Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

Alzheimer's disease (AD) is marked by cognitive decline, amyloid plaques, neurofibrillary tangles, and cholinergic loss. Due to the limited success of amyloid-targeted therapies, attention has shifted to new non-amyloid targets like phosphodiesterases (PDE). This study investigates the potential of phytomolecules and derivatives, particularly 8-Prenyldaidzein, in AD treatment.

Materials and Methods

Phytocompounds and derivatives were screened for drug-likeness, toxicity, BBB permeability, and ADME profiles. Molecular docking was conducted with PDE5A, BACE-1, and AChE, followed by molecular dynamics (MD) simulations on the best binding complexes.

Results

8-Prenyldaidzein, a derivative of daidzein, demonstrated favorable drug-likeness and ADME properties. It exhibited strong binding to PDE5A, BACE-1, and AChE, with MD simulations confirming stable protein-ligand interactions.

Discussion

The multi-target potential of 8-Prenyldaidzein, particularly through non-amyloid pathways, offers a promising approach to AD therapy. Its inhibition of PDE5A, BACE-1, and AChE could address multiple aspects of AD pathology.

Conclusion

8-Prenyldaidzein shows strong potential as a multi-target inhibitor for AD treatment. findings are promising, further experimental validation is needed to confirm its clinical applicability.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050358848241211080546
2024-12-23
2025-03-28
Loading full text...

Full text loading...

