Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer's disease (AD) is the frequent form of dementia in the world. Despite over 100 years of research into the causes of AD, including amyloid and tau protein, the research has stalled and has not led to any conclusions. Moreover, numerous projects aimed at finding a cure for AD have also failed to achieve a breakthrough. Thus, the failure of anti-amyloid and anti-tau protein therapy to treat AD significantly influenced the way we began to think about the etiology of the disease. This situation prompted a group of researchers to focus on ischemic brain episodes, which, like AD, mostly present alterations in the hippocampus. In this context, it has been proposed that cerebral ischemic incidents may play a major role in promoting amyloid and tau protein in neurodegeneration in AD. In this review, we summarized the experimental and clinical research conducted over several years on the role of ischemic brain episodes in the development of AD. Studies have shown changes typical of AD in the course of brain neurodegeneration post-ischemia, progressive brain and hippocampal atrophy, increased amyloid production, and modification of tau protein. In the post-ischemic brain, the diffuse and senile amyloid plaques and the development of neurofibrillary tangles characteristic of AD were revealed. The above data evidently showed that after brain ischemia, there are modifications in protein folding, leading to massive neuronal death and damage to the neuronal network, which triggers dementia with the AD phenotype.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050320921240627050736
2024-07-03
2025-01-11
Loading full text...

Full text loading...

References

  1. SunM.S. JinH. SunX. HuangS. ZhangF.L. GuoZ.N. YangY. Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy.Oxid. Med. Cell. Longev.2018201811710.1155/2018/380497929770166
    [Google Scholar]
  2. RahmanM.H. AkterR. BhattacharyaT. Abdel-DaimM.M. AlkahtaniS. ArafahM.W. Al-JohaniN.S. AlhoshaniN.M. AlkeraishanN. AlhenakyA. Abd-ElkaderO.H. El-SeediH.R. KaushikD. MittalV. Resveratrol and neuroprotection: Impact and its therapeutic potential in Alzheimer’s disease.Front. Pharmacol.20201161902410.3389/fphar.2020.61902433456444
    [Google Scholar]
  3. PlutaR. KiśJ. JanuszewskiS. JabłońskiM. CzuczwarS.J. Cross-talk between amyloid, tau protein and free radicals in post-ischemic brain neurodegeneration in the form of alzheimer’s disease proteinopathy.Antioxidants202211114610.3390/antiox1101014635052650
    [Google Scholar]
  4. BehlT. MakkarR. SehgalA. SinghS. SharmaN. ZenginG. BungauS. Andronie-CioaraF.L. MunteanuM.A. BriscM.C. UivarosanD. BriscC. Current trends in neurodegeneration: Cross talks between oxidative stress, cell death, and inflammation.Int. J. Mol. Sci.20212214743210.3390/ijms2214743234299052
    [Google Scholar]
  5. FarinaM. VieiraL.E. ButtariB. ProfumoE. SasoL. The Nrf2 pathway in ischemic stroke: A review.Molecules20212616500110.3390/molecules2616500134443584
    [Google Scholar]
  6. BenjaminE.J. ViraniS.S. CallawayC.W. ChamberlainA.M. ChangA.R. ChengS. ChiuveS.E. CushmanM. DellingF.N. DeoR. de FerrantiS.D. FergusonJ.F. FornageM. GillespieC. IsasiC.R. JiménezM.C. JordanL.C. JuddS.E. LacklandD. LichtmanJ.H. LisabethL. LiuS. LongeneckerC.T. LutseyP.L. MackeyJ.S. MatcharD.B. MatsushitaK. MussolinoM.E. NasirK. O’FlahertyM. PalaniappanL.P. PandeyA. PandeyD.K. ReevesM.J. RitcheyM.D. RodriguezC.J. RothG.A. RosamondW.D. SampsonU.K.A. SatouG.M. ShahS.H. SpartanoN.L. TirschwellD.L. TsaoC.W. VoeksJ.H. WilleyJ.Z. WilkinsJ.T. WuJ.H.Y. AlgerH.M. WongS.S. MuntnerP. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics—2018 update: A report from the american heart association.Circulation201813712e67e49210.1161/CIR.000000000000055829386200
    [Google Scholar]
  7. ParrellaE. GussagoC. PorriniV. BenareseM. PizziM. From preclinical stroke models to humans: Polyphenols in the prevention and treatment of stroke.Nutrients20201318510.3390/nu1301008533383852
    [Google Scholar]
  8. NelsonK.B. LynchJ.K. Stroke in newborn infants.Lancet Neurol.20043315015810.1016/S1474‑4422(04)00679‑914980530
    [Google Scholar]
  9. Faustino-MendesT. Machado-PereiraM. Castelo-BrancoM. FerreiraR. The ischemic immature brain: Views on current experimental models.Front. Cell. Neurosci.20181227710.3389/fncel.2018.0027730210301
    [Google Scholar]
  10. XuS. LuJ. ShaoA. ZhangJ.H. ZhangJ. Glial cells: Role of the immune response in ischemic stroke.Front. Immunol.20201129410.3389/fimmu.2020.0029432174916
    [Google Scholar]
  11. FeiginV.L. StarkB.A. JohnsonC.O. RothG.A. BisignanoC. AbadyG.G. AbbasifardM. Abbasi-KangevariM. Abd-AllahF. AbediV. AbualhasanA. Abu-RmeilehN.M.E. AbushoukA.I. AdebayoO.M. AgarwalG. AgasthiP. AhinkorahB.O. AhmadS. AhmadiS. Ahmed SalihY. AjiB. AkbarpourS. AkinyemiR.O. Al HamadH. AlahdabF. AlifS.M. AlipourV. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. Al-Shahi SalmanR. Alvis-GuzmanN. AncuceanuR. AnderliniD. AndersonJ.A. AnsarA. AntonazzoI.C. ArablooJ. ÄrnlövJ. ArtantiK.D. AryanZ. AsgariS. AshrafT. AtharM. AtreyaA. AusloosM. BaigA.A. BaltatuO.C. BanachM. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BaroneM.T.U. BasuS. BazmandeganG. BeghiE. BeheshtiM. BéjotY. BellA.W. BennettD.A. BensenorI.M. BezabheW.M. BezabihY.M. BhagavathulaA.S. BhardwajP. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BonnyA. BrauerM. BrennerH. BryazkaD. ButtZ.A. Caetano dos SantosF.L. Campos-NonatoI.R. Cantu-BritoC. CarreroJ.J. Castañeda-OrjuelaC.A. CatapanoA.L. ChakrabortyP.A. CharanJ. ChoudhariS.G. ChowdhuryE.K. ChuD-T. ChungS-C. ColozzaD. CostaV.M. CostanzoS. CriquiM.H. DadrasO. DagnewB. DaiX. DalalK. DamascenoA.A.M. D’AmicoE. DandonaL. DandonaR. Darega GelaJ. DavletovK. De la Cruz-GóngoraV. DesaiR. DhamnetiyaD. DharmaratneS.D. DhimalM.L. DhimalM. DiazD. DichgansM. DokovaK. DoshiR. DouiriA. DuncanB.B. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EndresM. EndriesA.Y. ErkuD.A. FaraonE.J.A. FarooqueU. FarzadfarF. FerozeA.H. FilipI. FischerF. FloodD. GadM.M. GaidhaneS. Ghanei GheshlaghR. GhashghaeeA. GhithN. GhozaliG. GhozyS. GialluisiA. GiampaoliS. GilaniS.A. GillP.S. GnedovskayaE.V. GolechhaM. GoulartA.C. GuoY. GuptaR. GuptaV.B. GuptaV.K. GyanwaliP. Hafezi-NejadN. HamidiS. HanifA. HankeyG.J. HargonoA. HashiA. HassanT.S. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HegazyM.I. HerteliuC. HollaR. HostiucS. HousehM. HuangJ. HumayunA. HwangB-F. IacovielloL. IavicoliI. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IsmailN.E. IsoH. IsolaG. IwagamiM. JacobL. JainV. JangS-I. