Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

There is no abstract available.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050336499240903113255
2024-09-20
2025-04-10
Loading full text...

Full text loading...

/deliver/fulltext/car/21/5/CAR-21-5-06.html?itemId=/content/journals/car/10.2174/0115672050336499240903113255&mimeType=html&fmt=ahah

References

  1. LoganR.W. McClungC.A. Rhythms of life: circadian disruption and brain disorders across the lifespan.Nat. Rev. Neurosci.2019201496510.1038/s41583‑018‑0088‑y30459365
    [Google Scholar]
  2. ColwellC.S. Defining circadian disruption in neurodegenerative disorders.J. Clin. Invest.202113119e14828810.1172/JCI14828834596047
    [Google Scholar]
  3. GabrielB.M. ZierathJ.R. Circadian rhythms and exercise — re-setting the clock in metabolic disease.Nat. Rev. Endocrinol.201915419720610.1038/s41574‑018‑0150‑x30655625
    [Google Scholar]
  4. QueirozJ.N. MacedoR.C.O. TinsleyG.M. Reischak-OliveiraA. Time-restricted eating and circadian rhythms: the biological clock is ticking.Crit. Rev. Food Sci. Nutr.202161172863287510.1080/10408398.2020.178955032662279
    [Google Scholar]
  5. FagianiF. BaronchelliE. PittalugaA. PedriniE. ScacchiC. GovoniS. LanniC. The circadian molecular machinery in cns cells: a fine tuner of neuronal and glial activity with space/time resolution.Front. Mol. Neurosci.20221593717410.3389/fnmol.2022.93717435845604
    [Google Scholar]
  6. StowieA. QiaoZ. BuonfiglioD.D.C. BecknerD.M. EhlenJ.C. BenvenisteM. DavidsonA.J. Arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo.Proc. Natl. Acad. Sci. USA20231204e220932912010.1073/pnas.220932912036656857
    [Google Scholar]
  7. SchlichtingM. RichhariyaS. HerndonN. MaD. XinJ. LenhW. AbruzziK. RosbashM. Dopamine and GPCR-mediated modulation of DN1 clock neurons gates the circadian timing of sleep.Proc. Natl. Acad. Sci. USA202211934e220606611910.1073/pnas.220606611935969763
    [Google Scholar]
  8. BrancaccioM. EdwardsM.D. PattonA.P. SmyllieN.J. CheshamJ.E. MaywoodE.S. HastingsM.H. Cell-autonomous clock of astrocytes drives circadian behavior in mammals.Science2019363642318719210.1126/science.aat410430630934
    [Google Scholar]
  9. HablitzL.M. PláV. GiannettoM. VinitskyH.S. StægerF.F. MetcalfeT. NguyenR. BenraisA. NedergaardM. Circadian control of brain glymphatic and lymphatic fluid flow.Nat. Commun.2020111441110.1038/s41467‑020‑18115‑232879313
    [Google Scholar]
  10. CorsiG. PicardK. di CastroM.A. GarofaloS. TucciF. CheceG. del PercioC. GoliaM.T. RaspaM. ScavizziF. DecoeurF. LauroC. RigamontiM. IannelloF. RagozzinoD.A. RussoE. BernardiniG. NadjarA. TremblayM.E. BabiloniC. MaggiL. LimatolaC. Microglia modulate hippocampal synaptic transmission and sleep duration along the light/dark cycle.Glia20227018910510.1002/glia.2409034487590
    [Google Scholar]
  11. PicardK. CorsiG. DecoeurF. Di CastroM.A. BordeleauM. PersilletM. LayéS. LimatolaC. TremblayM.È. NadjarA. Microglial homeostasis disruption modulates non-rapid eye movement sleep duration and neuronal activity in adult female mice.Brain Behav. Immun.202310715316410.1016/j.bbi.2022.09.01636202169
    [Google Scholar]
  12. GaoC. JiangJ. TanY. ChenS. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets.Signal Transduct. Target. Ther.20238135910.1038/s41392‑023‑01588‑037735487
    [Google Scholar]
  13. VidenovicA. WillisG.L. Circadian system - A novel diagnostic and therapeutic target in Parkinson’s disease?Mov. Disord.201631326026910.1002/mds.2650926826022
    [Google Scholar]
