Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer's disease (AD), characterised by gradual memory loss and neurodegeneration, is an important risk to global health. Despite the recent advances in the field of neuroscience, the complex biological mechanisms underlying the aetiology and pathology of AD have not been elucidated yet. The development of amyloid-beta plaques, hyperphosphorylation of tau protein, oxidative stress, and neuroinflammation have been identified as important components. The genesis of AD has been illuminated by advances in molecular techniques, which have shown the contributions of environmental, genetic, and epigenetic variables.

Ongoing research is focused on the potential of bioactive compounds as therapeutic agents. Quercetin, epigallocatechin gallate, huperzine A, ginsenosides, omega-3 fatty acids, vitamin E, zinc, bacosides from brahmi, and withanolide A from ashwagandha are among the compounds that have demonstrated encouraging effects in modifying disease pathways. These bioactive substances demonstrate their potential for symptomatic relief by providing neuroprotective, antioxidant, anti-inflammatory, and cognitive-enhancing properties. The present review presents the recent findings on AD pathogenesis, molecular mechanisms, and the impact of natural compounds, offering a comprehensive perspective on current and emerging strategies for managing this debilitating condition.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050361294241211071813
2024-12-23
2025-03-28
Loading full text...

Full text loading...

References

  1. WilsonR.S. SegawaE. BoyleP.A. AnagnosS.E. HizelL.P. BennettD.A. The natural history of cognitive decline in Alzheimer’s disease.Psychol. Aging20122741008101710.1037/a002985722946521
    [Google Scholar]
  2. MusiekE.S. HoltzmanD.M. Mechanisms linking circadian clocks, sleep, and neurodegeneration.Science201635463151004100810.1126/science.aah496827885006
    [Google Scholar]
  3. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments in alzheimer disease: An update.J. Cent. Nerv. Syst. Dis.20201210.1177/117957352090739732165850
    [Google Scholar]
  4. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.00131564456
    [Google Scholar]
  5. LiX.L. HuN. TanM.S. YuJ.T. TanL. Behavioral and psychological symptoms in Alzheimer’s disease.BioMed Res. Int.201420141910.1155/2014/92780425133184
    [Google Scholar]
  6. SelkoeD.J. HardyJ. The amyloid hypothesis of Alzheimer’s disease at 25 years.EMBO Mol. Med.20168659560810.15252/emmm.20160621027025652
    [Google Scholar]
  7. HenekaM.T. GolenbockD.T. LatzE. Innate immunity in Alzheimer’s disease.Nat. Immunol.201516322923610.1038/ni.310225689443
    [Google Scholar]
  8. HsuJ.W. WillisR.J. Dementia risk and financial decision making by older households: The impact of information.SSRN20132013455610.2139/ssrn.233922525525476
    [Google Scholar]
  9. KarchC.M. GoateA.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis.Biol. Psychiatry2015771435110.1016/j.biopsych.2014.05.00624951455
    [Google Scholar]
  10. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  11. RajmohanR. ReddyP.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons.J. Alzheimers Dis.201757497599910.3233/JAD‑16061227567878
    [Google Scholar]
  12. AnoopA. SinghP.K. JacobR.S. MajiS.K. CSF biomarkers for alzheimer’s disease diagnosis.Int. J. Alzheimers Dis.2010201011210.4061/2010/60680220721349
    [Google Scholar]
  13. BalesKR DodartJC DeMattosRB HoltzmanDM PaulSM Apolipoprotein E, amyloid, and Alzheimer disease.Mol Interv200226363-375, 339.10.1124/mi.2.6.36314993413
    [Google Scholar]
  14. BassettC.N. MontineT.J. Lipoproteins and lipid peroxidation in Alzheimer’s disease.J. Nutr. Health Aging200371242912679837
    [Google Scholar]
  15. VillemagneV.L. BurnhamS. BourgeatP. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study.Lancet Neurol.201312435736710.1016/S1474‑4422(13)70044‑923477989
    [Google Scholar]