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JohnsonW.D. JonasJ.B. JosephN. JozwiakJ.J. JürissonM. KalaniR. KalhorR. KalkondeY. KamathA. KamiabZ. KanchanT. KandelH. KarchA. KatotoP.D.M.C. KayodeG.A. KeshavarzP. KhaderY.S. KhanE.A. KhanI.A. KhanM. KhanM.A.B. KhatibM.N. KhubchandaniJ. KimG.R. KimM.S. KimY.J. KisaA. KisaS. KivimäkiM. KolteD. KoolivandA. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. KrishnamurthiR.V. KumarG.A. KusumaD. La VecchiaC. LaceyB. LakH.M. LallukkaT. LasradoS. LavadosP.M. LeonardiM. LiB. LiS. LinH. LinR-T. LiuX. LoW.D. LorkowskiS. LucchettiG. Lutzky SauteR. Magdy Abd El RazekH. MagnaniF.G. MahajanP.B. MajeedA. MakkiA. MalekzadehR. MalikA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MazzagliaG. MehndirattaM.M. MenezesR.G. MeretojaA. MershaA.G. Miao JonassonJ. MiazgowskiB. MiazgowskiT. MichalekI.M. MirrakhimovE.M. MohammadY. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. MokhayeriY. MolokhiaM. MoniM.A. MontasirA.A. MoradzadehR. MorawskaL. MorzeJ. MuruetW. MusaK.I. NagarajanA.J. NaghaviM. Narasimha SwamyS. NascimentoB.R. NegoiR.I. Neupane KandelS. NguyenT.H. NorrvingB. NoubiapJ.J. NwatahV.E. OanceaB. OdukoyaO.O. OlagunjuA.T. OrruH. OwolabiM.O. PadubidriJ.R. PanaA. ParekhT. ParkE-C. Pashazadeh KanF. PathakM. PeresM.F.P. PerianayagamA. PhamT-M. PiradovM.A. PodderV. PolinderS. PostmaM.J. PourshamsA. RadfarA. RafieiA. RaggiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RanasingheP. RaoC.R. RaoS.J. RathiP. RawafD.L. RawafS. ReitsmaM.B. RenjithV. RenzahoA.M.N. RezapourA. RodriguezJ.A.B. RoeverL. RomoliM. RynkiewiczA. SaccoS. SadeghiM. Saeedi MoghaddamS. SahebkarA. Saif-Ur-RahmanK.M. SalahR. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SathianB. SattinD. SchiavolinS. SchlaichM.P. SchmidtM.I. SchutteA.E. SepanlouS.G. SeylaniA. ShaF. ShahabiS. ShaikhM.A. ShannawazM. ShawonM.S.R. SheikhA. SheikhbahaeiS. ShibuyaK. SiabaniS. SilvaD.A.S. SinghJ.A. SinghJ.K. SkryabinV.Y. SkryabinaA.A. SobaihB.H. StorteckyS. StrangesS. TadesseE.G. TariganI.U. TemsahM-H. TeuschlY. ThriftA.G. TonelliM. Tovani-PaloneM.R. TranB.X. TripathiM. TsegayeG.W. UllahA. UnimB. UnnikrishnanB. VakilianA. Valadan TahbazS. VasankariT.J. VenketasubramanianN. VervoortD. VoB. VoloviciV. VosoughiK. VuG.T. VuL.G. WafaH.A. WaheedY. WangY. WijeratneT. WinklerA.S. WolfeC.D.A. WoodwardM. WuJ.H. Wulf HansonS. XuX. YadavL. YadollahpourA. Yahyazadeh JabbariS.H. YamagishiK. YatsuyaH. YonemotoN. YuC. YunusaI. ZamanM.S. ZamanS.B. ZamanianM. ZandR. ZandifarA. ZastrozhinM.S. ZastrozhinaA. ZhangY. ZhangZ-J. ZhongC. ZunigaY.M.H. MurrayC.J.L. GBD 2019 Stroke Collaborators Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Neurol.2021201079582010.1016/S1474‑4422(21)00252‑034487721
    [Google Scholar]
  12. HernándezI.H. Villa-GonzálezM. MartínG. SotoM. Pérez-ÁlvarezM.J. Glial cells as therapeutic approaches in brain ischemia-reperfusion injury.Cells2021107163910.3390/cells1007163934208834
    [Google Scholar]
  13. KamarovaM. BaigS. PatelH. MonksK. WasayM. AliA. RedgraveJ. MajidA. BellS.M. Antiplatelet use in ischemic stroke.Ann. Pharmacother.202256101159117310.1177/1060028021107300935094598
    [Google Scholar]
  14. PatabendigeA. SinghA. JenkinsS. SenJ. ChenR. Astrocyte activation in neurovascular damage and repair following ischaemic stroke.Int. J. Mol. Sci.2021228428010.3390/ijms2208428033924191
    [Google Scholar]
  15. PlutaR. JanuszewskiS. CzuczwarS.J. Neuroinflammation in post-ischemic neurodegeneration of the brain: Friend, foe, or both?Int. J. Mol. Sci.2021229440510.3390/ijms2209440533922467
    [Google Scholar]
  16. ViraniS.S. AlonsoA. AparicioH.J. BenjaminE.J. BittencourtM.S. CallawayC.W. CarsonA.P. ChamberlainA.M. ChengS. DellingF.N. ElkindM.S.V. EvensonK.R. FergusonJ.F. GuptaD.K. KhanS.S. KisselaB.M. KnutsonK.L. LeeC.D. LewisT.T. LiuJ. LoopM.S. LutseyP.L. MaJ. MackeyJ. MartinS.S. MatcharD.B. MussolinoM.E. NavaneethanS.D. PerakA.M. RothG.A. SamadZ. SatouG.M. SchroederE.B. ShahS.H. ShayC.M. StokesA. VanWagnerL.B. WangN.Y. TsaoC.W. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics-2021 update: A report from the american heart association. Heart disease and stroke statistics-2021 update: A report from the american heart association.Circulation20211438e254e74333501848
    [Google Scholar]
  17. WangY. LeakR.K. CaoG. Microglia-mediated neuroinflammation and neuroplasticity after stroke.Front. Cell. Neurosci.20221698072210.3389/fncel.2022.98072236052339
    [Google Scholar]
  18. DangH. MaoW. WangS. ShaJ. LuM. CongL. MengX. LiH. Systemic inflammation response index as a prognostic predictor in patients with acute ischemic stroke: A propensity score matching analysis.Front. Neurol.202313104924110.3389/fneur.2022.104924136703636
    [Google Scholar]
  19. VenketasubramanianN. YoonB.W. PandianJ. NavarroJ.C. Stroke epidemiology in south, east, and south-east Asia: A review.J. Stroke201719328629410.5853/jos.2017.0023429037005
    [Google Scholar]
  20. TuW.J. WangL.D. YanF. PengB. HuaY. LiuM. JiX-M. MaL. ShanC-L. WangY-L. ZengJ-S. ChenH-S. FanD-S. GuY-X. TanG-J. HuB. KangD-Z. LiuJ-M. LiuY-L. LouM. LuoB-Y. PanS-Y. WangL-H. WuJ. Special Writing Group of China Stroke Surveillance Report China stroke surveillance report 2021.Mil. Med. Res.20231013310.1186/s40779‑023‑00463‑x37468952
    [Google Scholar]
  21. TuW.J. ZhaoZ. YinP. CaoL. ZengJ. ChenH. FanD. FangQ. GaoP. GuY. TanG. HanJ. HeL. HuB. HuaY. KangD. LiH. LiuJ. LiuY. LouM. LuoB. PanS. PengB. RenL. WangL. WuJ. XuY. XuY. YangY. ZhangM. ZhangS. ZhuL. ZhuY. LiZ. ChuL. AnX. WangL. YinM. LiM. YinL. YanW. LiC. TangJ. ZhouM. WangL. Estimated burden of stroke in china in 2020.JAMA Netw. Open202363e23145510.1001/jamanetworkopen.2023.145536862407
    [Google Scholar]
  22. TuW.J. Is the world of stroke research entering the Chinese era?Front. Neurol.202314118976010.3389/fneur.2023.118976037213904
    [Google Scholar]
  23. VarkeyB.P. JosephJ. VargheseA. SharmaS.K. MathewsE. DhandapaniM. NarasimhaV.L. KuttanR. ShahS. DablaS. DhandapaniS. The distribution of lifestyle risk factors among patients with stroke in the indian setting: Systematic review and meta-analysis.Ann. Neurosci.2023301405310.1177/0972753122111589937313337
    [Google Scholar]
  24. JosephJ. DhandapaniM. SharmaS. DablaS. VarkeyB. NarasimhaV. VargheseA. DhandapaniS. The quality of life of stroke survivors in the Indian setting: A systematic review and meta-analysis.Ann. Indian Acad. Neurol.202225337638210.4103/aian.aian_1069_2135936592
    [Google Scholar]
  25. BoehmeA.K. EsenwaC. ElkindM.S.V. Stroke risk factors, genetics, and prevention.Circ. Res.2017120347249510.1161/CIRCRESAHA.116.30839828154098
    [Google Scholar]
