Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

Disease progression in Alzheimer’s Dementia (AD) is typically characterized by accelerated cognitive and functional decline, where heterogeneous trajectories can impact the observed treatment response.

Methods

We hypothesized that unobserved heterogeneity could obscure treatment benefits in AD. The effect of unobserved heterogeneity was empirically quantified within the Alzheimer’s Management By Albumin Replacement (AMBAR) phase 2b trial data. The ADAS-Cog 12 cognition endpoint was reanalyzed in a 2-class latent growth mixture model initially fit to the treatment arm. The model with the best fit was then applied across both treatment arms to a larger (n=1000) simulated dataset that was representative of AMBAR trial cognitive data.

Results

Two classes of patients were observed: a stable cognitive trajectory class and a highly variable class. Removal of the latter (n=48, 22%) from the analysis and refitting efficacy models comparing the stable class to full placebo yielded significant treatment efficacy on cognition (=0.007, Cohen’s D=-0.4). Comparison of the stable class of each arm within the simulated dataset revealed a significant difference in treatment efficacy favoring the simulated stable treatment arm.

Conclusion

This post hoc exploratory analysis suggests that prespecified strategies for addressing unobserved heterogeneity may yield improved effect detection in AD trials. The generalizability of the analytic strategy is limited by latent stratification in only the treatment arm, a requirement given the small placebo arm in AMBAR. This limitation was partially addressed by the simulation modeling.

Clinical Trial Registration Number

NCT01561053.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050316936240905064215
2024-09-23
2025-04-23
Loading full text...

Full text loading...