  16. MastersC.L. BatemanR. BlennowK. RoweC.C. SperlingR.A. CummingsJ.L. Alzheimer’s disease.Nat. Rev. Dis. Primers2015111505610.1038/nrdp.2015.5627188934
    [Google Scholar]
  17. SmallS.A. DuffK. Linking Abeta and tau in late-onset Alzheimer’s disease: A dual pathway hypothesis.Neuron200860453454210.1016/j.neuron.2008.11.00719038212
    [Google Scholar]
  18. MattsonM.P. Pathways towards and away from Alzheimer’s disease.Nature2004430700063163910.1038/nature0262115295589
    [Google Scholar]
  19. HampelH. HardyJ. BlennowK. The amyloid-β pathway in Alzheimer’s disease.Mol. Psychiatry202126105481550310.1038/s41380‑021‑01249‑034456336
    [Google Scholar]
  20. CastellaniR.J. PerryG. SmithM.A. The role of novel therapeutics in the treatment of Alzheimer’s disease.Expert Opin. Investig. Drugs2007166753766
    [Google Scholar]
  21. MuckeL. SelkoeD.J. Neurotoxicity of amyloid β-protein: Synaptic and network dysfunction.Cold Spring Harb. Perspect. Med.201227a00633810.1101/cshperspect.a00633822762015
    [Google Scholar]
  22. HugoJ. GanguliM. Dementia and cognitive impairment: Epidemiology, diagnosis, and treatment.Clin. Geriatr. Med.201430342144210.1016/j.cger.2014.04.00125037289
    [Google Scholar]
  23. GlennerG.G. WongC.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun.1984120388589010.1016/S0006‑291X(84)80190‑46375662
    [Google Scholar]
  24. GreenbergS.M. BacskaiB.J. Hernandez-GuillamonM. PruzinJ. SperlingR. van VeluwS.J. Cerebral amyloid angiopathy and Alzheimer disease — One peptide, two pathways.Nat. Rev. Neurol.2020161304210.1038/s41582‑019‑0281‑231827267
    [Google Scholar]
  25. KunkleB.W. Grenier-BoleyB. SimsR. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing.Nat. Genet.201951341443010.1038/s41588‑019‑0358‑230820047
    [Google Scholar]
  26. BatemanR.J. XiongC. BenzingerT.L.S. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease.N. Engl. J. Med.2012367979580410.1056/NEJMoa120275322784036
    [Google Scholar]
  27. LeungK.K. BarnesJ. RidgwayG.R. Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease.Neuroimage20105141345135910.1016/j.neuroimage.2010.03.01820230901
    [Google Scholar]
  28. GreiciusM.D. SrivastavaG. ReissA.L. MenonV. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI.Proc. Natl. Acad. Sci. USA2004101134637464210.1073/pnas.030862710115070770
    [Google Scholar]
  29. MielkeM. VemuriP. RoccaW. Clinical epidemiology of Alzheimer’s disease: Assessing sex and gender differences.Clin. Epidemiol.20146374810.2147/CLEP.S3792924470773
    [Google Scholar]
  30. HampelH. HardyJ. BlennowK. Amyloid-beta and tau biomarkers in Alzheimer’s disease.Trends Pharmacol. Sci.2010318402410
    [Google Scholar]
  31. CummingsJ. LeeG. ZhongK. FonsecaJ. TaghvaK. Alzheimer’s disease drug development pipeline: 2021.Alzheimers Dement.202171e1217910.1002/trc2.1217934095440
    [Google Scholar]
  32. GoldeT.E. SchneiderL.S. KooE.H. Anti-aβ therapeutics in Alzheimer’s disease: The need for a paradigm shift.Neuron201169220321310.1016/j.neuron.2011.01.00221262461
    [Google Scholar]
  33. TziorasM. McGeachanR.I. DurrantC.S. Spires-JonesT.L. Synaptic degeneration in Alzheimer disease.Nat. Rev. Neurol.2023191193810.1038/s41582‑022‑00749‑z36513730
    [Google Scholar]
  34. RolloM.E. WilliamsR.E. StewartL.R. Molecular imaging in Alzheimer’s disease: An update on amyloid and tau imaging.Front. Aging Neurosci.202113642819
    [Google Scholar]
  35. LaFerlaF.M. GreenK.N. OddoS. Intracellular amyloid-β in Alzheimer’s disease.Nat. Rev. Neurosci.20078749950910.1038/nrn216817551515
    [Google Scholar]
  36. HeppnerF.L. RansohoffR.M. BecherB. Immune attack: The role of inflammation in Alzheimer disease.Nat. Rev. Neurosci.201516635837210.1038/nrn388025991443
    [Google Scholar]
  37. MedeirosR. Baglietto-VargasD. LaFerlaF.M. The role of tau in Alzheimer’s disease and related disorders.CNS Neurosci. Ther.201117551452410.1111/j.1755‑5949.2010.00177.x20553310
    [Google Scholar]