  14. De Pablo-FernándezE. CourtneyR. WarnerT.T. HoltonJ.L. A histologic study of the circadian system in parkinson disease, multiple system atrophy, and progressive supranuclear palsy.JAMA Neurol.20187581008101210.1001/jamaneurol.2018.064029710120
    [Google Scholar]
  15. LengY. MusiekE.S. HuK. CappuccioF.P. YaffeK. Association between circadian rhythms and neurodegenerative diseases.Lancet Neurol.201918330731810.1016/S1474‑4422(18)30461‑730784558
    [Google Scholar]
  16. GriffinP. DimitryJ.M. SheehanP.W. LanannaB.V. GuoC. RobinetteM.L. HayesM.E. CedeñoM.R. NadarajahC.J. EzerskiyL.A. ColonnaM. ZhangJ. BauerA.Q. BurrisT.P. MusiekE.S. Circadian clock protein Rev-erbα regulates neuroinflammation.Proc. Natl. Acad. Sci. USA2019116115102510710.1073/pnas.181240511630792350
    [Google Scholar]
  17. KaneshwaranK. OlahM. TasakiS. YuL. BradshawE.M. SchneiderJ.A. BuchmanA.S. BennettD.A. De JagerP.L. LimA.S.P. Sleep fragmentation, microglial aging, and cognitive impairment in adults with and without Alzheimer’s dementia.Sci. Adv.2019512eaax733110.1126/sciadv.aax733131844665
    [Google Scholar]
  18. LiuW.W. WeiS.Z. HuangG.D. LiuL.B. GuC. ShenY. WangX.H. XiaS.T. XieA.M. HuL.F. WangF. LiuC.F. BMAL1 regulation of microglia‐mediated neuroinflammation in MPTP‐induced Parkinson’s disease mouse model.FASEB J.20203456570658110.1096/fj.201901565RR32246801
    [Google Scholar]
  19. KimJ. JangS. ChoiM. ChungS. ChoeY. ChoeH.K. SonG.H. RheeK. KimK. Abrogation of the circadian nuclear receptor REV-ERBα exacerbates 6-hydroxydopamine-induced dopaminergic neurodegeneration.Mol. Cells201841874275230078232
    [Google Scholar]
  20. KouL. ChiX. SunY. HanC. WanF. HuJ. YinS. WuJ. LiY. ZhouQ. ZouW. XiongN. HuangJ. XiaY. WangT. The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson’s disease via the microglial NLRP3 inflammasome.J. Neuroinflammation202219113310.1186/s12974‑022‑02494‑y35668454
    [Google Scholar]
  21. Al-ZaidF.S. HurleyM.J. DexterD.T. GilliesG.E. Neuroprotective role for RORA in Parkinson’s disease revealed by analysis of post-mortem brain and a dopaminergic cell line.NPJ Parkinsons Dis.20239111910.1038/s41531‑023‑00563‑437500636
    [Google Scholar]
  22. LiJ. LiuH. WangX. XiaY. HuangJ. WangT. LinZ. XiongN. Melatonin ameliorates Parkinson’s disease via regulating microglia polarization in a RORα‐dependent pathway.NPJ Parkinsons Dis.2022819010.1038/s41531‑022‑00352‑535803929
    [Google Scholar]
  23. MorawskaM.M. MoreiraC.G. GindeV.R. ValkoP.O. WeissT. BücheleF. ImbachL.L. MasneufS. KollarikS. PrymaczokN. GerezJ.A. RiekR. BaumannC.R. NoainD. Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of Parkinson’s disease.Sci. Transl. Med.202113623eabe709910.1126/scitranslmed.abe709934878820
    [Google Scholar]
  24. LiuX. YuH. WangY. LiS. ChengC. Al-NusaifM. LeW. Altered motor performance, sleep EEG, and Parkinson’s disease pathology induced by chronic sleep deprivation in Lrrk2G2019S mice.Neurosci. Bull.202238101170118210.1007/s12264‑022‑00881‑235612787
    [Google Scholar]
  25. Rabinovich-NikitinI. RasouliM. ReitzC.J. PosenI. MarguletsV. DhingraR. KhatuaT.N. ThliverisJ.A. MartinoT.A. KirshenbaumL.A. Mitochondrial autophagy and cell survival is regulated by the circadian Clock gene in cardiac myocytes during ischemic stress.Autophagy202117113794381210.1080/15548627.2021.193891334085589
    [Google Scholar]
  26. ZhangJ. ZhaoL. LiY. DongH. ZhangH. ZhangY. MaT. YangL. GaoD. WangX. JiangH. LiC. WangA. JinY. ChenH. Circadian clock regulates granulosa cell autophagy through NR1D1-mediated inhibition of ATG5.Am. J. Physiol. Cell Physiol.20223222C231C24510.1152/ajpcell.00267.202134936504