  26. JohnsonC.O. NguyenM. RothG.A. NicholsE. AlamT. AbateD. Abd-AllahF. AbdelalimA. AbrahaH.N. Abu-RmeilehN.M.E. AdebayoO.M. AdeoyeA.M. AgarwalG. AgrawalS. AichourA.N. AichourI. AichourM.T.E. AlahdabF. AliR. Alvis-GuzmanN. AnberN.H. AnjomshoaM. ArablooJ. ArauzA. ÄrnlövJ. AroraA. AwasthiA. BanachM. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BasuS. BelachewA.B. BelaynehY.M. BennettD.A. BensenorI.M. BhattacharyyaK. BiadgoB. BijaniA. BikbovB. Bin SayeedM.S. ButtZ.A. Cahuana-HurtadoL. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. CastroF. Catalá-LópezF. ChaiahY. ChiangP.P-C. ChoiJ-Y.J. ChristensenH. ChuD-T. CortinovisM. DamascenoA.A.M. DandonaL. DandonaR. DaryaniA. DavletovK. de CourtenB. De la Cruz-GóngoraV. DegefaM.G. DharmaratneS.D. DiazD. DubeyM. DukenE.E. EdessaD. EndresM. FaraonE.J.A. FarzadfarF. FernandesE. FischerF. FlorL.S. GanjiM. GebreA.K. GebremichaelT.G. GetaB. GezaeK.E. GillP.S. GnedovskayaE.V. Gómez-DantésH. GoulartA.C. GrossoG. GuoY. GuptaR. Haj-MirzaianA. Haj-MirzaianA. HamidiS. HankeyG.J. HassenH.Y. HayS.I. HegazyM.I. HeidariB. HerialN.A. HosseiniM.A. HostiucS. IrvaniS.S.N. IslamS.M.S. JahanmehrN. JavanbakhtM. JhaR.P. JonasJ.B. JozwiakJ.J. JürissonM. KahsayA. KalaniR. KalkondeY. KamilT.A. KanchanT. KarchA. KarimiN. Karimi-SariH. KasaeianA. KassaT.D. KazemeiniH. KefaleA.T. KhaderY.S. KhalilI.A. KhanE.A. KhangY-H. KhubchandaniJ. KimD. KimY.J. KisaA. KivimäkiM. KoyanagiA. KrishnamurthiR.K. KumarG.A. LafranconiA. LewingtonS. LiS. LoW.D. LopezA.D. LorkowskiS. LotufoP.A. MackayM.T. MajdanM. MajdzadehR. MajeedA. MalekzadehR. ManafiN. MansourniaM.A. MehndirattaM.M. MehtaV. MengistuG. MeretojaA. MeretojaT.J. MiazgowskiB. MiazgowskiT. MillerT.R. MirrakhimovE.M. MohajerB. MohammadY. Mohammadoo-khorasaniM. MohammedS. MohebiF. MokdadA.H. MokhayeriY. MoradiG. MorawskaL. Moreno VelásquezI. MousaviS.M. MuhammedO.S.S. MuruetW. NaderiM. NaghaviM. NaikG. NascimentoB.R. NegoiR.I. NguyenC.T. NguyenL.H. NirayoY.L. NorrvingB. NoubiapJ.J. Ofori-AsensoR. OgboF.A. OlagunjuA.T. OlagunjuT.O. OwolabiM.O. PandianJ.D. PatelS. PericoN. PiradovM.A. PolinderS. PostmaM.J. PoustchiH. PrakashV. QorbaniM. RafieiA. RahimF. RahimiK. Rahimi-MovagharV. RahmanM. RahmanM.A. ReisC. RemuzziG. RenzahoA.M.N. RicciS. RobertsN.L.S. RobinsonS.R. RoeverL. RoshandelG. SabbaghP. SafariH. SafariS. SafiriS. SahebkarA. Salehi ZahabiS. SamyA.M. SantaluciaP. SantosI.S. SantosJ.V. Santric MilicevicM.M. SartoriusB. SawantA.R. SchutteA.E. SepanlouS.G. ShafieesabetA. ShaikhM.A. Shams-BeyranvandM. SheikhA. ShethK.N. ShibuyaK. ShigematsuM. ShinM-J. ShiueI. SiabaniS. SobaihB.H. SposatoL.A. SutradharI. SylajaP.N. SzoekeC.E.I. Te AoB.J. TemsahM-H. TemsahO. ThriftA.G. TonelliM. Topor-MadryR. TranB.X. TranK.B. TruelsenT.C. TsadikA.G. UllahI. UthmanO.A. VaduganathanM. ValdezP.R. VasankariT.J. VasanthanR. VenketasubramanianN. VosoughiK. VuG.T. WaheedY. WeiderpassE. WeldegwergsK.G. WestermanR. WolfeC.D.A. WondafrashD.Z. XuG. YadollahpourA. YamadaT. YatsuyaH. YimerE.M. YonemotoN. YousefifardM. YuC. ZaidiZ. ZamaniM. ZarghiA. ZhangY. ZodpeyS. FeiginV.L. VosT. MurrayC.J.L. GBD 2016 Stroke Collaborators Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the global burden of disease study 2016.Lancet Neurol.201918543945810.1016/S1474‑4422(19)30034‑130871944
    [Google Scholar]
  27. BulyginK.V. BeerakaN.M. SaitgareevaA.R. NikolenkoV.N. GareevI. BeylerliO. AkhmadeevaL.R. MikhalevaL.M. Torres SolisL.F. Solís HerreraA. Avila-RodriguezM.F. SomasundaramS.G. KirklandC.E. AlievG. Can miRNAs be considered as diagnostic and therapeutic molecules in ischemic stroke pathogenesis? Current Status.Int. J. Mol. Sci.20202118672810.3390/ijms2118672832937836
    [Google Scholar]
  28. JohnsonW. OnumaO. OwolabiM. SachdevS. Stroke: A global response is needed.Bull. World Health Organ.2016949634634A10.2471/BLT.16.18163627708464
    [Google Scholar]
  29. OwolabiM.O. Akarolo-AnthonyS. AkinyemiR. ArnettD. GebregziabherM. JenkinsC. TiwariH. ArulogunO. AkpaluA. SarfoF.S. ObiakoR. OwolabiL. SagoeK. MelikamS. AdeoyeA.M. LacklandD. OvbiageleB. Members of the H3Africa Consortium The burden of stroke in Africa: A glance at the present and a glimpse into the future: Review article.Cardiovasc. J. Afr.2015262Suppl. 1S27S3810.5830/CVJA‑2015‑03825962945
    [Google Scholar]
  30. WafaH.A. WolfeC.D.A. EmmettE. RothG.A. JohnsonC.O. WangY. Burden of stroke in europe.Stroke20205182418242710.1161/STROKEAHA.120.02960632646325
    [Google Scholar]
  31. RogerV.L. GoA.S. Lloyd-JonesD.M. BenjaminE.J. BerryJ.D. BordenW.B. BravataD.M. DaiS. FordE.S. FoxC.S. FullertonH.J. GillespieC. HailpernS.M. HeitJ.A. HowardV.J. KisselaB.M. KittnerS.J. LacklandD.T. LichtmanJ.H. LisabethL.D. MakucD.M. MarcusG.M. MarelliA. MatcharD.B. MoyC.S. MozaffarianD. MussolinoM.E. NicholG. PaynterN.P. SolimanE.Z. SorlieP.D. SotoodehniaN. TuranT.N. ViraniS.S. WongN.D. WooD. TurnerM.B. American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics--2012 update: A report from the american heart association.Circulation20121251e2e22022179539
    [Google Scholar]
  32. AppelrosP. NydevikI. ViitanenM. Poor outcome after first-ever stroke: Predictors for death, dependency, and recurrent stroke within the first year.Stroke200334112212610.1161/01.STR.0000047852.05842.3C12511762
    [Google Scholar]
  33. FeiginV.L. LawesC.M.M. BennettD.A. AndersonC.S. Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century.Lancet Neurol.200321435310.1016/S1474‑4422(03)00266‑712849300
    [Google Scholar]
  34. YooJ. HongB. JoL. KimJ.S. ParkJ. ShinB. LimS. Effects of age on long-term functional recovery in patients with stroke.Medicina202056945110.3390/medicina5609045132906615
    [Google Scholar]
  35. PlutaR. MiziakB. CzuczwarS.J. Apitherapy in post-ischemic brain neurodegeneration of alzheimer’s disease proteinopathy: Focus on honey and its flavonoids and phenolic acids.Molecules20232815562410.3390/molecules2815562437570596
    [Google Scholar]
  36. PlutaR. MiziakB. CzuczwarS.J. Post-ischemic permeability of the blood–brain barrier to amyloid and platelets as a factor in the maturation of alzheimer’s disease-type brain neurodegeneration.Int. J. Mol. Sci.202324131073910.3390/ijms24131073937445917
    [Google Scholar]
  37. HowardG. GoffD.C. Population shifts and the future of stroke: forecasts of the future burden of stroke.Ann. N. Y. Acad. Sci.201212681142010.1111/j.1749‑6632.2012.06665.x22994216
    [Google Scholar]
  38. SimatsA. LieszA. Systemic inflammation after stroke: Implications for post-stroke comorbidities.EMBO Mol. Med.2022149e1626910.15252/emmm.20221626935971650
    [Google Scholar]
  39. CerasuoloJ.O. MandziaJ. CiprianoL.E. KapralM.K. FangJ. HachinskiV. SposatoL.A. Intravenous thrombolysis after first-ever ischemic stroke and reduced incident dementia rate.Stroke20225341170117710.1161/STROKEAHA.121.03496934965738
    [Google Scholar]
  40. WangQ.H. WangX. BuX.L. LianY. XiangY. LuoH.B. ZouH.Q. PuJ. ZhouZ.H. CuiX.P. WangQ.S. ShiX.Q. HanW. WuQ. ChenH.S. LinH. GaoC.Y. ZhangL.L. XuZ.Q. ZhangM. ZhouH.D. WangY.J. Comorbidity burden of dementia: A hospital-based retrospective study from 2003 to 2012 in seven cities in China.Neurosci. Bull.201733670371010.1007/s12264‑017‑0193‑329134450
