Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

The lack of effective therapy for the treatment of Alzheimer's disease demands both the search for new drugs and the reconsideration of already known substances currently used in other areas of medicine. offers the potential to model features of Alzheimer's disease, study disease mechanisms, and conduct drug screening.

Objectives

The purpose of this work was to analyze the neuroprotective properties of the drug “carnicetine”, which is an acetylated form of the natural low molecular weight compound L-carnitine. The drug is able to cross the blood-brain barrier and is currently used as a means of improving cellular metabolism.

Methods

Using tissue-specific drivers, direct expression of amyloid beta peptide (42 amino acids) was exhibited in certain groups of neurons in the brain, namely in dopaminergic and cholinergic neurons. The effect of acetyl-L-carnitine (carnicetine) on the death of these neurons and the memory of flies was analyzed.

Results

The expression of amyloid beta peptide in dopaminergic or cholinergic neurons resulted in neurodegeneration of cholinergic neurons in the brain and memory impairment. The use of carnicetine added to animal food made it possible to treat these disorders. At the same time, no effect on dopaminergic neurons was noted.

Conclusion

The data obtained confirmed the neuroprotective properties of the drug under study, demonstrating its participation in the restoration of the cholinergic system and the feasibility of using carnicetine for the treatment of Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050347906241203075930
2024-12-23
2025-03-28
Loading full text...

Full text loading...