References

  1. Alzheimer’s Association Report: 2021 Alzheimer’s Disease facts and figures.Alzheimer’s Dementia2021173327406
    [Google Scholar]
  2. MontineT.J. PhelpsC.H. BeachT.G. BigioE.H. CairnsN.J. DicksonD.W. DuyckaertsC. FroschM.P. MasliahE. MirraS.S. NelsonP.T. SchneiderJ.A. ThalD.R. TrojanowskiJ.Q. VintersH.V. HymanB.T. AgingN.I. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach.Acta Neuropathol.2012123111110.1007/s00401‑011‑0910‑322101365
    [Google Scholar]
  3. JackC.R.Jr BennettD.A. BlennowK. CarrilloM.C. DunnB. HaeberleinS.B. HoltzmanD.M. JagustW. JessenF. KarlawishJ. LiuE. MolinuevoJ.L. MontineT. PhelpsC. RankinK.P. RoweC.C. ScheltensP. SiemersE. SnyderH.M. SperlingR. ElliottC. MasliahE. RyanL. SilverbergN. NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease.Alzheimers Dement.201814453556210.1016/j.jalz.2018.02.01829653606
    [Google Scholar]
  4. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y33986301
    [Google Scholar]
  5. CummingsJ. Cognitive and behavioral heterogeneity in Alzheimer’s disease: seeking the neurobiological basis.Neurobiol. Aging200021684586110.1016/S0197‑4580(00)00183‑411124429
    [Google Scholar]
  6. WilkoszP.A. SeltmanH.J. DevlinB. WeamerE.A. LopezO.L. DeKoskyS.T. SweetR.A. Trajectories of cognitive decline in Alzheimer’s disease.Int. Psychogeriatr.201022228129010.1017/S104161020999100119781112
    [Google Scholar]
  7. LamB. MasellisM. FreedmanM. StussD.T. BlackS.E. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome.Alzheimers Res. Ther.201351110.1186/alzrt15523302773
    [Google Scholar]
  8. MacDonaldS.W.S. KarlssonS. FratiglioniL. BäckmanL. Trajectories of cognitive decline following dementia onset: what accounts for variation in progression?Dement. Geriatr. Cogn. Disord.201131320220910.1159/00032566621430384
    [Google Scholar]
  9. InoueJ. HoshinoR. NojimaH. IshidaW. OkamotoN. Original article: Investigation of responders and non‐responders to long‐term donepezil treatment.Psychogeriatrics2010102536110.1111/j.1479‑8301.2010.00319.x20738808
    [Google Scholar]
  10. PuttR.V.D. DineenC. JanesD. SeriesH. McShaneR. Effectiveness of acetylcholinesterase inhibitors: diagnosis and severity as predictors of response in routine practice.Int. J. Geriatr. Psychiatry200621875576010.1002/gps.155716906631
    [Google Scholar]
  11. Van CauwenbergheC. Van BroeckhovenC. SleegersK. The genetic landscape of Alzheimer disease: clinical implications and perspectives.Genet. Med.201618542143010.1038/gim.2015.11726312828
    [Google Scholar]
  12. ClarkC.M. SheppardL. FillenbaumG.G. GalaskoD. MorrisJ.C. KossE. MohsR. HeymanA. Variability in annual Mini-Mental State Examination score in patients with probable Alzheimer disease: a clinical perspective of data from the Consortium to Establish a Registry for Alzheimer’s Disease.Arch. Neurol.199956785786210.1001/archneur.56.7.85710404988
    [Google Scholar]
  13. TyasS.L. SalazarJ.C. SnowdonD.A. DesrosiersM.F. RileyK.P. MendiondoM.S. KryscioR.J. Transitions to mild cognitive impairments, dementia, and death: findings from the Nun Study.Am. J. Epidemiol.2007165111231123810.1093/aje/kwm08517431012
    [Google Scholar]
  14. HallC.B. YingJ. KuoL. SliwinskiM. BuschkeH. KatzM. LiptonR.B. Estimation of bivariate measurements having different change points, with application to cognitive ageing.Stat. Med.200120243695371410.1002/sim.111311782027
    [Google Scholar]
  15. MacDonaldS.W.S. StawskiR.S. Longitudinal changes in response time mean and inconsistency exhibit predictive dissociations for risk of cognitive impairment.Neuropsychology202034326427510.1037/neu000060831789567
    [Google Scholar]
  16. DixonR.A. GarrettD.D. LentzT.L. MacDonaldS.W.S. StraussE. HultschD.F. Neurocognitive markers of cognitive impairment: Exploring the roles of speed and inconsistency.Neuropsychology200721338139910.1037/0894‑4105.21.3.38117484601