  38. ShiY. YamadaK. LiddelowS.A. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy.Nature2017549767352352710.1038/nature2401628959956
    [Google Scholar]
  39. KimS. SwaminathanS. ShenL. Genome-wide association study of CSF biomarkers Aβ 1-42, t-tau, and p-tau 181p in the ADNI cohort.Neurology2011761697910.1212/WNL.0b013e318204a39721123754
    [Google Scholar]
  40. DeTureM.A. DicksonD.W. The neuropathological diagnosis of Alzheimer’s disease.Mol. Neurodegener.20191413210.1186/s13024‑019‑0333‑531375134
    [Google Scholar]
  41. GongC.X. LiuF. Grundke-IqbalI. IqbalK. Post-translational modifications of tau protein in Alzheimer’s disease.J. Neural Transm.2005112681383810.1007/s00702‑004‑0221‑015517432
    [Google Scholar]
  42. VeitchD.P. WeinerM.W. AisenP.S. Understanding disease progression and improving Alzheimer’s disease clinical trials: Recent highlights from the alzheimer’s disease neuroimaging initiative.Alzheimers Dement.201915110615210.1016/j.jalz.2018.08.00530321505
    [Google Scholar]
  43. GhisoJ. TomidokoroY. ReveszT. FrangioneB. RostagnoA. Cerebral amyloid angiopathy and Alzheimer’s disease.Hirosaki Igaku201061Suppl.S111S12421037967
    [Google Scholar]
  44. Iturria-MedinaY. SoteroR.C. ToussaintP.J. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis.Nat. Commun.2016711193410.1038/ncomms1193427327500
    [Google Scholar]
  45. SelkoeD.J. Resolving controversies on the path to Alzheimer’s therapeutics.Nat. Med.20111791060106510.1038/nm.246021900936
    [Google Scholar]
  46. ZhaoY. ZhaoB. Oxidative stress and the pathogenesis of Alzheimer’s disease.Oxid. Med. Cell. Longev.2013201311010.1155/2013/31652323983897
    [Google Scholar]
  47. WangJZ XiaYY Grundke-IqbalI IqbalK Abnormal hyperphosphorylation of tau: Sites, regulation, and molecular mechanism of neurofibrillary degeneration.J Alzheimers Dis201333(Suppl 1).
    [Google Scholar]
  48. FerriC.P. PrinceM. BrayneC. Global prevalence of dementia: A Delphi consensus study.Lancet200536695032112211710.1016/S0140‑6736(05)67889‑016360788
    [Google Scholar]
  49. BallardC. GauthierS. CorbettA. BrayneC. AarslandD. JonesE. Alzheimer’s disease.Lancet201137797701019103110.1016/S0140‑6736(10)61349‑921371747
    [Google Scholar]
  50. PlutaR. A look at the etiology of Alzheimer’s disease based on the brain ischemia model.Curr. Alzheimer Res.202421316618210.2174/011567205032092124062705073638963100
    [Google Scholar]
  51. MullaneK. WilliamsM. Alzheimer’s therapeutics: Continued clinical failures question the validity of the amyloid hypothesis—but what lies beyond?Biochem. Pharmacol.201385328930510.1016/j.bcp.2012.11.01423178653
    [Google Scholar]
  52. EdisonP. ArcherH.A. HinzR. Amyloid, hypometabolism, and cognition in Alzheimer disease.Neurology200768750150810.1212/01.wnl.0000244749.20056.d417065593
    [Google Scholar]
  53. CanterR.G. PenneyJ. TsaiL.H. The road to restoring neural circuits for the treatment of Alzheimer’s disease.Nature2016539762818719610.1038/nature2041227830780
    [Google Scholar]
  54. KhanS. BarveK.H. KumarM.S. Recent advancements in pathogenesis, diagnostic and therapeutic insights of Alzheimer’s disease.Biomed. Pharmacother.2020128110310
    [Google Scholar]
  55. HoltzmanD.M. MorrisJ.C. GoateA.M. Alzheimer’s disease: The challenge of the second century.Sci. Transl. Med.201137777sr110.1126/scitranslmed.300236921471435
    [Google Scholar]
  56. GuerreiroR. BrasJ. The age factor in Alzheimer’s disease.Genome Med.20157110611210.1186/s13073‑015‑0232‑526482651
    [Google Scholar]
  57. BlennowK. ZetterbergH. Biomarkers for Alzheimer’s disease: Current status and prospects for the future.J. Intern. Med.2018284664366310.1111/joim.1281630051512
    [Google Scholar]
  58. TalboomJ.S. HåbergA. De BothM.D. Family history of Alzheimer’s disease alters cognition and is modified by medical and genetic factors.eLife20198e4617910.7554/eLife.4617931210642
    [Google Scholar]
  59. TanziR.E. The genetics of Alzheimer disease.Cold Spring Harb. Perspect. Med.2012210a00629610.1101/cshperspect.a00629623028126