References

  1. GrabowskaM.E. HuangA. WenZ. LiB. WeiW.Q. Drug repurposing for Alzheimer’s disease from 2012–2022—A 10-year literature review.Front. Pharmacol.202314125770010.3389/fphar.2023.125770037745051
    [Google Scholar]
  2. XuC. MeiY. YangR. LuoQ. ZhangJ. KouX. HuJ. WangY. LiY. ChenR. ZhangZ. YaoY. SimaJ. Edaravone Dexborneol mitigates pathology in animal and cell culture models of Alzheimer’s disease by inhibiting neuroinflammation and neuronal necroptosis.Cell Biosci.20241415510.1186/s13578‑024‑01230‑838678262
    [Google Scholar]
  3. Rahul SiddiqueY.H. Neurodegenerative diseases and flavonoids: Special reference to kaempferol.CNS Neurol. Disord. Drug Targets202120432734210.2174/187152732066621012912203333511932
    [Google Scholar]
  4. MonteiroK.L.C. de AquinoT.M. da Silva-JúniorE.F. Natural compounds as inhibitors of Aβ peptide and Tau aggregation.CNS Neurol. Disord. Drug Targets2023202310.2174/011871527327353923111409530038018200
    [Google Scholar]
  5. MagiS. PreziusoA. PiccirilloS. GiampieriF. CianciosiD. OrcianiM. AmorosoS. The neuroprotective effect of L-carnitine against glyceraldehyde-induced metabolic impairment: Possible implications in Alzheimer’s Disease.Cells2021108210910.3390/cells1008210934440878
    [Google Scholar]
  6. MotaS.I. PitaI. ÁguasR. TagortiS. VirmaniA. PereiraF.C. RegoA.C. Mechanistic perspectives on differential mitochondrial-based neuroprotective effects of several carnitine forms in Alzheimer’s disease in vitro model.Arch. Toxicol.20219582769278410.1007/s00204‑021‑03104‑134164711
    [Google Scholar]
  7. PettegrewJ.W. LevineJ. McClureR.J. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: Relevance for its mode of action in Alzheimer’s disease and geriatric depression.Mol. Psychiatry20005661663210.1038/sj.mp.400080511126392
    [Google Scholar]
  8. GharighniaS. OmidiA. KashaniI. SepandM.R. Pour BeiranvandS. Ameliorative effects of acetyl-L-carnitine on corpus callosum and functional recovery in demyelinated mouse model.Int. J. Neurosci.2024134440941910.1080/00207454.2022.210751535912879
    [Google Scholar]
  9. SalamaA. ElgoharyR. L-carnitine and Co Q10 ameliorate potassium dichromate -induced acute brain injury in rats targeting AMPK/AKT/NF-κβ.Int. Immunopharmacol.2021101Pt B10786710.1016/j.intimp.2021.107867
    [Google Scholar]
  10. VermaN. GuptaJ.K. VarshneyK.K. SrivastavaR. Ameliorative effect of acetyl L-carnitine in Alzheimer’s disease via downregulating of homocysteine levels in hyperhomocysteinemia induced cognitive deficit in mouse model.Drug Metab. Lett.202114321923110.2174/187231281466621120910213634886786
    [Google Scholar]
  11. Di StefanoG. Di LionardoA. GalosiE. TruiniA. CruccuG. Acetyl-L-carnitine in painful peripheral neuropathy: A systematic review.J. Pain Res.2019121341135110.2147/JPR.S19023131118753
    [Google Scholar]
  12. Sarzi-PuttiniP. GiorgiV. Di LascioS. FornasariD. Acetyl-L-carnitine in chronic pain: A narrative review.Pharmacol. Res.202117310587410.1016/j.phrs.2021.10587434500063
    [Google Scholar]
  13. WangS.M. HanC. LeeS.J. PatkarA.A. MasandP.S. PaeC.U. A review of current evidence for acetyl-l-carnitine in the treatment of depression.J. Psychiatr. Res.201453303710.1016/j.jpsychires.2014.02.00524607292
    [Google Scholar]
  14. GavrilovaS.I. The therapeutic potential of acetyl-L-carnitine in the treatment of cognitive and depressive disorders in the elderly.Zh. Nevrol. Psikhiatr.20181186374510.17116/jnevro20181180623730346432
    [Google Scholar]
  15. PennisiM. LanzaG. CantoneM. D’AmicoE. FisicaroF. PuglisiV. VinciguerraL. BellaR. VicariE. MalaguarneraG. Acetyl-L-carnitine in dementia and other cognitive disorders: A critical update.Nutrients2020125138910.3390/nu1205138932408706
    [Google Scholar]
  16. FerreiraG.C. McKennaM.C. L-Carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain.Neurochem. Res.20174261661167510.1007/s11064‑017‑2288‑728508995
    [Google Scholar]
  17. MasiF. LeggioB. NanniG. ScheggiS. De MontisM.G. TagliamonteA. GrappiS. GambaranaC. Effects of long-term acetyl-L-carnitine administration in rats—II: Protection against the disrupting effect of stress on the acquisition of appetitive behavior.Neuropsychopharmacology200328468369310.1038/sj.npp.1300078