    [Google Scholar]
  41. NeurologyT.L. The Lancet Neurology A unified European action plan on stroke.Lancet Neurol.2020191296310.1016/S1474‑4422(20)30409‑933181090
    [Google Scholar]
  42. LimJ. MonteiroA. RuggieroN. BaigA.A. AguirreA.O. McPheetersM.J. WaqasM. VakhariaK. SnyderK.V. SiddiquiA.H. LevyE.I. DaviesJ.M. Mechanical thrombectomy versus best medical management for acute ischemic stroke in elderly patients: A cost-effectiveness analysis.World Neurosurg.2023175e730e73710.1016/j.wneu.2023.04.01237037370
    [Google Scholar]
  43. RasquinS.M.C. LodderJ. VerheyF.R.J. Predictors of reversible mild cognitive impairment after stroke: A 2-year follow-up study.J. Neurol. Sci.2005229-230212510.1016/j.jns.2004.11.01515760615
    [Google Scholar]
  44. PlutaR. Ułamek-KoziołM. JanuszewskiS. CzuczwarS. Amyloid pathology in the brain after ischemia.Folia Neuropathol.201957322022610.5114/fn.2019.8845031588708
    [Google Scholar]
  45. GoulayR. Mena RomoL. HolE.M. DijkhuizenR.M. From stroke to dementia: A comprehensive review exposing tight interactions between stroke and amyloid-β formation.Transl. Stroke Res.202011460161410.1007/s12975‑019‑00755‑231776837
    [Google Scholar]
  46. Garre-OlmoJ. Epidemiology of Alzheimer’s disease and other dementias.Rev. Neurol.2018661137738629790571
    [Google Scholar]
  47. DumurgierJ. SabiaS. Epidemiology of Alzheimer’s disease: Latest trends.Rev. Prat.202070214915132877124
    [Google Scholar]
  48. ReissA.B. GlassA.D. WisniewskiT. WolozinB. GomolinI.H. PinkhasovA. De LeonJ. SteckerM.M. Alzheimer’s disease: Many failed trials, so where do we go from here?J. Investig. Med.20206861135114010.1136/jim‑2020‑00129732699179
    [Google Scholar]
  49. PlutaR. UłamekM. JabłońskiM. Alzheimer’s mechanisms in ischemic brain degeneration.Anat. Rec.2009292121863188110.1002/ar.2101819943340
    [Google Scholar]
  50. GemmellE. BosomworthH. AllanL. HallR. KhundakarA. OakleyA.E. DeramecourtV. PolvikoskiT.M. O’BrienJ.T. KalariaR.N. Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias.Stroke201243380881410.1161/STROKEAHA.111.63649822207507
    [Google Scholar]
  51. PlutaR. KidaE. LossinskyA.S. GolabekA.A. MossakowskiM.J. WisniewskiH.M. Complete cerebral ischemia with short-term survival in rats induced by cardiac arrest. I. Extracellular accumulation of Alzheimer’s β-amyloid protein precursor in the brain.Brain Res.19946491-232332810.1016/0006‑8993(94)91081‑27525011
    [Google Scholar]
  52. PlutaR. BarcikowskaM. JanuszewskiS. MisickaA. LipkowskiA.W. Evidence of blood-brain barrier permeability/leakage for circulating human Alzheimerʼs β-amyloid-(1–42)-peptide.Neuroreport1996771261126510.1097/00001756‑199605170‑000088817545
    [Google Scholar]
  53. PlutaR. MisickaA. JanuszewskiS. BarcikowskaM. LipkowskiA.W. Transport of human β-amyloid peptide through the rat blood-brain barrier after global cerebral ischemia.Acta Neurochir. Suppl.199770Suppl.24724910.1007/978‑3‑7091‑6837‑0_769416336
    [Google Scholar]
  54. PlutaR. BarcikowskaM. MisickaA. LipkowskiA.W. SpisackaS. JanuszewskiS. Ischemic rats as a model in the study of the neurobiological role of human β-amyloid peptide. Time-dependent disappearing diffuse amyloid plaques in braina.Neuroreport199910173615361910.1097/00001756‑199911260‑0002810619654
    [Google Scholar]
  55. PlutaR. MisickaA. BarcikowskaM. SpisackaS. LipkowskiA.W. JanuszewskiS. Possible reverse transport of β-amyloid peptide across the blood-brain barrier.Acta Neurochir. Suppl.200076737710.1007/978‑3‑7091‑6346‑7_1511450095
    [Google Scholar]
  56. HonigL.S. TangM.X. AlbertS. CostaR. LuchsingerJ. ManlyJ. SternY. MayeuxR. Stroke and the risk of Alzheimer disease.Arch. Neurol.200360121707171210.1001/archneur.60.12.170714676044
    [Google Scholar]
  57. SalminenA. KauppinenA. KaarnirantaK. Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease.J. Neurochem.2017140453654910.1111/jnc.1393227987381
    [Google Scholar]
  58. EskandariS. SajadimajdS. AlaeiL. SoheilikhahZ. DerakhshankhahH. BahramiG. Targeting common signaling pathways for the treatment of stroke and alzheimer’s: A comprehensive review.Neurotox. Res.20213951589161210.1007/s12640‑021‑00381‑734169405
    [Google Scholar]
  59. KriskaJ. HermanovaZ. KnotekT. TureckovaJ. AnderovaM. On the common journey of neural cells through ischemic brain injury and alzheimer’s disease.Int. J. Mol. Sci.20212218968910.3390/ijms2218968934575845
    [Google Scholar]
  60. Elman-ShinaK. EfratiS. Ischemia as a common trigger for Alzheimer’s disease.Front. Aging Neurosci.202214101277910.3389/fnagi.2022.101277936225888
    [Google Scholar]
  61. DasT.K. GaneshB.P. Fatima-ShadK. Common signaling pathways involved in alzheimer’s disease and stroke: Two faces of the same coin.J. Alzheimers Dis. Rep.20237138139810.3233/ADR‑22010837220617
    [Google Scholar]
  62. YamashimaT. SeikeT. Mochly-RosenD. ChenC.H. KikuchiM. MizukoshiE. Implication of the cooking oil-peroxidation product “hydroxynonenal” for Alzheimer’s disease.Front. Aging Neurosci.202315121114110.3389/fnagi.2023.121114137693644
    [Google Scholar]
  63. KockiJ. Ułamek-KoziołM. Bogucka-KockaA. JanuszewskiS. JabłońskiM. Gil-KulikP. BrzozowskaJ. PetniakA. Furmaga-JabłońskaW. BoguckiJ. CzuczwarS.J. PlutaR. Dysregulation of amyloid-β protein precursor, β-secretase, presenilin 1 and 2 genes in the rat selectively vulnerable ca1 subfield of hippocampus following transient global brain ischemia.J. Alzheimers Dis.20154741047105610.3233/JAD‑15029926401782
    [Google Scholar]
  64. PlutaR. Ułamek-KoziołM. KockiJ. BoguckiJ. JanuszewskiS. Bogucka-KockaA. CzuczwarS.J. Expression of the tau protein and amyloid protein precursor processing genes in the CA3 area of the hippocampus in the ischemic model of Alzheimer’s disease in the rat.Mol. Neurobiol.20205721281129010.1007/s12035‑019‑01799‑z31713815
    [Google Scholar]
  65. CzuczwarS.J. KockiJ. MiziakB. BoguckiJ. Bogucka-KockaA. PlutaR. Alpha-, beta-, and gamma-secretase, amyloid precursor protein, and tau protein genes in the hippocampal CA3 subfield in an ischemic model of alzheimer’s disease with survival up to 2 years.J. Alzheimers Dis.202498115116110.3233/JAD‑23133338393914
    [Google Scholar]
  66. PlutaR. KockiJ. Ułamek-KoziołM. PetniakA. Gil-KulikP. JanuszewskiS. BoguckiJ. JabłońskiM. BrzozowskaJ. Furmaga-JabłońskaW. Bogucka-KockaA. CzuczwarS.J. Discrepancy in expression of β-secretase and amyloid-β protein precursor in alzheimer-related genes in the rat medial temporal lobe cortex following transient global brain ischemia.J. Alzheimers Dis.20165141023103110.3233/JAD‑15110226890784
    [Google Scholar]