    [Google Scholar]
  60. MielkeM.M. Sex and gender differences in Alzheimer’s disease dementia.Psychiatr. Times20183511141730820070
    [Google Scholar]
  61. LeszekJ. MikhaylenkoE.V. BelousovD.M. The links between cardiovascular diseases and alzheimer’s disease.Curr. Neuropharmacol.202119215216910.2174/18756190MTA4dNjE5232727331
    [Google Scholar]
  62. DhanaK. EvansD.A. RajanK.B. BennettD.A. MorrisM.C. Healthy lifestyle and the risk of Alzheimer dementia.Neurology2020954e374e38310.1212/WNL.000000000000981632554763
    [Google Scholar]
  63. MielkeM.M. RansomJ.E. MandrekarJ. TurcanoP. SavicaR. BrownA.W. Traumatic brain injury and risk of Alzheimer’s disease and related dementias in the population.J. Alzheimers Dis.20228831049105910.3233/JAD‑22015935723103
    [Google Scholar]
  64. WilsonR.S. YuL. LamarM. SchneiderJ.A. BoyleP.A. BennettD.A. Education and cognitive reserve in old age.Neurology20199210e1041e105010.1212/WNL.000000000000703630728309
    [Google Scholar]
  65. PasseriE. ElkhouryK. MorsinkM. Alzheimer’s disease: Treatment strategies and their limitations.Int. J. Mol. Sci.202223221395410.3390/ijms23221395436430432
    [Google Scholar]
  66. ShiL. BaitalukM. NingS. TREM2-dependent effects on Tau pathology in a mouse model of Alzheimer’s disease.Cell Rep.20172192585259529186693
    [Google Scholar]
  67. FrostG.R. LiY.M. The role of astrocytes in amyloid production and Alzheimer’s disease.Open Biol.201771217022810.1098/rsob.17022829237809
    [Google Scholar]
  68. LiuJ. ChangL. SongY. LiH. WuY. The role of NMDA receptors in Alzheimer’s disease.Front. Neurosci.2019134310.3389/fnins.2019.0004330800052
    [Google Scholar]
  69. YangY. MufsonE.J. HerrupK. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease.J. Neurosci.20032372557256310.1523/JNEUROSCI.23‑07‑02557.200312684440
    [Google Scholar]
  70. SuB. WangX. NunomuraA. Oxidative stress signaling in Alzheimer’s disease.Curr. Alzheimer Res.20085652553210.2174/15672050878689845119075578
    [Google Scholar]
  71. DongY. GuY. HuanY. LiuH. YangS. Traditional Chinese medicine: A potential approach in treating Alzheimer’s disease.J. Alzheimers Dis.202285252754634842191
    [Google Scholar]
  72. CalsolaroV. AntognoliR. OkoyeC. MonzaniF. The use of antipsychotic drugs for treating behavioral symptoms in Alzheimer’s disease.Front. Pharmacol.201910146510.3389/fphar.2019.0146531920655
    [Google Scholar]
  73. MilenkovicD. MorandC. CassidyA. Multi-targeted actions of polyphenols in Alzheimer’s disease.Nutr. Aging2015318999
    [Google Scholar]
  74. BurkeS.L. O’DriscollJ. AlcideA. LiT. Moderating risk of Alzheimer’s disease through the use of anxiolytic agents.Int. J. Geriatr. Psychiatry201732121312132110.1002/gps.461427805724
    [Google Scholar]
  75. TariotP.N. LoyR. RyanJ.M. PorsteinssonA. IsmailS. Mood stabilizers in Alzheimer’s disease: Symptomatic and neuroprotective rationales.Adv. Drug Deliv. Rev.200254121567157710.1016/S0169‑409X(02)00153‑912453674
    [Google Scholar]
  76. SunJ. XuJ. WangC. Natural polyphenols for treatment of Alzheimer’s disease.Nutrients2022149195735565923
    [Google Scholar]
  77. BraidyN. MatinA. RossiF. Therapeutic approaches to modulating oxidative stress in Alzheimer’s disease: The role of natural antioxidants.Aging Dis.201785516529
    [Google Scholar]
  78. BalasubramanianP. SeshadriG. ShanmugamM.M. Natural bioactive compounds against Alzheimer’s disease: Their mechanisms and therapeutic potential.Neurosci. Lett.2019691105111
    [Google Scholar]
  79. NehruB. BhallaP. Herbal medicines in the treatment of Alzheimer’s disease.Curr. Drug Targets2015164317329
    [Google Scholar]
  80. ChoiS.H. KimY.H. QuachT.V. Pomegranate extract alleviates cognitive and behavioral symptoms of Alzheimer’s disease.Sci. Rep.20201011010132572139
    [Google Scholar]
  81. KumarG.P. KhanumF. Neuroprotective potential of phytochemicals.Pharmacogn. Rev.2012612819010.4103/0973‑7847.9989823055633
    [Google Scholar]