    [Google Scholar]
  18. LodeiroM. IbáñezC. CifuentesA. SimóC. Cedazo-MínguezÁ. Decreased cerebrospinal fluid levels of L-carnitine in non-apolipoprotein E4 carriers at early stages of Alzheimer’s disease.J. Alzheimers Dis.201441122323210.3233/JAD‑13206324595197
    [Google Scholar]
  19. CristofanoA. SapereN. La MarcaG. AngiolilloA. VitaleM. CorbiG. ScapagniniG. IntrieriM. RussoC. CorsoG. Di CostanzoA. Serum levels of acyl-carnitines along the continuum from normal to Alzheimer’s dementia.PLoS One2016115e015569410.1371/journal.pone.015569427196316
    [Google Scholar]
  20. ParnettiL. GaitiA. MecocciP. CadiniD. SeninU. Pharmacokinetics of IV and oral acetyl-L-carnitine in a multiple dose regimen in patients with senile dementia of Alzheimer type.Eur. J. Clin. Pharmacol.1992421899310.1007/BF003149261541322
    [Google Scholar]
  21. PettegrewJ.W. KlunkW.E. PanchalingamK. KanferJ.N. McClureR.J. Clinical and neurochemical effects of acetyl-L-carnitine in Alzheimer’s disease.Neurobiol. Aging19951611410.1016/0197‑4580(95)80001‑87723928
    [Google Scholar]
  22. MontgomeryS.A. ThalL.J. AmreinR. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer's disease.Int. Clin. Psychopharmacol.2003182617110.1097/00004850‑200303000‑0000112598816
    [Google Scholar]
  23. GavrilovaS.I. KalynIaB. KolykhalovI.V. RoshchinaI.F. SeleznevaN.D. Acetyl-L-carnitine (carnicetine) in the treatment of early stages of Alzheimer’s disease and vascular dementia.Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova20111119162222027664
    [Google Scholar]
  24. OnofrjM. CiccocioppoF. VaraneseS. di MuzioA. CalvaniM. ChiechioS. OsioM. ThomasA. Acetyl- L -carnitine: From a biological curiosity to a drug for the peripheral nervous system and beyond.Expert Rev. Neurother.201313892593610.1586/14737175.2013.81493023965166
    [Google Scholar]
  25. TrainaG. The neurobiology of acetyl-L-carnitine.Front. Biosci.20162171314132910.2741/445927100509
    [Google Scholar]
  26. TanakaT. ChungH.L. Exploiting fly models to investigate rare human neurological disorders.Neural Regen. Res.2025201212810.4103/NRR.NRR‑D‑23‑0184738767473
    [Google Scholar]
  27. LinJ. MeleS. PiperM.D.W. JohnsonT.K. A simple method for quantifying larval locomotion in Drosophila melanogaster.Methods Mol Biol.2024274610110810.1007/978‑1‑0716‑3585‑8_8
    [Google Scholar]
  28. LatypovaE.M. TimoshenkoS.I. KislikG.A. VitekM.P. SchwarzmanA.L. SarantsevaS.V. Investigation of neuroprotective activity of apolipoprotein E peptide mimetic Cog1410 in transgenic lines of Drosophila melanogaster.Biomeditsinskaya khimiya.201460451552110.18097/pbmc20146004515
    [Google Scholar]
  29. GolomidovI. BolshakovaO. KomissarovA. SharoykoV. SlepnevaЕ. SlobodinaA. LatypovaE. ZherebyatevaO. TennikovaT. SarantsevaS. The neuroprotective effect of fullerenols on a model of Parkinson’s disease in Drosophila melanogaster.Biochem. Biophys. Res. Commun.2020523244645110.1016/j.bbrc.2019.12.07531879013
    [Google Scholar]
  30. ContrerasE.G. KlämbtC. The Drosophila blood-brain barrier emerges as a model for understanding human brain diseases.Neurobiol. Dis.202318010607110.1016/j.nbd.2023.10607136898613
    [Google Scholar]
  31. MurthyM.N. ShyamalaB.V. Ashwagandha- Withania somnifera (L.) Dunal as a multipotent neuroprotective remedy for genetically induced motor dysfunction and cellular toxicity in human neurodegenerative disease models of Drosophila.J. Ethnopharmacol.2024318Pt A11689710.1016/j.jep.2023.11689737442493
    [Google Scholar]
  32. Okenve-RamosP. GoslingR. Chojnowska-MongaM. GuptaK. ShieldsS. AlhadyianH. CollieC. GregoryE. Sanchez- SorianoN. Neuronal ageing is promoted by the decay of the microtubule cytoskeleton.PLoS Biol.2024223e300250410.1371/journal.pbio.300250438478582
    [Google Scholar]
  33. BukhariH. NithianandamV. BattagliaR.A. CicaloA. SarkarS. ComjeanA. HuY. LeventhalM.J. DongX. FeanyM.B. Transcriptional programs mediating neuronal toxicity and altered glial-neuronal signaling in a Drosophila knock-in tauopathy model.bioRxiv 2024.02.02.578624202410.1101/2024.02.02.578624