  67. PlutaR. KockiJ. Ułamek-KoziołM. Bogucka-KockaA. Gil-KulikP. JanuszewskiS. JabłońskiM. PetniakA. BrzozowskaJ. BoguckiJ. Furmaga-JabłońskaW. CzuczwarS.J. Alzheimer-associated presenilin 2 gene is dysregulated in rat medial temporal lobe cortex after complete brain ischemia due to cardiac arrest.Pharmacol. Rep.201668115516110.1016/j.pharep.2015.08.00226721367
    [Google Scholar]
  68. PlutaR. Bogucka-KockaA. Ułamek-KoziołM. BoguckiJ. JanuszewskiS. KockiJ. CzuczwarS.J. Ischemic tau protein gene induction as an additional key factor driving development of Alzheimer’s phenotype changes in CA1 area of hippocampus in an ischemic model of Alzheimer’s disease.Pharmacol. Rep.201870588188410.1016/j.pharep.2018.03.00430096486
    [Google Scholar]
  69. PlutaR. KockiJ. BoguckiJ. Bogucka-KockaA. CzuczwarS.J. LRP1 and RAGE genes transporting amyloid and tau protein in the hippocampal CA3 area in an ischemic model of alzheimer’s disease with 2-year survival.Cells20231223276310.3390/cells1223276338067191
    [Google Scholar]
  70. Ułamek-KoziołM. KockiJ. Bogucka-KockaA. JanuszewskiS. BoguckiJ. CzuczwarS.J. PlutaR. Autophagy, mitophagy and apoptotic gene changes in the hippocampal CA1 area in a rat ischemic model of Alzheimer’s disease.Pharmacol. Rep.20176961289129410.1016/j.pharep.2017.07.01529128811
    [Google Scholar]
  71. Ułamek-KoziołM. CzuczwarS.J. KockiJ. JanuszewskiS. BoguckiJ. Bogucka-KockaA. PlutaR. Dysregulation of autophagy, mitophagy, and apoptosis genes in the CA3 region of the hippocampus in the ischemic model of alzheimer’s disease in the rat.J. Alzheimers Dis.20197241279128610.3233/JAD‑19096631707369
    [Google Scholar]
  72. Ułamek-KoziołM. KockiJ. Bogucka-KockaA. PetniakA. Gil-KulikP. JanuszewskiS. BoguckiJ. JabłońskiM. Furmaga-JabłońskaW. BrzozowskaJ. CzuczwarS.J. PlutaR. Dysregulation of autophagy, mitophagy and apoptotic genes in the medial temporal lobe cortex in an ischemic model of Alzheimer’s disease.J. Alzheimers Dis.201654111312110.3233/JAD‑16038727472881
    [Google Scholar]
  73. AbeK. TanziR.E. KogureK. Selective induction of Kunitz-type protease inhibitor domain-containing amyloid precursor protein mRNA after persistent focal ischemia in rat cerebral cortex.Neurosci. Lett.1991125217217410.1016/0304‑3940(91)90020‑T1908958
    [Google Scholar]
  74. KimH.S. LeeS.H. KimS.S. KimY.K. JeongS.J. MaJ. HanD.H. ChoB.K. SuhY.H. Post-ischemic changes in the expression of Alzheimerʼs APP isoforms in rat cerebral cortex.Neuroreport19989353453710.1097/00001756‑199802160‑000299512402
    [Google Scholar]
  75. ShiJ. PanickarK.S. YangS.H. RabbaniO. DayA.L. SimpkinsJ.W. Estrogen attenuates over-expression of β-amyloid precursor protein messager RNA in an animal model of focal ischemia.Brain Res.19988101-2879210.1016/S0006‑8993(98)00888‑99813255
    [Google Scholar]
  76. ShiJ. YangS.H. StubleyL. DayA.L. SimpkinsJ.W. Hypoperfusion induces overexpression of β-amyloid precursor protein mRNA in a focal ischemic rodent model.Brain Res.200085311410.1016/S0006‑8993(99)02113‑710627301
    [Google Scholar]
  77. KoistinahoJ. PyykönenI. KeinänenR. HökfeltT. Expression of β-amyloid precursor protein mRNAs following transient focal ischaemia.Neuroreport19967152727273210.1097/00001756‑199611040‑000648981456
    [Google Scholar]
  78. TanimukaiH. ImaizumiK. KudoT. KatayamaT. TsudaM. TakagiT. TohyamaM. TakedaM. Alzheimer-associated presenilin-1 gene is induced in gerbil hippocampus after transient ischemia.Brain Res. Mol. Brain Res.199854221221810.1016/S0169‑328X(97)00337‑99555019
    [Google Scholar]
  79. PennypackerK.R. HernandezH. BenkovicS. MorganD.G. WillingA.E. SanbergP.R. Induction of presenilins in the rat brain after middle cerebral arterial occlusion.Brain Res. Bull.199948553954310.1016/S0361‑9230(99)00031‑310372515
    [Google Scholar]
  80. AliS.M. DunnE. OostveenJ.A. HallE.D. CarterD.B. Induction of apolipoprotein E mRNA in the hippocampus of the gerbil after transient global ischemia.Brain Res. Mol. Brain Res.1996381374410.1016/0169‑328X(95)00301‑88737665
    [Google Scholar]
  81. KamadaH. SatoK. ZhangW.R. OmoriN. NaganoI. ShojiM. AbeK. Spatiotemporal changes of apolipoprotein E immunoreactivity and apolipoprotein E mRNA expression after transient middle cerebral artery occlusion in rat brain.J. Neurosci. Res.200373454555610.1002/jnr.1065812898539
    [Google Scholar]
  82. Van BeekJ. ChanP. BernaudinM. PetitE. MacKenzieE.T. FontaineM. Glial responses, clusterin, and complement in permanent focal cerebral ischemia in the mouse.Glia2000311395010.1002/(SICI)1098‑1136(200007)31:1<39::AID‑GLIA40>3.0.CO;2‑110816605
    [Google Scholar]
  83. NalivaevaaN.N. FiskL. KochkinaE.G. PlesnevaS.A. ZhuravinI.A. BabusikovaE. DobrotaD. TurnerA.J. Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid-degrading enzymes.Ann. N. Y. Acad. Sci.200410351213310.1196/annals.1332.00215681798
    [Google Scholar]
  84. YanF.L. ZhangJ. GuanX.N. HongZ. [mRNA expression and activity of ADAM17 in hippocampus after chronic cerebral hypoperfusion: Experiment with aged rats].Zhonghua Yi Xue Za Zhi200787352515251718067820
    [Google Scholar]
  85. BlaskoI. BeerR. BiglM. ApeltJ. FranzG. RudzkiD. RansmayrG. KampflA. SchliebsR. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer?s disease β-secretase (BACE-1).J. Neural Transm.2004111452353610.1007/s00702‑003‑0095‑615057522
    [Google Scholar]
  86. ChenX.H. SimanR. IwataA. MeaneyD.F. TrojanowskiJ.Q. SmithD.H. Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma.Am. J. Pathol.2004165235737110.1016/S0002‑9440(10)63303‑215277212
    [Google Scholar]
  87. WenY. OnyewuchiO. YangS. LiuR. SimpkinsJ.W. Increased β-secretase activity and expression in rats following transient cerebral ischemia.Brain Res.200410091-21810.1016/j.brainres.2003.09.08615120577
    [Google Scholar]
  88. ChuangC.M. HsiehC.L. LinH.Y. LinJ.G. Panax Notoginseng Burk attenuates impairment of learning and memory functions and increases ED1, BDNF and beta-secretase immunoreactive cells in chronic stage ischemia-reperfusion injured rats.Am. J. Chin. Med.200836468569310.1142/S0192415X0800615618711766
    [Google Scholar]
  89. YeJ. PiR. MaoX. ChenX. QinJ. XuS. LiuP. Alterations in mRNA expression of BACE1, cathepsin B, and glutaminyl cyclase in mice ischemic brain.Neuroreport200920161456146010.1097/WNR.0b013e328332024a19809370
    [Google Scholar]
  90. PolavarapuR. AnJ. ZhangC. YepesM. Regulated intramembrane proteolysis of the low-density lipoprotein receptor-related protein mediates ischemic cell death.Am. J. Pathol.200817251355136210.2353/ajpath.2008.07097518403601
    [Google Scholar]
  91. HallE.D. OostveenJ.A. DunnE. CarterD.B. Increased amyloid protein precursor and apolipoprotein E immunoreactivity in the selectively vulnerable hippocampus following transient forebrain ischemia in gerbils.Exp. Neurol.19951351172710.1006/exnr.1995.10627556550
