loss and improves memory functions in parkinsonian rats. Mol. Neurobiol. 2018 55 1 583 602 10.1007/s12035‑016‑0293‑5 27975173
    [Google Scholar]
  63. Sarkar S. Gough B. Raymick J. Beaudoin M.A. Ali S.F. Virmani A. Binienda Z.K. Histopathological and electrophysiological indices of rotenone-evoked dopaminergic toxicity: Neuroprotective effects of acetyl-l-carnitine. Neurosci. Lett. 2015 606 53 59 10.1016/j.neulet.2015.08.044 26321151
    [Google Scholar]
  64. Afshin-Majd S. Bashiri K. Kiasalari Z. Baluchnejadmojarad T. Sedaghat R. Roghani M. Acetyl-l-carnitine protects dopaminergic nigrostriatal pathway in 6-hydroxydopamine-induced model of Parkinson’s disease in the rat. Biomed. Pharmacother. 2017 89 1 9 10.1016/j.biopha.2017.02.007 28199883
    [Google Scholar]
/content/journals/car/10.2174/0115672050347906241203075930
Loading
/content/journals/car/10.2174/0115672050347906241203075930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test