    [Google Scholar]
  17. CerinoE.S. KatzM.J. WangC. QinJ. GaoQ. HyunJ. HakunJ.G. RoqueN.A. DerbyC.A. LiptonR.B. SliwinskiM.J. Variability in cognitive performance on mobile devices is sensitive to mild cognitive impairment: Results from the einstein aging study.Front. Digit. Heal.2021375803110.3389/fdgth.2021.75803134927132
    [Google Scholar]
  18. WesselingH. MairW. KumarM. SchlaffnerC.N. TangS. BeerepootP. FatouB. GuiseA.J. ChengL. TakedaS. MuntelJ. RotunnoM.S. DujardinS. DaviesP. KosikK.S. MillerB.L. BerrettaS. HedreenJ.C. GrinbergL.T. SeeleyW.W. HymanB.T. SteenH. SteenJ.A. Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease.Cell2020183616991713.e1310.1016/j.cell.2020.10.02933188775
    [Google Scholar]
  19. AllardM. HuskyM. CathelineG. PelletierA. DilharreguyB. AmievaH. PérèsK. Foubert-SamierA. DartiguesJ.F. SwendsenJ. Mobile technologies in the early detection of cognitive decline.PLoS One2014912e112197e11219710.1371/journal.pone.011219725536290
    [Google Scholar]
  20. SliwinskiM.J. Measurement‐Burst Designs for Social Health Research.Soc. Personal. Psychol. Compass20082124526110.1111/j.1751‑9004.2007.00043.x
    [Google Scholar]
  21. ParkS. LeeS. JeongK.H. Predictors of variation in the cognitive function trajectories among older adults living alone: A growth mixture modeling approach.Healthcare (Basel)20231120275010.3390/healthcare1120275037893824
    [Google Scholar]
  22. MinJ.W. A longitudinal study of cognitive trajectories and its factors for Koreans aged 60 and over: A latent growth mixture model.Int. J. Geriatr. Psychiatry201833575576210.1002/gps.485529363183
    [Google Scholar]
  23. JuttenR.J. SikkesS.A.M. Van der FlierW.M. ScheltensP. VisserP.J. TijmsB.M. Finding treatment effects in Alzheimer trials in the face of disease progression heterogeneity.Neurology20219622e2673e268410.1212/WNL.000000000001202234550903
    [Google Scholar]
  24. LevineS.Z. GoldbergY. YoshidaK. SamaraM. CiprianiA. IwatsuboT. LeuchtS. FurawakaT.A. Quantifying the heterogeneity of cognitive functioning in Alzheimer’s disease to extend the placebo-treatment dichotomy: Latent class analysis of individual-participant data from five pivotal randomized clinical trials of donepezil.Eur. Psychiatry2021641e1610.1192/j.eurpsy.2021.833583479
    [Google Scholar]
  25. WinkelmannR. Unobserved Heterogeneity.Econometric Analysis of Count Data.Springer Berlin Heidelberg200812714210.1007/978‑3‑540‑78389‑3_4
    [Google Scholar]
  26. ArellanoM. Unobserved Heterogeneity.In: Panel Data Econometrics, Advanced Texts in Econometrics.Oxford University Press200310.1093/0199245282.003.0002
    [Google Scholar]
  27. ZammitA.R. BennettD.A. HallC.B. LiptonR.B. KatzM.J. Muniz-TerreraG. A latent transition analysis model to assess change in cognitive states over three occasions: results from the rush memory and aging project.J. Alzheimers Dis.20207331063107310.3233/JAD‑19077831884467
    [Google Scholar]
  28. ZammitA.R. HallC.B. LiptonR.B. KatzM.J. Muniz-TerreraG. Identification of heterogeneous cognitive subgroups in community-dwelling older adults: A latent class analysis of the Einstein Aging Study.J. Int. Neuropsychol. Soc.201824551152310.1017/S135561771700128X29317003
    [Google Scholar]
  29. BoadaM. Ramos-FernándezE. GuivernauB. MuñozF.J. CostaM. OrtizA.M. JorqueraJ.I. NúñezL. TorresM. PáezA. Treatment of Alzheimer disease using combination therapy with plasma exchange and haemapheresis with albumin and intravenous immunoglobulin: Rationale and treatment approach of the AMBAR (Alzheimer Management By Albumin Replacement) study.Neurologia201631747348110.1016/j.nrl.2014.02.00325023458
    [Google Scholar]
  30. BoadaM. LópezO. NúñezL. SzczepiorkowskiZ.M. TorresM. GrifolsC. PáezA. Plasma exchange for Alzheimer’s disease Management by Albumin Replacement (AMBAR) trial: Study design and progress.Alzheimers Dement. (N. Y.)201951616910.1016/j.trci.2019.01.00130859122