References

  1. DuyuT. KhanalP. DeyY.N. JhaS.K. Network pharmacology of Withania somnifera against stress associated neurodegenerative diseases.Adv. Trad. Med.202121356557810.1007/s13596‑020‑00530‑x
    [Google Scholar]
  2. SelkoeD.J. LansburyP.J.Jr. Alzheimer’s Disease Is the Most Common Neurodegenerative Disorder,1999https://www.ncbi.nlm.nih.gov/books/NBK27944/
  3. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments for Alzheimer’s disease.Ther. Adv. Neurol. Disord.201361193310.1177/175628561246167923277790
    [Google Scholar]
  4. MontagneA. ZhaoZ. ZlokovicB.V. Alzheimer’s disease: A matter of blood–brain barrier dysfunction?J. Exp. Med.2017214113151316910.1084/jem.2017140629061693
    [Google Scholar]
  5. WangX. ShiY. ChenY. GaoY. WangT. LiZ. WangY. Blood–brain barrier breakdown is a sensitive biomarker of cognitive and language impairment in patients with white matter hyperintensities.Neurol. Ther.20231251745175810.1007/s40120‑023‑00527‑z37490234
    [Google Scholar]
  6. MontagneA. BarnesS.R. SweeneyM.D. HallidayM.R. SagareA.P. ZhaoZ. TogaA.W. JacobsR.E. LiuC.Y. AmezcuaL. HarringtonM.G. ChuiH.C. LawM. ZlokovicB.V. Blood-brain barrier breakdown in the aging human hippocampus.Neuron201585229630210.1016/j.neuron.2014.12.03225611508
    [Google Scholar]
  7. VerheggenI.C.M. de JongJ.J.A. van BoxtelM.P.J. PostmaA.A. JansenJ.F.A. VerheyF.R.J. BackesW.H. Imaging the role of blood–brain barrier disruption in normal cognitive ageing.Geroscience20204261751176410.1007/s11357‑020‑00282‑133025410
    [Google Scholar]
  8. GordonB.A. BlazeyT.M. SuY. Hari-RajA. DincerA. FloresS. ChristensenJ. McDadeE. WangG. XiongC. CairnsN.J. HassenstabJ. MarcusD.S. FaganA.M. JackC.R.Jr HornbeckR.C. PaumierK.L. AncesB.M. BermanS.B. BrickmanA.M. CashD.M. ChhatwalJ.P. CorreiaS. FörsterS. FoxN.C. Graff-RadfordN.R. la FougèreC. LevinJ. MastersC.L. RossorM.N. SallowayS. SaykinA.J. SchofieldP.R. ThompsonP.M. WeinerM.M. HoltzmanD.M. RaichleM.E. MorrisJ.C. BatemanR.J. BenzingerT.L.S. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study.Lancet Neurol.201817324125010.1016/S1474‑4422(18)30028‑029397305
    [Google Scholar]
  9. QuirozY.T. ZetterbergH. ReimanE.M. ChenY. SuY. Fox-FullerJ.T. GarciaG. VillegasA. Sepulveda-FallaD. VilladaM. Arboleda-VelasquezJ.F. Guzmán-VélezE. Vila-CastelarC. GordonB.A. SchultzS.A. ProtasH.D. GhisaysV. GiraldoM. TiradoV. BaenaA. MunozC. Rios-RomenetsS. TariotP.N. BlennowK. LoperaF. Plasma neurofilament light chain in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional and longitudinal cohort study.Lancet Neurol.202019651352110.1016/S1474‑4422(20)30137‑X32470423
    [Google Scholar]
  10. BarthélemyN.R. LiY. Joseph-MathurinN. GordonB.A. HassenstabJ. BenzingerT.L.S. BucklesV. FaganA.M. PerrinR.J. GoateA.M. MorrisJ.C. KarchC.M. XiongC. AllegriR. MendezP.C. BermanS.B. IkeuchiT. MoriH. ShimadaH. ShojiM. SuzukiK. NobleJ. FarlowM. ChhatwalJ. Graff-RadfordN.R. SallowayS. SchofieldP.R. MastersC.L. MartinsR.N. O’ConnorA. FoxN.C. LevinJ. JuckerM. GabelleA. LehmannS. SatoC. BatemanR.J. McDadeE. Dominantly Inherited Alzheimer Network A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease.Nat. Med.202026339840710.1038/s41591‑020‑0781‑z32161412
    [Google Scholar]
  11. ZhangH. CaoY. MaL. WeiY. LiH. Possible mechanisms of tau spread and toxicity in Alzheimer’s disease.Front. Cell Dev. Biol.2021970726810.3389/fcell.2021.70726834395435
    [Google Scholar]
  12. SelkoeD.J. SchenkD. Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics.Annu. Rev. Pharmacol. Toxicol.200343154558410.1146/annurev.pharmtox.43.100901.14024812415125
    [Google Scholar]
  13. BaptistaF.I. HenriquesA.G. SilvaA.M.S. WiltfangJ. da Cruz e SilvaO.A.B. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease.ACS Chem. Neurosci.201452839210.1021/cn400213r24328060
    [Google Scholar]
  14. NabaviS.M. TalarekS. ListosJ. NabaviS.F. DeviK.P. Roberto de OliveiraM. TewariD. ArgüellesS. MehrzadiS. HosseinzadehA. D’onofrioG. OrhanI.E. SuredaA. XuS. MomtazS. FarzaeiM.H. Phosphodiesterase inhibitors say NO to Alzheimer’s disease.Food Chem. Toxicol.201913411082210.1016/j.fct.2019.11082231536753
    [Google Scholar]
  15. MarbohV. MahantaC.L. Characterisation and antioxidant activity of sohphlang (Flemingia vestita), a tuberous crop.J. Food Sci. Technol.202057103533354410.1007/s13197‑020‑04344‑232903822
    [Google Scholar]