  82. CummingsJ. RitterA. ZhongK. Clinical trials for disease-modifying therapies in alzheimer’s disease: A primer, lessons learned, and a blueprint for the future.J. Alzheimers Dis.201864s1S3S2210.3233/JAD‑17990129562511
    [Google Scholar]
  83. PatilS.P. GuptaV. MohantyS. Natural products in Alzheimer’s disease therapy: An updated review.Nutr. Neurosci.2021249715732
    [Google Scholar]
  84. FanR. XuF. WangY. Antioxidant and anti-inflammatory effects of curcumin in treating Alzheimer’s disease: From molecular mechanisms to clinical practice.Neural Regen. Res.2021162363374
    [Google Scholar]
  85. KnopmanD.S. Lecanemab reduces brain amyloid-β and delays cognitive worsening.Cell Rep. Med.20234310098210.1016/j.xcrm.2023.10098236948153
    [Google Scholar]
  86. RashadA. RasoolA. ShaheryarM. Donanemab for Alzheimer’s disease: A systematic review of clinical trials.Health Care2022111323910.3390/healthcare1101003236611492
    [Google Scholar]
  87. van DyckC.H. SwansonC.J. AisenP. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa221294836449413
    [Google Scholar]
  88. HigdonJ.V. FreiB. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions.Crit. Rev. Food Sci. Nutr.20034318914310.1080/1040869039082646412587987
    [Google Scholar]
  89. ImbimboB. BalducciC. IppatiS. WatlingM. Initial failures of anti-tau antibodies in Alzheimer’s disease are reminiscent of the amyloid-β story.Neural Regen. Res.202318111711810.4103/1673‑5374.34040935799522
    [Google Scholar]
  90. AlbaniD. PolitoL. Natural products for neurodegenerative diseases: Potential therapy for Alzheimer’s disease and future prospects.Neurosci. Lett.2020741135491
    [Google Scholar]
  91. LiuP. WangY. SunY. PengG. Neuroinflammation as a potential therapeutic target in Alzheimer’s disease.Clin. Interv. Aging20221766567410.2147/CIA.S35755835520949
    [Google Scholar]
  92. LoizzoM.R. TundisR. MenichiniF. Natural products and Alzheimer’s disease: Recent progress and future perspectives.Curr. Med. Chem.2013202630613085
    [Google Scholar]
  93. TejeraD. MercanD. Sanchez-CaroJ.M. Systemic inflammation impairs microglial Aβ clearance through NLRP 3 inflammasome.EMBO J.20193817e10106410.15252/embj.201810106431359456
    [Google Scholar]
  94. ButterfieldD.A. SwomleyA.M. SultanaR. Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: Importance in disease pathogenesis and progression.Antioxid. Redox Signal.201319882383510.1089/ars.2012.502723249141
    [Google Scholar]
  95. VassarR. KovacsD.M. YanR. WongP.C. The beta-secretase enzyme BACE in health and Alzheimer’s disease: Regulation, cell biology, function, and therapeutic potential.J. Neurosci.20092941127871279410.1523/JNEUROSCI.3657‑09.200919828790
    [Google Scholar]
  96. SubediL. GaireB.P. Recent advances in neuroprotective potentials of flavonoids.Future Med. Chem.2021135453477
    [Google Scholar]
  97. KhouryR. GrysmanN. GoldJ. PatelK. GrossbergG.T. The role of 5 HT6-receptor antagonists in Alzheimer’s disease: An update.Expert Opin. Investig. Drugs201827652353310.1080/13543784.2018.148333429848076
    [Google Scholar]
  98. SinghM. KaurM. KukrejaH. Promising phytochemicals for treatment of Alzheimer’s disease.Curr. Pharm. Des.2016221209228
    [Google Scholar]
  99. LourençoS.C. Moldão-MartinsM. AlvesV.D. Antioxidants of natural plant origins: From sources to food industry applications.Molecules201924224132413910.3390/molecules2422413231731614
    [Google Scholar]
  100. BehlT. KaurI. AleyaL. Unfolding the neuroprotective facets of quercetin in Alzheimer’s disease.Front. Biosci.202126659674
    [Google Scholar]
  101. SpencerJ.P.E. Flavonoids and brain health: Multiple effects underpinned by common mechanisms.Genes Nutr.20094424325010.1007/s12263‑009‑0136‑319685255
    [Google Scholar]
  102. HowesM.J.R. PerryN.S.L. HoughtonP.J. Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders.Phytother. Res.200317111810.1002/ptr.128012557240
    [Google Scholar]