    [Google Scholar]
  31. BoadaM. LópezO.L. OlazaránJ. NúñezL. PfefferM. ParicioM. LoritesJ. Piñol-RipollG. GámezJ.E. AnayaF. KiprovD. LimaJ. GrifolsC. TorresM. CostaM. BozzoJ. SzczepiorkowskiZ.M. HendrixS. PáezA. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: Primary results of the AMBAR Study.Alzheimers Dement.202016101412142510.1002/alz.1213732715623
    [Google Scholar]
  32. GalaskoD. BennettD. SanoM. ErnestoC. ThomasR. GrundmanM. FerrisS. An inventory to assess activities of daily living for clinical trials in Alzheimerʼs disease.Alzheimer Dis. Assoc. Disord.199711333910.1097/00002093‑199700112‑000059236950
    [Google Scholar]
  33. RosenW.G. MohsR.C. DavisK.L. A new rating scale for Alzheimer’s disease.Am. J. Psychiatry1984141111356136410.1176/ajp.141.11.13566496779
    [Google Scholar]
  34. CostaM. PáezA. Emerging insights into the role of albumin with plasma exchange in Alzheimer’s disease management.Transfus. Apheresis Sci.202160310316410.1016/j.transci.2021.10316434083161
    [Google Scholar]
  35. BerlinK.S. ParraG.R. WilliamsN.A. An introduction to latent variable mixture modeling (part 2): longitudinal latent class growth analysis and growth mixture models.J. Pediatr. Psychol.201439218820310.1093/jpepsy/jst08524277770
    [Google Scholar]
  36. McKhannG. DrachmanD. FolsteinM. KatzmanR. PriceD. StadlanE.M. Clinical diagnosis of Alzheimer’s disease.Neurology198434793994410.1212/WNL.34.7.9396610841
    [Google Scholar]
  37. FolsteinM.F. FolsteinS.E. McHughP.R. “Mini-mental state”.J. Psychiatr. Res.197512318919810.1016/0022‑3956(75)90026‑61202204
    [Google Scholar]
  38. TombaughT.N. McIntyreN.J. The mini-mental state examination: a comprehensive review.J. Am. Geriatr. Soc.199240992293510.1111/j.1532‑5415.1992.tb01992.x1512391
    [Google Scholar]
  39. KueperJ.K. SpeechleyM. Montero-OdassoM. The Alzheimer’s disease assessment scale-cognitive subscale (ADAS-Cog): Modifications and responsiveness in pre-dementia populations. A narrative review.J. Alzheimers Dis.201863242344410.3233/JAD‑17099129660938
    [Google Scholar]
  40. BauerD.J. CurranP.J. Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes.Psychol. Methods20038333836310.1037/1082‑989X.8.3.33814596495
    [Google Scholar]
  41. Proust-LimaC. PhilippsV. LiquetB. Estimation of extended mixed models using latent classes and latent processes: The R package lcmm.J. Stat. Softw.201778210.18637/jss.v078.i02
    [Google Scholar]
  42. R: a language and environment for statistical computing.2023Available from: https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing(accessed on 31-7-2024)
  43. BiernackiC. CeleuxG. GovaertG. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models.Comput. Stat. Data Anal.2003413-456157510.1016/S0167‑9473(02)00163‑9
    [Google Scholar]
  44. BrooksE. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling.R J.20179237810.32614/RJ‑2017‑066
    [Google Scholar]
  45. VenablesW.N. RipleyB.D. Modern Applied Statistics with S.4th edSpringer200210.1007/978‑0‑387‑21706‑2
    [Google Scholar]
  46. HughesC.P. BergL. DanzigerW. CobenL.A. MartinR.L. A new clinical scale for the staging of dementia.Br. J. Psychiatry1982140656657210.1192/bjp.140.6.5667104545
    [Google Scholar]
  47. ZammitA.R. YangJ. BuchmanA.S. LeurgansS.E. Muniz-TerreraG. LiptonR.B. HallC.B. BoyleP. BennettD.A. Latent cognitive class at enrollment predicts future cognitive trajectories of decline in a community sample of older adults.J. Alzheimers Dis.202183264165210.3233/JAD‑21048434334404
    [Google Scholar]
  48. ZammitA.R. HallC.B. BennettD.A. EzzatiA. KatzM.J. Muniz-TerreraG. LiptonR.B. Neuropsychological latent classes at enrollment and postmortem neuropathology.Alzheimers Dement.20191591195120710.1016/j.jalz.2019.05.01231420203