  16. Ghasemzadeh GhasemzadehN. Flavonoids and phenolic acids: Role and biochemical activity in plants and human.J. Med. Plants Res.20115316697670310.5897/JMPR11.1404
    [Google Scholar]
  17. SagrarioM-A. MpG. JB. PB-B. Plants with evidence-based therapeutic effects against neurodegenerative diseases.Pharm. Pharmacol. Int. J.20197522122710.15406/ppij.2019.07.00255
    [Google Scholar]
  18. LiuM.H. LinY.S. SheuS.Y. SunJ.S. Anti-inflammatory effects of daidzein on primary astroglial cell culture.Nutr. Neurosci.200912312313410.1179/147683009X42327419356315
    [Google Scholar]
  19. HeoH.J. SuhY.M. KimM.J. ChoiS.J. MunN.S. KimH.K. KimE. KimC.J. ChoH.Y. KimY.J. ShinD.H. Daidzein activates choline acetyltransferase from MC-IXC cells and improves drug-induced amnesia.Biosci. Biotechnol. Biochem.200670110711110.1271/bbb.70.10716428827
    [Google Scholar]
  20. ItoS. SasakiH. GotowT. SuetakeI. NagaiK. Soy isoflavone daidzein protects Neuro2a cells from NO stress via activation of AMPK-PGC1α pathway followed by mitochondrial enhancement.PharmaNutrition20232410033710.1016/j.phanu.2023.100337
    [Google Scholar]
  21. TandonV. PalP. RoyB. RaoH.S.P. ReddyK.S. In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong, India.Parasitol. Res.199783549249810.1007/s0043600502869197399
    [Google Scholar]
  22. DasB. TandonV. SahaN. Anthelmintic efficacy of Flemingia vestita (Fabaceae): alteration in the activities of some glycolytic enzymes in the cestode, Raillietina echinobothrida.Parasitol. Res.200493425326110.1007/s00436‑004‑1122‑815138892
    [Google Scholar]
  23. TandonV. DasB. In vitro testing of anthelmintic efficacy of Flemingia vestita (Fabaceae) on carbohydrate metabolism in Rallietina echinobothrida.Methods200742433033810.1016/j.ymeth.2007.01.00517560321
    [Google Scholar]
  24. MuliarG. PaulA. ZamanM.K. Flemingia vestita benth-a highly valued medicinal and edible tuber of Meghalaya.Curr. Trends Pharm. Res.2022913546
    [Google Scholar]
  25. BharadwajB. JyrwaR.B. NayakR. LoyingS. BoroS. Assessment of the antioxidant activity and antimicrobial activity of Flemingia vestita root extract.Int. J. Bot. Stud.2021667276
    [Google Scholar]
  26. XueR. FangZ. ZhangM. YiZ. WenC. ShiT. TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis.Nucleic Acids Res.201241D1089D109510.1093/nar/gks110023203875
    [Google Scholar]
  27. ShailajanS. KumariaS. PednekarS. MenonS. ChoudhuryH. MataniA. Estrogenic potential of Flemingia vestita benth tubers in ovariectomized rat model.Pharmacogn. J.201581444910.5530/pj.2016.1.10
    [Google Scholar]
  28. ChaudharyP. JanmedaP. DoceaA.O. YeskaliyevaB. Abdull RazisA.F. ModuB. CalinaD. Sharifi-RadJ. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases.Front Chem.202311115819810.3389/fchem.2023.115819837234200
    [Google Scholar]
  29. NaithaniU. GuleriaV. Integrative computational approaches for discovery and evaluation of lead compound for drug design.Front. Drug Discov.20244136245610.3389/fddsv.2024.1362456
    [Google Scholar]
  30. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W.Jr. Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.00733624381236
    [Google Scholar]
  31. AghajaniJ. FarniaP. FarniaP. GhanaviJ. VelayatiA.A. Molecular dynamic simulations and molecular docking as a potential way for designing new inhibitor drugs without resistance.Tanaffos202221111436258912
    [Google Scholar]
  32. KhanalP. PatilV.S. BhandareV.V. DwivediP.S.R. ShastryC.S. PatilB.M. GuravS.S. HarishD.R. RoyS. Computational investigation of benzalacetophenone derivatives against SARS-CoV-2 as potential multi-target bioactive compounds.Comput. Biol. Med.202214610566810.1016/j.compbiomed.2022.10566835667894
    [Google Scholar]
  33. SabeV.T. NtombelaT. JhambaL.A. MaguireG.E.M. GovenderT. NaickerT. KrugerH.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review.Eur. J. Med. Chem.202122411370510.1016/j.ejmech.2021.11370534303871
    [Google Scholar]
  34. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  35. ZhangW. HuaiY. MiaoZ. QianA. WangY. Systems pharmacology for investigation of the mechanisms of action of traditional Chinese medicine in drug discovery.Front. Pharmacol.20191074310.3389/fphar.2019.0074331379563
    [Google Scholar]
  36. ZhangL.X. DongJ. WeiH. ShiS.H. LuA.P. DengG.M. CaoD.S. TCMSID: a simplified integrated database for drug discovery from traditional chinese medicine.J. Cheminform.20221418910.1186/s13321‑022‑00670‑z36587232