    [Google Scholar]
  92. TomimotoH. AkiguchiI. WakitaH. NakamuraS. KimuraJ. Ultrastructural localization of amyloid protein precursor in the normal and postischemic gerbil brain.Brain Res.19956721-218719510.1016/0006‑8993(94)01160‑J7749741
    [Google Scholar]
  93. IshimaruH. IshikawaK. HagaS. ShojiM. OneY. HagaC. SasakiA. TakashashiA. MaruyamaY. Accumulation of apolipoprotein E and β-amyloid-like protein in a trace of the hippocampal CA1 pyramidal cell layer after ischaemic delayed neuronal death.Neuroreport19967183063306810.1097/00001756‑199611250‑000549116241
    [Google Scholar]
  94. YokotaM. SaidoT.C. TaniE. YamauraI. MinamiN. Cytotoxic fragment of amyloid precursor protein accumulates in hippocampus after global forebrain ischemia.J. Cereb. Blood Flow Metab.19961661219122310.1097/00004647‑199611000‑000168898694
    [Google Scholar]
  95. LinB. Schmidt-KastnerR. BustoR. GinsbergM.D. Progressive parenchymal deposition of β-amyloid precursor protein in rat brain following global cerebral ischemia.Acta Neuropathol.199997435936810.1007/s00401005099910208275
    [Google Scholar]
  96. PlutaR. The role of apolipoprotein E in the deposition of β-amyloid peptide during ischemia-reperfusion brain injury. A model of early Alzheimer’s disease.Ann. N. Y. Acad. Sci.2000903132433410.1111/j.1749‑6632.2000.tb06383.x10818522
    [Google Scholar]
  97. PlutaR. No effect of anti-oxidative therapy on cerebral amyloidosis following ischemia-reperfusion brain injury.Folia Neuropathol.200038418819011693724
    [Google Scholar]
  98. LinB. GinsbergM.D. BustoR. Hyperglycemic but not normoglycemic global ischemia induces marked early intraneuronal expression of β-amyloid precursor protein.Brain Res.2001888110711610.1016/S0006‑8993(00)03023‑711146057
    [Google Scholar]
  99. Sinigaglia-CoimbraR. CavalheiroE. CoimbraC. Postischemic hyperthermia induces Alzheimer-like pathology in the rat brain.Acta Neuropathol.2002103544445210.1007/s00401‑001‑0487‑311935259
    [Google Scholar]
  100. FujiokaM. TaokaT. MatsuoY. MishimaK. OgoshiK. KondoY. TsudaM. FujiwaraM. AsanoT. SakakiT. MiyasakiA. ParkD. SiesjöB.K. Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration.Ann. Neurol.200354673274710.1002/ana.1075114681883
    [Google Scholar]
  101. JabłońskiM. MaciejewskiR. JanuszewskiS. UłamekM. PlutaR. One year follow up in ischemic brain injury and the role of Alzheimer factors.Physiol. Res.201160Suppl. 1S113S11910.33549/physiolres.93218621777016
    [Google Scholar]
  102. BanatiR.B. GehrmannJ. WießnerC. HossmannK.A. KreutzbergG.W. Glial expression of the β-amyloid precursor protein (APP) in global ischemia.J. Cereb. Blood Flow Metab.199515464765410.1038/jcbfm.1995.807790414
    [Google Scholar]
  103. PalaciosG. MengodG. TortosaA. FerrerI. PalaciosJ.M. Increased β-amyloid precursor protein expression in astrocytes in the gerbil hippocampus following ischaemia: Association with proliferation of astrocytes.Eur. J. Neurosci.19957350151010.1111/j.1460‑9568.1995.tb00346.x7773447
    [Google Scholar]
  104. NihashiT. InaoS. KawaiT. SugimotoT. NiwaM. HataN. HayashiS. YoshidaJ. KajitaY. KabeyaR. Expression and distribution of beta amyloid precursor protein and beta amyloid peptide in reactive astrocytes after transient middle cerebral artery occlusion.Acta Neurochir.2001143328729510.1007/s00701017010911460917
    [Google Scholar]
  105. BadanI. PlattD. KesslerC. Popa-WagnerA. Temporal dynamics of degenerative and regenerative events associated with cerebral ischemia in aged rats.Gerontology200349635636510.1159/00007376314624064
    [Google Scholar]
  106. BadanI. DincaI. BuchholdB. SuofuY. WalkerL. GratzM. PlattD. KesslerC.H. Popa-WagnerA. Accelerated accumulation of N- and C-terminal βAPP fragments and delayed recovery of microtubule-associated protein 1B expression following stroke in aged rats.Eur. J. Neurosci.20041982270228010.1111/j.0953‑816X.2004.03323.x15090053
    [Google Scholar]
  107. PlutaR. UłamekM. JanuszewskiS. Micro-blood-brain barrier openings and cytotoxic fragments of amyloid precursor protein accumulation in white matter after ischemic brain injury in long-lived rats.Acta Neurochir. Suppl.200696Suppl.26727110.1007/3‑211‑30714‑1_5716671468
    [Google Scholar]
  108. PlutaR. JanuszewskiS. UłamekM. Ischemic blood-brain barrier and amyloid in white matter as etiological factors in leukoaraiosis.Acta Neurochir. Suppl.2008102Suppl.35335610.1007/978‑3‑211‑85578‑2_6719388344
    [Google Scholar]
  109. YamP.S. TakasagoT. DewarD. GrahamD.I. McCullochJ. Amyloid precursor protein accumulates in white matter at the margin of a focal ischaemic lesion.Brain Res.19977601-215015710.1016/S0006‑8993(97)00290‑49237529
    [Google Scholar]
  110. PlutaR. Glial expression of the β-amyloid peptide in cardiac arrest.J. Neurol. Sci.2002203-20427728010.1016/S0022‑510X(02)00305‑212417398
    [Google Scholar]
  111. PlutaR. Astroglial expression of the beta-amyloid in ischemia-reperfusion brain injury.Ann. N. Y. Acad. Sci.2002977110210810.1111/j.1749‑6632.2002.tb04803.x12480738
    [Google Scholar]
  112. PlutaR. Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival.Acta Neurochir. Suppl.200386Suppl.11712210.1007/978‑3‑7091‑0651‑8_2614753418
    [Google Scholar]
  113. PlutaR. Pathological opening of the blood-brain barrier to horseradish peroxidase and amyloid precursor protein following ischemia-reperfusion brain injury.Chemotherapy200551422322610.1159/00008692416006769
    [Google Scholar]
  114. van GroenT. PuurunenK. MäkiH.M. SiveniusJ. JolkkonenJ. Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats.Stroke20053671551155610.1161/01.STR.0000169933.88903.cf15933257
    [Google Scholar]
  115. PlutaR. Role of ischemic blood-brain barrier on amyloid plaques development in Alzheimer’s disease brain.Curr. Neurovasc. Res.20074212112910.2174/15672020778063720717504210
    [Google Scholar]
  116. PlutaR. JanuszewskiS. JabłońskiM. UłamekM. Factors in creepy delayed neuronal death in hippocampus following brain ischemia-reperfusion injury with long-term survival.Acta Neurochir. Suppl.2010106Suppl.374110.1007/978‑3‑211‑98811‑4_519812917
    [Google Scholar]
  117. Oster-GraniteM.L. McPhieD.L. GreenanJ. NeveR.L. Age-dependent neuronal and synaptic degeneration in mice transgenic for the C terminus of the amyloid precursor protein.J. Neurosci.199616216732674110.1523/JNEUROSCI.16‑21‑06732.19968824314
    [Google Scholar]
  118. DewarD. GrahamD.I. TeasdaleG.M. McCullochJ. Alz-50 and ubiquitin immunoreactivity is induced by permanent focal cerebral ischaemia in the cat.Acta Neuropathol.199386662362910.1007/BF002943028310818
    [Google Scholar]
  119. DewarD. GrahamD.I. TeasdaleG.M. McCullochJ. Cerebral ischemia induces alterations in tau and ubiquitin proteins.Dementia199453-41681738087173