    [Google Scholar]
  49. EzzatiA. ZammitA.R. HabeckC. HallC.B. LiptonR.B. InitiativeA.D.N. Detecting biological heterogeneity patterns in ADNI amnestic mild cognitive impairment based on volumetric MRI.Brain Imaging Behav.20201451792180410.1007/s11682‑019‑00115‑631104279
    [Google Scholar]
  50. ZammitA.R. Muniz-TerreraG. KatzM.J. HallC.B. EzzatiA. BennettD.A. LiptonR.B. Subtypes based on neuropsychological performance predict incident dementia: Findings from the rush memory and aging project.J. Alzheimers Dis.201967112513510.3233/JAD‑18073730507576
    [Google Scholar]
  51. ZammitA.R. HallC.B. KatzM.J. Muniz-TerreraG. EzzatiA. BennettD.A. LiptonR.B. Class-specific incidence of all-cause dementia and Alzheimer’s disease: A latent class approach.J. Alzheimers Dis.201866134735710.3233/JAD‑18060430282367
    [Google Scholar]
  52. MelisR.J.F. HaaksmaM.L. Muniz-TerreraG. Understanding and predicting the longitudinal course of dementia.Curr. Opin. Psychiatry201932212312910.1097/YCO.000000000000048230557268
    [Google Scholar]
  53. LeoutsakosJ.M.S. ForresterS.N. CorcoranC.D. NortonM.C. RabinsP.V. SteinbergM.I. TschanzJ.T. LyketsosC.G. Latent classes of course in Alzheimer’s disease and predictors: the Cache County Dementia Progression Study.Int. J. Geriatr. Psychiatry201530882483210.1002/gps.422125363393
    [Google Scholar]
  54. EzzatiA. DavatzikosC. WolkD.A. HallC.B. HabeckC. LiptonR.B. Application of predictive models in boosting power of Alzheimer’s disease clinical trials: A post hoc analysis of phase 3 solanezumab trials.Alzheimers Dement. (N. Y.)202281e1222310.1002/trc2.1222335310531
    [Google Scholar]
  55. DodgeH.H. ZhuJ. HarveyD. SaitoN. SilbertL.C. KayeJ.A. KoeppeR.A. AlbinR.L. InitiativeA.D.N. Biomarker progressions explain higher variability in stage‐specific cognitive decline than baseline values in Alzheimer disease.Alzheimers Dement.201410669070310.1016/j.jalz.2014.04.51325022534
    [Google Scholar]
  56. RisacherS.L. AndersonW.H. CharilA. CastelluccioP.F. ShcherbininS. SaykinA.J. SchwarzA.J. WeinerM.W. AisenP. PetersenR. JackC.R.Jr JagustW. TrojanowkiJ.Q. TogaA.W. BeckettL. GreenR.C. MorrisJ. ShawL.M. KhachaturianZ. SorensenG. CarrilloM. KullerL. RaichleM. PaulS. DaviesP. FillitH. HeftiF. HoltzmanD. MesulamM.M. PotterW. SnyderP. SchwartzA. MontineT. PetersenR. AisenP. ThomasR.G. DonohueM. WalterS. GessertD. SatherT. JiminezG. BalasubramanianA.B. MasonJ. SimI. BeckettL. HarveyD. DonohueM. JackC.R.Jr BernsteinM. FoxN. ThompsonP. SchuffN. DeCArliC. BorowskiB. GunterJ. SenjemM. VemuriP. JonesD. KantarciK. WardC. JagustW. KoeppeR.A. FosterN. ReimanE.M. ChenK. MathisC. LandauS. MorrisJ.C. CairnsN.J. HouseholderE. Taylor-ReinwaldL. ShawL.M. TrojanowkiJ.Q. LeeV. KoreckaM. FigurskiM. TogaA.W. CrawfordK. NeuS. SaykinA.J. ForoudT.M. PotkinS. ShenL. FaberK. KimS. NhoK. ThalL. NationalN.B. AlbertM. FrankR. HsiaoJ. KayeJ. QuinnJ. SilbertL. LindB. CarterR. DolenS. SchneiderL.S. PawluczykS. BecceraM. TeodoroL. SpannB.M. BrewerJ. VanderswagH. FleisherA. HeidebrinkJ.L. LordJ.L. PetersenR. MasonS.S. AlbersC.S. KnopmanD. JohnsonK. DoodyR.S. Villanueva-MeyerJ. ChowdhuryM. RountreeS. DangM. SternY. HonigL.S. BellK.L. AncesB. MorrisJ.C. CarrollM. CreechM.L. FranklinE. MintunM.A. SchneiderS. OliverA. MarsonD. GriffithR. ClarkD. GeldmacherD. BrockingtonJ. RobersonE. LoveM.N. GrossmanH. MitsisE. ShahR.C. deToledo-MorrellL. DuaraR. VaronD. GreigM.T. RobertsP. AlbertM. OnyikeC. D’AgostinoD.II KielbS. GalvinJ.E. CerboneB. MichelC.A. PogorelecD.M. RusinekH. de LeonM.J. GlodzikL. De SantiS. DoraiswamyM.P. PetrellaJ.R. Borges-NetoS. WongT.Z. ColemanE. ArnoldS.E. KarlawishJ.H. WolkD. ClarkC.M. SmithC.D. JichaG. HardyP. SinhaP. OatesE. ConradG. LopezO.L. OakleyM.A. SimpsonD.M. PorsteinssonA.P. GoldsteinB.S. MartinK. MakinoK.M. IsmailM.S. BrandC. MulnardR.A. ThaiG. Mc-Adams-OrtizC. WomackK. MathewsD. QuicenoM. LeveyA.I. LahJ.J. CellarJ.S. BurnsJ.M. SwerdlowR.H. BrooksW.M. ApostolovaL. TingusK. WooE. SilvermanD.H.S. LuP.H. BartzokisG. Graff-RadfordN.R. ParfittF. KendallT. JohnsonH. FarlowM.R. HakeA.M. MatthewsB.R. BroschJ.R. HerringS. HuntC. van