    [Google Scholar]
  27. TuH.Y. YuanB.S. HouX.O. ZhangX.J. PeiC.S. MaY.T. YangY.P. FanY. QinZ.H. LiuC.F. HuL.F. α‐synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson’s disease.Aging Cell20212012e1352210.1111/acel.1352234811872
    [Google Scholar]
  28. FussiN. HöllerhageM. ChakrounT. NykänenN.P. RöslerT.W. KoeglspergerT. WurstW. BehrendsC. HöglingerG.U. Exosomal secretion of α-synuclein as protective mechanism after upstream blockage of macroautophagy.Cell Death Dis.20189775710.1038/s41419‑018‑0816‑229988147
    [Google Scholar]
  29. WangJ.L. LimA.S. ChiangW.Y. HsiehW.H. LoM.T. SchneiderJ.A. BuchmanA.S. BennettD.A. HuK. SaperC.B. Suprachiasmatic neuron numbers and rest–activity circadian rhythms in older humans.Ann. Neurol.201578231732210.1002/ana.2443225921596
    [Google Scholar]
  30. HarperD.G. StopaE.G. Kuo-LeblancV. McKeeA.C. AsayamaK. VolicerL. KowallN. SatlinA. Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia.Brain200813161609161710.1093/brain/awn04918372313
    [Google Scholar]
  31. La MorgiaC. Ross-CisnerosF.N. KoronyoY. HannibalJ. GallassiR. CantalupoG. SambatiL. PanB.X. TozerK.R. BarboniP. ProviniF. AvanziniP. CarbonelliM. PelosiA. ChuiH. LiguoriR. BaruzziA. Koronyo-HamaouiM. SadunA.A. CarelliV. Melanopsin retinal ganglion cell loss in A lzheimer disease.Ann. Neurol.20167919010910.1002/ana.2454826505992
    [Google Scholar]
  32. KangJ.E. LimM.M. BatemanR.J. LeeJ.J. SmythL.P. CirritoJ.R. FujikiN. NishinoS. HoltzmanD.M. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle.Science200932659551005100710.1126/science.118096219779148
    [Google Scholar]
  33. LouveauA. SmirnovI. KeyesT.J. EcclesJ.D. RouhaniS.J. PeskeJ.D. DereckiN.C. CastleD. MandellJ.W. LeeK.S. HarrisT.H. KipnisJ. Structural and functional features of central nervous system lymphatic vessels.Nature2015523756033734110.1038/nature1443226030524
    [Google Scholar]
  34. WangC. GaoW.R. YinJ. WangZ.J. QiJ.S. CaiH.Y. WuM.N. Chronic sleep deprivation exacerbates cognitive and synaptic plasticity impairments in APP/PS1 transgenic mice.Behav. Brain Res.202141211340010.1016/j.bbr.2021.11340034087256
    [Google Scholar]
  35. NiuL. ZhangF. XuX. YangY. LiS. LiuH. LeW. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer’s disease neuropathology.Brain Pathol.2022323e1302810.1111/bpa.1302834668266
    [Google Scholar]
  36. LuceyB.P. HicksT.J. McLelandJ.S. ToedebuschC.D. BoydJ. ElbertD.L. PattersonB.W. BatyJ. MorrisJ.C. OvodV. MawuenyegaK.G. BatemanR.J. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics.Ann. Neurol.201883119720410.1002/ana.2511729220873
    [Google Scholar]
  37. Shokri-KojoriE. WangG.J. WiersC.E. DemiralS.B. GuoM. KimS.W. LindgrenE. RamirezV. ZehraA. FreemanC. MillerG. ManzaP. SrivastavaT. De SantiS. TomasiD. BenvenisteH. VolkowN.D. β-Amyloid accumulation in the human brain after one night of sleep deprivation.Proc. Natl. Acad. Sci. USA2018115174483448810.1073/pnas.172169411529632177
    [Google Scholar]
  38. HolthJ.K. FritschiS.K. WangC. PedersenN.P. CirritoJ.R. MahanT.E. FinnM.B. ManisM. GeerlingJ.C. FullerP.M. LuceyB.P. HoltzmanD.M. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans.Science2019363642988088410.1126/science.aav254630679382
    [Google Scholar]
  39. HayashiY. KoyanagiS. KusunoseN. OkadaR. WuZ. Tozaki-SaitohH. UkaiK. KohsakaS. InoueK. OhdoS. NakanishiH. The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S.Sci. Rep.201331274410.1038/srep0274424067868
    [Google Scholar]