    [Google Scholar]
  120. GeddesJ.W. SchwabC. CraddockS. WilsonJ.L. PettigrewL.C. Alterations in tau immunostaining in the rat hippocampus following transient cerebral ischemia.J. Cereb. Blood Flow Metab.199414455456410.1038/jcbfm.1994.697516935
    [Google Scholar]
  121. DewarD. DawsonD. Tau protein is altered by focal cerebral ischaemia in the rat: An immunohistochemical and immunoblotting study.Brain Res.19956841707810.1016/0006‑8993(95)00417‑O7583206
    [Google Scholar]
  122. IrvingE.A. YatsushiroK. McCullochJ. DewarD. Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: Involvement of free radicals.J. Cereb. Blood Flow Metab.199717661262210.1097/00004647‑199706000‑000039236718
    [Google Scholar]
  123. UchiharaT. NakamuraA. AraiT. IkedaK. TsuchiyaK. Microglial tau undergoes phosphorylation-independent modification after ischemia.Glia200445218018710.1002/glia.1031814730711
    [Google Scholar]
  124. FujiiH. TakahashiT. MukaiT. TanakaS. HosomiN. MaruyamaH. SakaiN. MatsumotoM. Modifications of tau protein after cerebral ischemia and reperfusion in rats are similar to those occurring in Alzheimer’s disease – Hyperphosphorylation and cleavage of 4- and 3-repeat tau.J. Cereb. Blood Flow Metab.20173772441245710.1177/0271678X1666888927629097
    [Google Scholar]
  125. StamerK. VogelR. ThiesE. MandelkowE. MandelkowE.M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress.J. Cell Biol.200215661051106310.1083/jcb.20010805711901170
    [Google Scholar]
  126. WenY. YangS. LiuR. SimpkinsJ.W. Transient cerebral ischemia induces site-specific hyperphosphorylation of tau protein.Brain Res.200410221-2303810.1016/j.brainres.2004.05.10615353210
    [Google Scholar]
  127. WenY. YangS. LiuR. Brun-ZinkernagelA.M. KoulenP. SimpkinsJ.W. Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzheimer’s disease-like tauopathy in female rats.J. Biol. Chem.200427921226842269210.1074/jbc.M31176820014982935
    [Google Scholar]
  128. WenY. YangS.H. LiuR. PerezE.J. Brun-ZinkernagelA.M. KoulenP. SimpkinsJ.W. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats.Biochim. Biophys. Acta Mol. Basis Dis.20071772447348310.1016/j.bbadis.2006.10.01117113760
    [Google Scholar]
  129. PlutaR. JanuszewskiS. JabłońskiM. Acetylated tau protein: A new piece in the puzzle between brain ischemia and alzheimer’s disease.Int. J. Mol. Sci.20222316917410.3390/ijms2316917436012440
    [Google Scholar]
  130. KhanS. YuldashevaN.Y. BattenT.F.C. PicklesA.R. KellettK.A.B. SahaS. Tau pathology and neurochemical changes associated with memory dysfunction in an optimised murine model of global cerebral ischaemia - A potential model for vascular dementia?Neurochem. Int.201811813414410.1016/j.neuint.2018.04.00429649504
    [Google Scholar]
  131. SeddighN. TaabodiD. DadzadiM. ShahpasandK. cis P-tau accumulation triggers neurodegeneration after ischemic stroke.ACS Omega202495acsomega.3c0728510.1021/acsomega.3c0728538343967
    [Google Scholar]
  132. PlutaR. CzuczwarS.J. Trans- and Cis-phosphorylated tau protein: new pieces of the puzzle in the development of neurofibrillary tangles in post-ischemic brain neurodegeneration of the alzheimer’s disease-like type.Int. J. Mol. Sci.2024256309110.3390/ijms2506309138542064
    [Google Scholar]
  133. KidaE. PlutaR. LossinskyA.S. GolabekA.A. Choi-MiuraN-H. WisniewskiH.M. MossakowskiM.J. Complete cerebral ischemia with short-term survival in rat induced by cardiac arrest. II. Extracellular and intracellular accumulation of apolipoproteins E and J in the brain.Brain Res.1995674234134610.1016/0006‑8993(94)01467‑V7796114
    [Google Scholar]
  134. IshimaruH. IshikawaK. OheY. TakahashiA. MaruyamaY. Cystatin C and apolipoprotein E immunoreactivities in CA1 neurons in ischemic gerbil hippocampus.Brain Res.1996709215516210.1016/0006‑8993(95)01232‑X8833751
    [Google Scholar]
  135. PlutaR. Proteins associated with Alzheimer’s disease in conditions predisposing to Alzheimer’s-type neurodegeneration.J. Cereb. Blood Flow Metab.200121Suppl. 1S424
    [Google Scholar]
  136. MattsonM.P. ZhuH. YuJ. KindyM.S. Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: Involvement of perturbed calcium homeostasis.J. Neurosci.20002041358136410.1523/JNEUROSCI.20‑04‑01358.200010662826
    [Google Scholar]
  137. YangY. KinneyG.A. SpainW.J. BreitnerJ.C.S. CookD.G. Presenilin-1 and intracellular calcium stores regulate neuronal glutamate uptake.J. Neurochem.20048861361137210.1046/j.1471‑4159.2003.02279.x15009636
    [Google Scholar]
  138. IshimaruH. UédaK. TakahashiA. MaruyamaY. Changes in presynaptic protein NACP/α-synuclein in an ischemic gerbil hippocampus.Brain Res.19987881-231131410.1016/S0006‑8993(98)00033‑X9555070
    [Google Scholar]
  139. KitamuraY. IshidaY. TakataK. KakimuraJ. MizutaniH. ShimohamaS. AkaikeA. TaniguchiT. α-Synuclein protein is not scavenged in neuronal loss induced by kainic acid or focal ischemia.Brain Res.2001898118118510.1016/S0006‑8993(01)02159‑X11292464
    [Google Scholar]
  140. GoedertM. Alpha-synuclein and neurodegenerative diseases.Nat. Rev. Neurosci.20012749250110.1038/3508156411433374
    [Google Scholar]
  141. HashimotoM. MasliahE. Alpha-synuclein in Lewy body disease and Alzheimer’s disease.Brain Pathol.19999470772010.1111/j.1750‑3639.1999.tb00552.x10517509
    [Google Scholar]
  142. JendroskaK. PoeweW. DanielS.E. PluessJ. Iwerssen-SchmidtH. PaulsenJ. BarthelS. ScheloskyL. Cervós-NavarroJ. DeArmondS.J. Ischemic stress induces deposition of amyloid beta immunoreactivity in human brain.Acta Neuropathol.199590546146610.1007/BF002948068560978
    [Google Scholar]
  143. WiśniewskiH.M. MaślińskaD. Beta-protein immunoreactivity in the human brain after cardiac arrest.Folia Neuropathol.199634265718791894
    [Google Scholar]
  144. JendroskaK. HoffmannO.M. PattS. Amyloid β peptide and precursor protein (APP) in mild and severe brain ischemia.Ann. N. Y. Acad. Sci.1997826140140510.1111/j.1749‑6632.1997.tb48492.x9329712
    [Google Scholar]
  145. QiJ. WuH. YangY. WangD. ChenY. GuY. LiuT. Cerebral ischemia and Alzheimer’s disease: the expression of amyloid-β and apolipoprotein E in human hippocampus.J. Alzheimers Dis.200712433534110.3233/JAD‑2007‑1240618198420
    [Google Scholar]
  146. LeeP.H. BangO.Y. HwangE.M. LeeJ.S. JooU.S. Mook-JungI. HuhK. Circulating beta amyloid protein is elevated in patients with acute ischemic stroke.J. Neural Transm.2005112101371137910.1007/s00702‑004‑0274‑015682267
    [Google Scholar]
  147. ZetterbergH. MörtbergE. SongL. ChangL. ProvuncherG.K. PatelP.P. FerrellE. FournierD.R. KanC.W. CampbellT.G. MeyerR. RivnakA.J. PinkB.A. MinnehanK.A. PiechT. RissinD.M. DuffyD.C. RubertssonS. WilsonD.H. BlennowK. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans.PLoS One2011612e2826310.1371/journal.pone.002826322194817