  103. PlutaR. Ułamek-KoziołM. JanuszewskiS. CzuczwarS.J. Gut microbiota and pro/prebiotics in Alzheimer’s disease.Aging20201265539555010.18632/aging.10293032191919
    [Google Scholar]
  104. DengM. YanW. GuZ. LiY. ChenL. HeB. Anti-neuroinflammatory potential of natural products in the treatment of Alzheimer’s disease.Molecules2023283148610.3390/molecules2803148636771152
    [Google Scholar]
  105. GaoL. YuanF. GaoY. Pterostilbene reduces amyloid-β levels and improves cognitive function in a murine model of Alzheimer’s disease.J. Nutr. Biochem.2019642632
    [Google Scholar]
  106. AggarwalB.B. HarikumarK.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases.Int. J. Biochem. Cell Biol.2009411405910.1016/j.biocel.2008.06.01018662800
    [Google Scholar]
  107. AliB.H. BlundenG. TaniraM.O. NemmarA. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research.Food Chem. Toxicol.200846240942010.1016/j.fct.2007.09.08517950516
    [Google Scholar]
  108. ReayJ.L. KennedyD.O. ScholeyA.B. Single doses of Panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity.J. Psychopharmacol.200519435736510.1177/026988110505328615982990
    [Google Scholar]
  109. PerryN.B. BurgessE.J. GlennieV. Echinacea standardization: Analytical methods for phenolic compounds and typical levels in medicinal species.J. Agric. Food Chem.20014941702170610.1021/jf001331y11308313
    [Google Scholar]
  110. BanerjeeS.K. MaulikS.K. Effect of garlic on cardiovascular disorders: A review.Nutr. J.200211410.1186/1475‑2891‑1‑412537594
    [Google Scholar]
  111. BaurJ.A. SinclairD.A. Therapeutic potential of resveratrol: The in vivo evidence.Nat. Rev. Drug Discov.20065649350610.1038/nrd206016732220
    [Google Scholar]
  112. ZhaiY. GuoX. Apigenin induces apoptosis in HepG2 cells: Involvement of p53 pathway.Toxicol. Lett.20071763169177
    [Google Scholar]
  113. WalkerA.F. MarakisG. SimpsonE. Hypotensive effects of hawthorn for patients with diabetes taking prescription drugs: A randomised controlled trial.Br. J. Gen. Pract.20065652743744316762125
    [Google Scholar]
  114. PradhanS.C. GirishC. Hepatoprotective herbal drug, silymarin from Silybum marianum (L.) Gaertn.Therap. Adv. Gastroenterol.200652241253
    [Google Scholar]
  115. Abd El-GhaniM.M. Traditional medicinal plants of Nigeria: An overview.Agric. Biol. J. N. Am.201675220247
    [Google Scholar]
  116. AhmedS. KhanR.A. JahanN. KhanA.A. Medicinal plants and their role in the wound healing process: A review.Pak. J. Biol. Sci.201619111026930795
    [Google Scholar]
  117. DiasD.A. UrbanS. RoessnerU. A historical overview of natural products in drug discovery.Metabolites20122230333610.3390/metabo202030324957513
    [Google Scholar]
  118. Grabska-KobyłeckaI. SzpakowskiP. KrólA. Polyphenols and their impact on the prevention of neurodegenerative diseases and development.Nutrients202315153454348810.3390/nu1515345437571391
    [Google Scholar]
  119. Sharifi-RadJ. RapposelliS. SestitoS. Multi-target mechanisms of phytochemicals in Alzheimer’s disease: Effects on oxidative stress, neuroinflammation and protein aggregation.J. Pers. Med.2022129151510.3390/jpm1209151536143299
    [Google Scholar]
  120. ZhangX.W. ChenJ.Y. OuyangD. LuJ.H. Quercetin in animal models of Alzheimer’s disease: A systematic review of preclinical studies.Int. J. Mol. Sci.202021249349910.3390/ijms2102049331941000
    [Google Scholar]
  121. GertschJ. How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems.J. Ethnopharmacol.2009122217718310.1016/j.jep.2009.01.01019185054
    [Google Scholar]
  122. PanS.Y. ZhouS.F. GaoS.H. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics.Evid. Based Complement. Alternat. Med.2013201312510.1155/2013/62737523634172
    [Google Scholar]
  123. GhorbaniA. EsmaeilizadehM. Pharmacological properties of Salvia officinalis and its components.J. Tradit. Complement. Med.20177443344010.1016/j.jtcme.2016.12.01429034191
    [Google Scholar]
  124. GrienkeU. SilkeJ. TasdemirD. Bioactive compounds from marine and freshwater microalgae: The potential for industrial applications.Mol. Nutr. Food Res.2014583837852