    [Google Scholar]
  34. AfsheenS. RehmanA.S. JamalA. KhanN. ParvezS. Understanding role of pesticides in development of Parkinson’s disease: Insights from Drosophila and rodent models.Ageing Res. Rev.20249810234010.1016/j.arr.2024.10234038759892
    [Google Scholar]
  35. NittaY. SugieA. Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis.Fly (Austin)202216127529810.1080/19336934.2022.208748435765969
    [Google Scholar]
  36. LeventhalM.J. ZanellaC.A. KangB. PengJ. GritschD. LiaoZ. BukhariH. WangT. PaoP.C. DanquahS. BenetatosJ. NehmeR. FarhiS. TsaiL.H. DongX. ScherzerC.R. FeanyM.B. FraenkelE. A systems-biology approach connects aging mechanisms with Alzheimer’s disease pathogenesis.bioRxiv 2024.03.17.585262202410.1101/2024.03.17.585262
    [Google Scholar]
  37. KoonA.C. ChanH.Y.E. Drosophila melanogaster as a model organism to study RNA toxicity of repeat expansion-associated neurodegenerative and neuromuscular diseases.Front. Cell. Neurosci.201711707010.3389/fncel.2017.0007028377694
    [Google Scholar]
  38. IijimaK. LiuH.P. ChiangA.S. HearnS.A. KonsolakiM. ZhongY. Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila : A potential model for Alzheimer’s disease.Proc. Natl. Acad. Sci. USA2004101176623662810.1073/pnas.040089510115069204
    [Google Scholar]
  39. BotellaJ.A. BayersdorferF. SchneuwlyS. Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson’s disease.Neurobiol. Dis.2008301657310.1016/j.nbd.2007.11.01318243716
    [Google Scholar]
  40. TullyT. QuinnW.G. Classical conditioning and retention in normal and mutant Drosophila melanogaster.J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.1985157226327710.1007/BF013500333939242
    [Google Scholar]
  41. BolshakovaO.I. ZhukA.A. RodinD.I. KislikG.A. SarantsevaS.V. Effect of human APP gene overexpression on Drosophila melanogaster cholinergic and dopaminergic brain neurons.Russ. J. Genet. Appl. Res.20144211312110.1134/S2079059714020026
    [Google Scholar]
  42. Iijima-AndoK. IijimaK. Transgenic Drosophila models of Alzheimer’s disease and tauopathies.Brain Struct. Funct.20102142-324526210.1007/s00429‑009‑0234‑419967412
    [Google Scholar]
  43. SlobodinaA.D. BolshakovaO.I. KomissarovA.E. SurinaN.V. LandaS.B. Melent’evP.A. SarantsevaS.V. Study of the Neuroprotective Properties of Fullerenol C60(OH)30 with a Model of Alzheimer’s Disease.Nanotechnol. Russ.202015221221710.1134/S1995078020020184
    [Google Scholar]
  44. PerezS.E. LazarovO. KoprichJ.B. ChenE.Y. Rodriguez-MenendezV. LiptonJ.W. SisodiaS.S. MufsonE.J. Nigrostriatal dysfunction in familial Alzheimer’s disease-linked APPswe/PS1DeltaE9 transgenic mice.J. Neurosci.20052544102201022910.1523/JNEUROSCI.2773‑05.200516267229
    [Google Scholar]
  45. MartoranaA. KochG. Is dopamine involved in Alzheimer’s disease?Front. Aging Neurosci.2014625210.3389/fnagi.2014.0025225309431
    [Google Scholar]
  46. HampelH. MesulamM.M. CuelloA.C. FarlowM.R. GiacobiniE. GrossbergG.T. KhachaturianA.S. VergalloA. CavedoE. SnyderP.J. KhachaturianZ.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease.Brain201814171917193310.1093/brain/awy13229850777
    [Google Scholar]
  47. ButterfieldD.A. AbdulH.M. OpiiW. NewmanS.F. JoshiG. AnsariM.A. SultanaR. Review: Pin1 in Alzheimer’s disease.J. Neurochem.20069861697170610.1111/j.1471‑4159.2006.03995.x16945100
    [Google Scholar]
  48. SchliebsR. ArendtT. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease.J. Neural Transm. (Vienna)2006113111625164410.1007/s00702‑006‑0579‑217039298
    [Google Scholar]
  49. PerryE.K. MorrisC.M. CourtJ.A. ChengA. FairbairnA.F. McKeithI.G. IrvingD. BrownA. PerryR.H. Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: Possible index of early neuropathology.Neuroscience199564238539510.1016/0306‑4522(94)00410‑77700528
    [Google Scholar]
  50. ExleyR. McIntoshJ.M. MarksM.J. MaskosU. CraggS.J. Striatal α5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum.J. Neurosci.20123272352235610.1523/JNEUROSCI.4985‑11.201222396410
    [Google Scholar]