DyckC.H. CarsonR.E. MacAvoyM.G. VarmaP. ChertkowH. BergmanH. HoseinC. BlackS. StefanovicB. CaldwellC. Robin HsiungG-Y. FeldmanH. MudgeB. AssalyM. FingerE. PasternackS. RachiskyI. TrostD. KerteszA. BernickC. MunicD. MesulamM-M. LipowskiK. WeintraubS. BonakdarpourB. KerwinD. WuC-K. JohnsonN. SadowskyC. VillenaT. TurnerR.S. JohnsonK. ReynoldsB. SperlingR.A. JohnsonK.A. MarshallG. YesavageJ. TaylorJ.L. LaneB. RosenA. TinklenbergJ. SabbaghM.N. BeldenC.M. JacobsonS.A. SirrelS.A. KowallN. KillianyR. BudsonA.E. NorbashA. JohnsonP.L. ObisesanT.O. WoldayS. AllardJ. LernerA. OgrockiP. TatsuokaC. FaticaP. FletcherE. MaillardP. OlichneyJ. DeCarliC. CarmichaelO. KitturS. BorrieM. LeeT-Y. BarthaR. JohnsonS. AsthanaS. CarlssonC.M. PotkinS.G. PredaA. NguyenD. TariotP. BurkeA. TrncicN. FleisherA. ReederS. BatesV. CapoteH. RainkaM. ScharreD.W. KatakiM. AdeliA. ZimmermanE.A. CelminsD. BrownA.D. PearlsonG.D. BlankK. AndersonK. FlashmanL.A. SeltzerM. HynesM.L. SantulliR.B. SinkK.M. GordineerL. WilliamsonJ.D. GargP. WatkinsF. OttB.R. QuerfurthH. TremontG. SallowayS. MalloyP. CorreiaS. RosenH.J. MillerB.L. PerryD. MintzerJ. SpicerK. BachmanD. FingerE. PasternakS. RachinskyI. RogersJ. KerteszA. DrostD. PomaraN. HernandoR. SarraelA. SchultzS.K. Boles PontoL.L. ShimH. SmithK.E. RelkinN. ChaingG. LinM. RavdinL. SmithA. RajB.A. FargherK. Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline.Neurology201789212176218610.1212/WNL.000000000000467029070667
    [Google Scholar]
  57. PalmerK. BäckmanL. WinbladB. FratiglioniL. Detection of Alzheimer’s disease and dementia in the preclinical phase: population based cohort study.BMJ2003326738324510.1136/bmj.326.7383.24512560271
    [Google Scholar]
  58. MurrayM.E. Graff-RadfordN.R. RossO.A. PetersenR.C. DuaraR. DicksonD.W. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study.Lancet Neurol.201110978579610.1016/S1474‑4422(11)70156‑921802369
    [Google Scholar]
  59. US Department of Health and Human Services. Enrichment Strategies for Clinical Trials to Support Determination of Effectiveness of Human Drugs and Biological Products: Guidance for Industry.Food and Drug Administration2019
    [Google Scholar]
  60. FarrerL.A. CupplesL.A. HainesJ.L. HymanB. KukullW.A. MayeuxR. MyersR.H. Pericak-VanceM.A. RischN. van DuijnC.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis.JAMA1997278161349135610.1001/jama.1997.035501600690419343467
    [Google Scholar]
  61. UddinM.S. KabirM.T. Al MamunA. Abdel-DaimM.M. BarretoG.E. AshrafG.M. APOE and Alzheimer’s disease: evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis.Mol. Neurobiol.20195642450246510.1007/s12035‑018‑1237‑z30032423
    [Google Scholar]
  62. DumurgierJ. SchraenS. GabelleA. VercruysseO. BomboisS. LaplancheJ.L. Peoc’hK. SablonnièreB. KastanenkaK.V. DelabyC. PasquierF. TouchonJ. HugonJ. PaquetC. LehmannS. Cerebrospinal fluid amyloid-β 42/40 ratio in clinical setting of memory centers: a multicentric study.Alzheimers Res. Ther.2015713010.1186/s13195‑015‑0114‑526034513
    [Google Scholar]
  63. HaaksmaM.L. RizzutoD. LeoutsakosJ.M.S. MarengoniA. TanE.C.K. Olde RikkertM.G.M. FratiglioniL. MelisR.J.F. Calderón-LarrañagaA. Predicting Cognitive and functional trajectories in people with late-onset dementia: 2 Population-based studies.J. Am. Med. Dir. Assoc.201920111444145010.1016/j.jamda.2019.03.02531109912
    [Google Scholar]
/content/journals/car/10.2174/0115672050316936240905064215
Loading
/content/journals/car/10.2174/0115672050316936240905064215
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publishers' website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test