    [Google Scholar]
  125. YooK.Y. ParkS.Y. Terpenoids as potential anti-Alzheimer’s disease therapeutics.Molecules20121733524353810.3390/molecules1703352422430119
    [Google Scholar]
  126. KaramianR. AsadbegyM. Antioxidant, anti-inflammatory, and neuroprotective properties of flavonoids extracted from medicinal plants: A mechanistic review.J. Ethnopharmacol.2019232385398
    [Google Scholar]
  127. NawazH. ShadM.A. RehmanN. UllahN. Phytochemical screening, anti-inflammatory and antioxidant potential of extracts of Berberis lycium.Pak. J. Pharm. Sci.20193231209121531278715
    [Google Scholar]
  128. ShahH. DehghaniF. RamezanM. Revisiting the role of vitamins and minerals in Alzheimer’s disease.Antioxidants202312241510.3390/antiox1202041536829974
    [Google Scholar]
  129. HeinrichM. BarnesJ. GibbonsS. WilliamsonE.M. Fundamentals of pharmacognosy and phytotherapy.Elsevier Health Sciences2012
    [Google Scholar]
  130. BasheerA. AgarwalA. MishraB. Use of Bacopa monnieri in the treatment of dementia due to Alzheimer disease: Systematic review of randomized controlled trials.Interact. J. Med. Res.2022112e3854210.2196/3854235612544
    [Google Scholar]
  131. MikulskaP. MalinowskaM. IgnacykM. Ashwagandha (Withania somnifera)—current research on the health-promoting activities: A narrative review.Pharmaceutics2023154105710.3390/pharmaceutics1504105737111543
    [Google Scholar]
  132. HuangW.Y. CaiY.Z. ZhangY. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention.Nutr. Cancer200962112010.1080/0163558090319158520043255
    [Google Scholar]
  133. ZhouY. XieW. LiY. Mechanisms and therapeutic potential of herbal drugs and natural compounds for the treatment of rheumatoid arthritis.Front. Pharmacol.202112685757
    [Google Scholar]
  134. SantosL.L. OliveiraR.D. FigueiredoJ.A. Medicinal plants and natural compounds as potential agents for the treatment of Alzheimer’s disease.Curr. Alzheimer Res.2018158634648
    [Google Scholar]
  135. NalivaevaN.N. TurnerA.J. Inhibitors of acetylcholinesterase in the treatment of Alzheimer’s disease: Progress and prospects.Eur. J. Pharmacol.2019857172456
    [Google Scholar]
  136. ImbimboB.P. LombardJ. PomaraN. Pathophysiology of Alzheimer’s disease.Neuroimaging Clin. N. Am.2005154727753ix.10.1016/j.nic.2005.09.00916443487
    [Google Scholar]
  137. GrossbergG.T. TongG. BurkeA.D. TariotP.N. Present algorithms and future treatments for Alzheimer’s disease.J. Alzheimers Dis.20196741157117110.3233/JAD‑18090330741683
    [Google Scholar]
  138. AnandR GillKD MahdiAA Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology201476Pt A2750
    [Google Scholar]
  139. ParsonsC.G. StofflerA. DanyszW. Memantine: A NMDA receptor antagonist that improves memory and learning.Pharmacol. Biochem. Behav.200786438539917915302
    [Google Scholar]
  140. DoodyR.S. RamanR. FarlowM. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease.N. Engl. J. Med.2013369434135010.1056/NEJMoa121095123883379
    [Google Scholar]
  141. CoricV. van DyckC.H. SallowayS. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease.Arch. Neurol.201269111430144010.1001/archneurol.2012.219422892585
    [Google Scholar]
  142. WilcockG.K. BlackS.E. HendrixS.B. ZavitzK.H. SwabbE.A. LaughlinM.A. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: A randomised phase II trial.Lancet Neurol.20087648349310.1016/S1474‑4422(08)70090‑518450517
    [Google Scholar]
  143. EganM.F. KostJ. TariotP.N. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2018378181691170310.1056/NEJMoa170644129719179
    [Google Scholar]
  144. HonigL.S. VellasB. WoodwardM. Trial of solanezumab for mild dementia due to Alzheimer’s disease.N. Engl. J. Med.2018378432133010.1056/NEJMoa170597129365294
    [Google Scholar]
  145. WesselsA.M. TariotP.N. ZimmerJ.A. Efficacy and safety of lanabecestat for treatment of early and mild Alzheimer’s disease: The AMARANTH and DAYBREAK-ALZ randomized clinical trials.JAMA Neurol.202077219920910.1001/jamaneurol.2019.398831764959