  51. NagoriK. PradhanM. SharmaM. Ajazuddin BadwaikH.R. NakhateK.T. Current progress on central cholinergic receptors as therapeutic targets for Alzheimer’s disease.Curr. Alzheimer Res.2024211506810.2174/011567205030600824032103400638529600
    [Google Scholar]
  52. TrukhanD.I. Role and location of l-carnitine in cytoprotection and correction of metabolic processes in patients with metabolic syndrome.Medical Council2017121218218710.21518/2079‑701X‑2017‑12‑182‑187
    [Google Scholar]
  53. AbdulH.M. CalabreseV. CalvaniM. ButterfieldD.A. Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1–42-mediated oxidative stress and neurotoxicity: Implications for Alzheimer’s disease.J. Neurosci. Res.200684239840810.1002/jnr.2087716634066
    [Google Scholar]
  54. AbdulH. ButterfieldD.A. Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and α-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: Implications for Alzheimer’s disease.Free Radic. Biol. Med.200742337138410.1016/j.freeradbiomed.2006.11.00617210450
    [Google Scholar]
  55. EpisR. MarcelloE. GardoniF. LonghiA. CalvaniM. IannuccelliM. CattabeniF. CanonicoP.L. Di LucaM. Modulatory effect of acetyl-l-carnitine on amyloid precursor protein metabolism in hippocampal neurons.Eur. J. Pharmacol.20085971-3515610.1016/j.ejphar.2008.09.00118801359
    [Google Scholar]
  56. ChauhanN. SiegelG.J. Effect of PPF and ALCAR on the Induction of NGF- and p75-mRNA and on APP processing in Tg2576 brain.Neurochem. Int.200343322523310.1016/S0197‑0186(03)00006‑812689602
    [Google Scholar]
  57. ShenkJ.C. LiuJ. FischbachK. XuK. PuchowiczM. ObrenovichM.E. GasimovE. AlvarezL.M. AmesB.N. LaMannaJ.C. AlievG. The effect of acetyl-L-carnitine and R-α-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer’s disease.J. Neurol. Sci.20092831-219920610.1016/j.jns.2009.03.00219342064
    [Google Scholar]
  58. AhmedH.H. Modulatory effects of vitamin E, acetyl-l-carnitine and α-lipoic acid on new potential biomarkers for Alzheimer’s disease in rat model.Exp. Toxicol. Pathol.201264654955610.1016/j.etp.2010.11.01221183322
    [Google Scholar]
  59. WadieC.M. AliR.H. MohamedA.E.H.A. LabibJ.M.W. SabaaA.R. AwadH.E.A. Abou-BakrD.A. A comparative study of acetyl- l -carnitine and caloric restriction impact on hippocampal autophagy, apoptosis, neurogenesis, and astroglial function in AlCl 3 -induced Alzheimer’s in rats.Can. J. Physiol. Pharmacol.2023101524425710.1139/cjpp‑2022‑030436988119
    [Google Scholar]
  60. TorkY.J. NaseriE. BasirH.S. KomakiA. Protective effects of L-carnitine against beta-amyloid-induced memory impairment and anxiety-like behavior in a rat model of Alzheimer’s disease.Eur. J. Pharmacol.202498217687910.1016/j.ejphar.2024.17687939128806
    [Google Scholar]
  61. SinghS. MishraA. ShuklaS. ALCAR exerts neuroprotective and pro-neurogenic effects by inhibition of glial activation and oxidative stress via activation of the Wnt/β-catenin signaling in parkinsonian rats.Mol. Neurobiol.20165374286430110.1007/s12035‑015‑9361‑526223802
    [Google Scholar]
  62. SinghS. MishraA. SrivastavaN. ShuklaR. ShuklaS. Acetyl-l-carnitine via upegulating dopamine d1 receptor and attenuating microglial activation prevents neuronal loss and improves memory functions in parkinsonian rats.Mol. Neurobiol.201855158360210.1007/s12035‑016‑0293‑527975173
    [Google Scholar]
  63. SarkarS. GoughB. RaymickJ. BeaudoinM.A. AliS.F. VirmaniA. BiniendaZ.K. Histopathological and electrophysiological indices of rotenone-evoked dopaminergic toxicity: Neuroprotective effects of acetyl-l-carnitine.Neurosci. Lett.2015606535910.1016/j.neulet.2015.08.04426321151
    [Google Scholar]
  64. Afshin-MajdS. BashiriK. KiasalariZ. BaluchnejadmojaradT. SedaghatR. RoghaniM. Acetyl-l-carnitine protects dopaminergic nigrostriatal pathway in 6-hydroxydopamine-induced model of Parkinson’s disease in the rat.Biomed. Pharmacother.2017891910.1016/j.biopha.2017.02.00728199883
    [Google Scholar]
/content/journals/car/10.2174/0115672050347906241203075930
Loading
/content/journals/car/10.2174/0115672050347906241203075930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test