    [Google Scholar]
  37. GhalotK. LalV.K. JhaS. Phytochemical and pharmacological potential of Flemingia Roxb. ex WT Aiton (Fabaceae).Int. J. Phytomed.201133294307
    [Google Scholar]
  38. KarP.K. TandonV. SahaN. Anthelmintic efficacy of Flemingia vestita: genistein-induced effect on the activity of nitric oxide synthase and nitric oxide in the trematode parasite, Fasciolopsis buski.Parasitol. Int.200251324925710.1016/S1383‑5769(02)00032‑612243779
    [Google Scholar]
  39. DasB. TandonV. SahaN. Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl.Parasitol. Int.2006551172110.1016/j.parint.2005.08.00216198617
    [Google Scholar]
  40. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2019 update: improved access to chemical data.Nucleic Acids Res.201947D1102D110910.1093/nar/gky103330371825
    [Google Scholar]
  41. AbdelazeemN.M. AboulthanaW.M. HassanA.S. AlmehiziaA.A. NaglahA.M. AlkahtaniH.M. Synthesis, in silico ADMET prediction analysis, and pharmacological evaluation of sulfonamide derivatives tethered with pyrazole or pyridine as anti-diabetic and anti-Alzheimer’s agents.Saudi Pharm. J.202432510202510.1016/j.jsps.2024.10202538550332
    [Google Scholar]
  42. AbdulredhaF.H. MahdiM.F. KhanA.K. In silico evaluation of binding interaction and ADME study of new 1,3-diazetidin-2-one derivatives with high antiproliferative activity.J. Adv. Pharm. Technol. Res.202314317618410.4103/JAPTR.JAPTR_116_2337692021
    [Google Scholar]
  43. BakchiB. KrishnaA.D. SreecharanE. GaneshV.B.J. NiharikaM. MaharshiS. PuttaguntaS.B. SigalapalliD.K. BhandareR.R. ShaikA.B. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective.J. Mol. Struct.2022125913271210.1016/j.molstruc.2022.132712
    [Google Scholar]
  44. TianS. WangJ. LiY. LiD. XuL. HouT. The application of in silico drug-likeness predictions in pharmaceutical research.Adv. Drug Deliv. Rev.20158621010.1016/j.addr.2015.01.00925666163
    [Google Scholar]
  45. KlimoszekD. JeleńM. DołowyM. Morak-MłodawskaB. Study of the lipophilicity and ADMET parameters of new anticancer diquinothiazines with pharmacophore substituents.Pharmaceuticals (Basel)202417672510.3390/ph1706072538931392
    [Google Scholar]
  46. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  47. BanerjeeP. KemmlerE. DunkelM. PreissnerR. ProTox 3.0: a webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.202452W1W513W52010.1093/nar/gkae30338647086
    [Google Scholar]
  48. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules20071338426205061
    [Google Scholar]
  49. KouranovA. XieL. de la CruzJ. ChenL. WestbrookJ. BourneP.E. BermanH.M. The RCSB PDB information portal for structural genomics.Nucleic Acids Res.20063490001D302D30510.1093/nar/gkj12016381872
    [Google Scholar]
  50. Al-KhayyatM.Z. Al-DabbaghA.G. In silico prediction and docking of tertiary structure of LuxI, an inducer synthase of Vibrio fischeri.Rep. Biochem. Mol. Biol.201642667527536699
    [Google Scholar]
  51. MessaoudiA. BelguithH. Ben HamidaJ. Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase.Theor. Biol. Med. Model.20131012210.1186/1742‑4682‑10‑2223547944
    [Google Scholar]
  52. PrabhakaranP. HebbaniA.V. MenonS.V. PaitalB. MurmuS. KumarS. SinghM.K. SahooD.K. DesaiP.P.D. Insilico generation of novel ligands for the inhibition of SARS-CoV-2 main protease (3CLpro) using deep learning.Front. Microbiol.202314119479410.3389/fmicb.2023.119479437448573
    [Google Scholar]
  53. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  54. BhattacharyaK. KhanalP. PatilV.S. DwivediP.S.R. ChanuN.R. ChaudharyR.K. DekaS. ChakrabortyA. Computational pharmacology profiling of borapetoside C against melanoma.J. Biomol. Struct. Dyn.20244263233324810.1080/07391102.2023.221333337203884
    [Google Scholar]
  55. JailletL. ArtemovaS. RedonS. IM-UFF: Extending the universal force field for interactive molecular modeling.J. Mol. Graph. Model.20177735036210.1016/j.jmgm.2017.08.02328950182
    [Google Scholar]
  56. ChakrabortyC. BandyopadhyayS. AgoramoorthyG. India’s computational biology growth and challenges.Interdiscip. Sci.20168326327610.1007/s12539‑016‑0179‑227465042
    [Google Scholar]