    [Google Scholar]
  146. SevignyJ. ChiaoP. BussièreT. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.Nature20165377618505610.1038/nature1932327582220
    [Google Scholar]
  147. OstrowitzkiS. LasserR.A. DorflingerE. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease.Alzheimers Res. Ther.2017919510.1186/s13195‑017‑0318‑y29221491
    [Google Scholar]
  148. SwansonC.J. ZhangY. DhaddaS. A phase 2 randomized trial of BAN2401 in early Alzheimer’s disease.Alzheimers Res. Ther.20211318010.1186/s13195‑021‑00813‑833865446
    [Google Scholar]
  149. GauthierS. FeldmanH.H. SchneiderL.S. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: A randomised, controlled, double-blind, parallel-arm, phase 3 trial.Lancet2016388100622873288410.1016/S0140‑6736(16)31275‑227863809
    [Google Scholar]
  150. BakkerA. AlbertM.S. KraussG.L. Response of memory networks to low-dose levetiracetam in mild cognitive impairment: A randomized, controlled study.Neuroimage201523146154
    [Google Scholar]
  151. DeaneR. SinghI. SagareA.P. A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease.J. Clin. Invest.201212241377139210.1172/JCI5864222406537
    [Google Scholar]
  152. WightmanE.L. ReayJ.L. KennedyD.O. Effects of glutamate modulation on cognitive function in Alzheimer’s disease: Review and potential therapies.Neurosci. Biobehav. Rev.2019102171185
    [Google Scholar]
  153. PietteF. BelminJ. VincentH. Masitinib as an add-on therapy for mild to moderate Alzheimer’s disease: A randomized, placebo-controlled trial.Alzheimers Dement.2017134357365
    [Google Scholar]
  154. WischikC.M. StaffR.T. WischikD.J. Tau aggregation inhibitor therapy: An exploratory phase 2 study in mild or moderate Alzheimer’s disease.J. Alzheimers Dis.201544270572010.3233/JAD‑14287425550228
    [Google Scholar]
  155. MedinaM. AvilaJ. The need for better AD animal models.Front. Pharmacol.2014522723610.3389/fphar.2014.0022725386142
    [Google Scholar]
  156. KaufmanA.C. SalazarS.V. HaasL.T. F yn inhibition rescues established memory and synapse loss in Alzheimer mice.Ann. Neurol.201577695397110.1002/ana.2439425707991
    [Google Scholar]
  157. TakayaY. KuwabaraM. TakiguchiY. Mizoribine inhibits the protein folding activity of heat shock protein 60.PLoS One201499111
    [Google Scholar]
  158. YoungJ.C. HartlF.U. Molecular chaperones: Hsp60 and Hsp70 families in protein folding and degradation.Protein Pept. Lett.2003104343352
    [Google Scholar]
  159. DoughertyP.G. SahniA. PeiD. Understanding the binding modes of avrainvillamideanalogs to Hsp60.J. Med. Chem.20206321126961270533073986
    [Google Scholar]
  160. FukumotoK. SaitoS. InoueM. Structure-activity relationship studies on epolactaene derivatives as inhibitors of heat shock protein 60.J. Med. Chem.2015581560976108
    [Google Scholar]
  161. BolandB. KumarA. LeeS. PlattF.M. Modulation of autophagy as a therapeutic target for Alzheimer’s disease.Trends Mol. Med.2018247515534
    [Google Scholar]
  162. LiuR. MengY. WuJ. YM-01, an Hsp70 inhibitor, reduces tau pathology in a mouse model of Alzheimer’s disease.Neurobiol. Aging201981195206
    [Google Scholar]
  163. JinwalU.K. MiyataY. KorenJ. Chemical manipulation of Hsp90 as a novel treatment strategy for tauopathies.Neuron2009633260272
    [Google Scholar]
  164. GehringU. BursellJ. FeigeU. Geldanamycin inhibits the tau phosphorylation pathway by destabilizing Hsp90.J. Biol. Chem.2002277645064512
    [Google Scholar]
  165. SamantR.S. ClarkeP.A. WorkmanP. 17-AAG inhibits Hsp90, reducing tau phosphorylation.Cancer Lett.2016370220921726965998
    [Google Scholar]
  166. BieblM.M. BuchnerJ. Structure, function, and regulation of the Hsp90 machinery.Cold Spring Harb. Perspect. Biol.2019119a03401710.1101/cshperspect.a03401730745292
    [Google Scholar]
/content/journals/car/10.2174/0115672050361294241211071813
Loading
/content/journals/car/10.2174/0115672050361294241211071813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test