  40. HongS. Beja-GlasserV.F. NfonoyimB.M. FrouinA. LiS. RamakrishnanS. MerryK.M. ShiQ. RosenthalA. BarresB.A. LemereC.A. SelkoeD.J. StevensB. Complement and microglia mediate early synapse loss in Alzheimer mouse models.Science2016352628671271610.1126/science.aad837327033548
    [Google Scholar]
  41. SchaferD.P. LehrmanE.K. KautzmanA.G. KoyamaR. MardinlyA.R. YamasakiR. RansohoffR.M. GreenbergM.E. BarresB.A. StevensB. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.Neuron201274469170510.1016/j.neuron.2012.03.02622632727
    [Google Scholar]
  42. SantosL.E. BeckmanD. FerreiraS.T. Microglial dysfunction connects depression and Alzheimer’s disease.Brain Behav. Immun.20165515116510.1016/j.bbi.2015.11.01126612494
    [Google Scholar]
  43. LengF. EdisonP. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?Nat. Rev. Neurol.202117315717210.1038/s41582‑020‑00435‑y33318676
    [Google Scholar]
  44. ElsworthyR.J. AldredS. Depression in Alzheimer’s disease: An alternative role for selective serotonin reuptake inhibitors?J. Alzheimers Dis.201969365166110.3233/JAD‑18078031104017
    [Google Scholar]
  45. ZefferinoR. Di GioiaS. ConeseM. Molecular links between endocrine, nervous and immune system during chronic stress.Brain Behav.2021112e0196010.1002/brb3.196033295155
    [Google Scholar]
  46. KnezevicE. NenicK. MilanovicV. KnezevicN.N. The role of cortisol in chronic stress, neurodegenerative diseases, and psychological disorders.Cells20231223272610.3390/cells1223272638067154
    [Google Scholar]
  47. DaniM. WoodM. MizoguchiR. FanZ. WalkerZ. MorganR. HinzR. BijuM. KuruvillaT. BrooksD.J. EdisonP. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease.Brain201814192740275410.1093/brain/awy18830052812
    [Google Scholar]
  48. FelskyD. RoostaeiT. NhoK. RisacherS.L. BradshawE.M. PetyukV. SchneiderJ.A. SaykinA. BennettD.A. De JagerP.L. Neuropathological correlates and genetic architecture of microglial activation in elderly human brain.Nat. Commun.201910140910.1038/s41467‑018‑08279‑330679421
    [Google Scholar]
  49. DollishH.K. TsyglakovaM. McClungC.A. Circadian rhythms and mood disorders: Time to see the light.Neuron20241121254010.1016/j.neuron.2023.09.02337858331
    [Google Scholar]
  50. GreenT.R.F. OrtizJ.B. WonnacottS. WilliamsR.J. RoweR.K. The bidirectional relationship between sleep and inflammation links traumatic brain injury and Alzheimer’s Disease.Front. Neurosci.20201489410.3389/fnins.2020.0089432982677
    [Google Scholar]
  51. ZhangJ. XueB. JingB. TianH. ZhangN. LiM. LuL. ChenL. DiaoH. ChenY. WangM. LiX. LPS activates neuroinflammatory pathways to induce depression in Parkinson’s disease-like condition.Front. Pharmacol.20221396181710.3389/fphar.2022.96181736278237
    [Google Scholar]
  52. MarshL. Depression and Parkinson’s disease: current knowledge.Curr. Neurol. Neurosci. Rep.2013131240910.1007/s11910‑013‑0409‑524190780
    [Google Scholar]
  53. MattsonM.P. LongoV.D. HarvieM. Impact of intermittent fasting on health and disease processes.Ageing Res. Rev.201739465810.1016/j.arr.2016.10.00527810402
    [Google Scholar]
  54. VidenovicA. KlermanE.B. WangW. MarconiA. KuhtaT. ZeeP.C. Timed light therapy for sleep and daytime sleepiness associated with Parkinson Disease.JAMA Neurol.201774441141810.1001/jamaneurol.2016.519228241159
    [Google Scholar]
  55. WangR. ZhouH. WangY.C. ChangX.L. WangX.Q. Benefits of Tai Chi Quan on neurodegenerative diseases: A systematic review.Ageing Res. Rev.20228210174110.1016/j.arr.2022.10174136220604
    [Google Scholar]
/content/journals/car/10.2174/0115672050336499240903113255
Loading

  • Article Type:
    News
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test