  57. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  58. KhanalP. PatilV.S. PatilB.M. BhattacharyaK. ShrivastavaA.K. ChaudharyR.K. SinghL. DwivediP.S.R. HarishD.R. RoyS. The marijuana-schizophrenia multifaceted nexus: Connections and conundrums towards neurophysiology.Comput. Biol. Chem.202310710795710.1016/j.compbiolchem.2023.10795737729848
    [Google Scholar]
  59. SathiyamaniB. DanielE.A. AnsarS. EsakialrajB.H. HassanS. RevanasiddappaP.D. KeshavamurthyA. RoyS. VetrivelU. HannaL.E. Structural analysis and molecular dynamics simulation studies of HIV-1 antisense protein predict its potential role in HIV replication and pathogenesis.Front. Microbiol.202314115220610.3389/fmicb.2023.115220637020719
    [Google Scholar]
  60. AyodeleP.F. BamigbadeA. BamigbadeO.O. AdeniyiI.A. TachinE.S. SewejeA.J. FarohunbiS.T. Illustrated procedure to perform molecular docking using PyRx and Biovia Discovery Studio Visualizer: A case study of 10kt with atropine.Prog. Drug Discov. & Biomed. Sci.20236113210.36877/pddbs.a0000424
    [Google Scholar]
  61. BowersK.J. ChowD.E. XuH. Scalable algorithms for molecular dynamics simulations on commodity clusters.SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing200643310.1109/SC.2006.54
    [Google Scholar]
  62. GahtoriJ. PantS. SrivastavaH.K. Modeling antimalarial and antihuman African trypanosomiasis compounds: a ligand- and structure-based approaches.Mol. Divers.20202441107112410.1007/s11030‑019‑10015‑y31760561
    [Google Scholar]
  63. JenaN.R. PantS. SrivastavaH.K. Artificially expanded genetic information systems (AEGISs) as potent inhibitors of the RNA-dependent RNA polymerase of the SARS-CoV-2.J. Biomol. Struct. Dyn.202240146381639710.1080/07391102.2021.188311233565387
    [Google Scholar]
  64. BerendsenH.J.C. GrigeraJ.R. StraatsmaT.P. The missing term in effective pair potentials.J. Phys. Chem.198791246269627110.1021/j100308a038
    [Google Scholar]
  65. RoosK. WuC. DammW. ReboulM. StevensonJ.M. LuC. DahlgrenM.K. MondalS. ChenW. WangL. AbelR. FriesnerR.A. HarderE.D. OPLS3e: Extending force field coverage for drug-like small molecules.J. Chem. Theory Comput.20191531863187410.1021/acs.jctc.8b0102630768902
    [Google Scholar]
  66. PoschH.A. HooverW.G. VeselyF.J. Canonical dynamics of the Nosé oscillator: Stability, order, and chaos.Phys. Rev. A Gen. Phys.19863364253426510.1103/PhysRevA.33.42539897167
    [Google Scholar]
  67. MartynaG.J. TobiasD.J. KleinM.L. Constant pressure molecular dynamics algorithms.J. Chem. Phys.199410154177418910.1063/1.467468
    [Google Scholar]
  68. IvanovaL. Tammiku-TaulJ. García-SosaA.T. SidorovaY. SaarmaM. KarelsonM. Molecular dynamics simulations of the interactions between glial cell line-derived neurotrophic factor family receptor GFRα1 and small-molecule ligands.ACS Omega201839114071141410.1021/acsomega.8b0152430320260
    [Google Scholar]
  69. WangE. SunH. WangJ. WangZ. LiuH. ZhangJ.Z.H. HouT. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design.Chem. Rev.2019119169478950810.1021/acs.chemrev.9b0005531244000
    [Google Scholar]
  70. KhanalP. ZargariF. FarB.F. KumarD. RM. MahdiY.K. JubairN.K. SarafS.K. BansalP. SinghR. SelvarajaM. DeyY.N. Integration of system biology tools to investigate Huperzine A as an anti-Alzheimer agent.Front. Pharmacol.20211278596410.3389/fphar.2021.78596434966281
    [Google Scholar]
  71. García-OstaA. Cuadrado-TejedorM. García-BarrosoC. OyarzábalJ. FrancoR. Phosphodiesterases as therapeutic targets for Alzheimer’s disease.ACS Chem. Neurosci.201231183284410.1021/cn300090723173065
    [Google Scholar]
  72. ShengJ. ZhangS. WuL. KumarG. LiaoY. GkP. FanH. Inhibition of phosphodiesterase: A novel therapeutic target for the treatment of mild cognitive impairment and Alzheimer’s disease.Front. Aging Neurosci.202214101918710.3389/fnagi.2022.101918736268188
    [Google Scholar]
  73. LinX. KoelschG. WuS. DownsD. DashtiA. TangJ. Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein.Proc. Natl. Acad. Sci. USA20009741456146010.1073/pnas.97.4.145610677483
    [Google Scholar]
  74. RussoP. KisialiouA. LamonacaP. MoroniR. PrinziG. FiniM. New drugs from marine organisms in Alzheimer’s disease.Mar. Drugs2015141510.3390/md1401000526712769
    [Google Scholar]
/content/journals/car/10.2174/0115672050358848241211080546
Loading
/content/journals/car/10.2174/0115672050358848241211080546
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AChE; Alzheimer's; BACE1; Flemingia vestita; molecular dynamics simulation; PDE5A
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test