    [Google Scholar]
  148. MörtbergE. ZetterbergH. NordmarkJ. BlennowK. CatryC. DecraemerH. VanmechelenE. RubertssonS. Plasma tau protein in comatose patients after cardiac arrest treated with therapeutic hypothermia.Acta Anaesthesiol. Scand.20115591132113810.1111/j.1399‑6576.2011.02505.x22092212
    [Google Scholar]
  149. RandallJ. MörtbergE. ProvuncherG.K. FournierD.R. DuffyD.C. RubertssonS. BlennowK. ZetterbergH. WilsonD.H. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: Results of a pilot study.Resuscitation201384335135610.1016/j.resuscitation.2012.07.02722885094
    [Google Scholar]
  150. MaślińskaD. Laure-KamionowskaM. TaraszewskaA. DeręgowskiK. MaślińskiS. Immunodistribution of amyloid beta protein (Aβ) and advanced glycation end-product receptors (RAGE) in choroid plexus and ependyma of resuscitated patients.Folia Neuropathol.201149429530022212919
    [Google Scholar]
  151. SekeljicV. BataveljicD. StamenkovicS. UłamekM. JabłońskiM. RadenovicL. PlutaR. AndjusP.R. Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model.Brain Struct. Funct.2012217241142010.1007/s00429‑011‑0336‑721706330
    [Google Scholar]
  152. XingC. AraiK. LoE.H. HommelM. Pathophysiologic cascades in ischemic stroke.Int. J. Stroke20127537838510.1111/j.1747‑4949.2012.00839.x22712739
    [Google Scholar]
  153. RadenovicL. NenadicM. Ułamek-KoziołM. JanuszewskiS. CzuczwarS.J. AndjusP.R. PlutaR. Heterogeneity in brain distribution of activated microglia and astrocytes in a rat ischemic model of Alzheimer’s disease after 2 years of survival.Aging20201212122511226710.18632/aging.10341132501292
    [Google Scholar]
  154. PlutaR. SalínskaE. PukaM. StafiejA. ŁazarewiczJ.W. Early changes in extracellular amino acids and calcium concentrations in rabbit hippocampus following complete 15-min cerebral ischemia.Resuscitation198816319321010.1016/0300‑9572(88)90046‑92845543
    [Google Scholar]
  155. NeumannJ.T. CohanC.H. DaveK.R. WrightC.B. Perez-PinzonM.A. Global cerebral ischemia: Synaptic and cognitive dysfunction.Curr. Drug Targets2013141203510.2174/13894501380480651423170794
    [Google Scholar]
  156. ZamboniG. GriffantiL. JenkinsonM. MazzuccoS. LiL. KükerW. PendleburyS.T. RothwellP.M. Oxford Vascular Study White matter imaging correlates of early cognitive impairment detected by the Montreal Cognitive Assessment after transient ischemic attack and minor stroke.Stroke20174861539154710.1161/STROKEAHA.116.01604428487328
    [Google Scholar]
  157. WisniewskiH.M. LossinskyA.S. PlutaR. MossakowskiM.J. Ultrastructural studies of cerebral vascular spasm after cardiac arrest-related global cerebral ischemia in rats.Acta Neuropathol.199590543244010.1007/BF002948028560974
    [Google Scholar]
  158. ChenY. YeM. Risk factors and their correlation with severity of cerebral microbleed in acute large artery atherosclerotic cerebral infarction patients.Clin. Neurol. Neurosurg.202222110738010.1016/j.clineuro.2022.10738035917727
    [Google Scholar]
  159. RostN.S. BrodtmannA. PaseM.P. van VeluwS.J. BiffiA. DueringM. HinmanJ.D. DichgansM. Post-stroke cognitive impairment and dementia.Circ. Res.202213081252127110.1161/CIRCRESAHA.122.31995135420911
    [Google Scholar]
  160. LeeH.Y. JungY.H. MamadjonovN. JeungK.W. LeeB.K. KimT.H. KimH.J. GumucioJ.A. SalcidoD.D. Assessment of the effects of sodium nitroprusside administered via intracranial subdural catheters on the cerebral blood flow and lactate using dynamic susceptibility contrast magnetic resonance imaging and proton magnetic resonance spectroscopy in a pig cardiac arrest model.J. Am. Heart Assoc.20231219e02977410.1161/JAHA.123.02977437776216
    [Google Scholar]
  161. BivardA. LillicrapT. MaréchalB. Garcia-EsperonC. HollidayE. KrishnamurthyV. LeviC.R. ParsonsM. Transient ischemic attack results in delayed brain atrophy and cognitive decline.Stroke201849238439010.1161/STROKEAHA.117.01927629301970
    [Google Scholar]
  162. de la TremblayeP.B. PlamondonH. Impaired conditioned emotional response and object recognition are concomitant to neuronal damage in the amygdala and perirhinal cortex in middle-aged ischemic rats.Behav. Brain Res.2011219222723310.1016/j.bbr.2011.01.00921238489
    [Google Scholar]
  163. KirykA. PlutaR. FigielI. MikoszM. UłamekM. NiewiadomskaG. JabłońskiM. KaczmarekL. Transient brain ischemia due to cardiac arrest causes irreversible long-lasting cognitive injury.Behav. Brain Res.201121911710.1016/j.bbr.2010.12.00421147171
    [Google Scholar]
  164. LiJ. WangY.J. ZhangM. FangC.Q. ZhouH.D. Cerebral ischemia aggravates cognitive impairment in a rat model of Alzheimer’s disease.Life Sci.2011893-4869210.1016/j.lfs.2011.04.02421620868
    [Google Scholar]
  165. CohanC.H. NeumannJ.T. DaveK.R. AlekseyenkoA. BinkertM. StranskyK. LinH.W. BarnesC.A. WrightC.B. Perez-PinzonM.A. Effect of cardiac arrest on cognitive impairment and hippocampal plasticity in middle-aged rats.PLoS One2015105e012491810.1371/journal.pone.012491825933411
    [Google Scholar]
  166. BlockF. Global ischemia and behavioural deficits.Prog. Neurobiol.199958327929510.1016/S0301‑0082(98)00085‑910341364
    [Google Scholar]
  167. KuroiwaT. BonnekohP. HossmannK.A. Locomotor hyperactivity and hippocampal CA1 injury after transient forebrain ischemia of gerbils.Neurosci. Lett.1991122214114410.1016/0304‑3940(91)90842‑H2027511
    [Google Scholar]
  168. KarasawaY. ArakiH. OtomoS. Changes in locomotor activity and passive avoidance task performance induced by cerebral ischemia in Mongolian gerbils.Stroke199425364565010.1161/01.STR.25.3.6458128520
    [Google Scholar]
  169. LangdonK.D. Granter-ButtonS. CorbettD. Persistent behavioral impairments and neuroinflammation following global ischemia in the rat.Eur. J. Neurosci.200828112310231810.1111/j.1460‑9568.2008.06513.x19019197
    [Google Scholar]
  170. ColbourneF. CorbettD. Delayed postischemic hypothermia: A six month survival study using behavioral and histological assessments of neuroprotection.J. Neurosci.199515117250726010.1523/JNEUROSCI.15‑11‑07250.19957472479
    [Google Scholar]
  171. KiyotaY. MiyamotoM. NagaokaA. Relationship between brain damage and memory impairment in rats exposed to transient forebrain ischemia.Brain Res.1991538229530210.1016/0006‑8993(91)90443‑Y2012971
    [Google Scholar]
  172. KarhunenH. PitkänenA. VirtanenT. GurevicieneI. PussinenR. YlinenA. SiveniusJ. NissinenJ. JolkkonenJ. Long-term functional consequences of transient occlusion of the middle cerebral artery in rats.Epilepsy Res.200354111010.1016/S0920‑1211(03)00034‑212742590
    [Google Scholar]
  173. IshibashiS. KuroiwaT. LiYuanS. KatsumataN. LiS. EndoS. MizusawaH. Long-term cognitive and neuropsychological symptoms after global cerebral ischemia in Mongolian gerbils.Acta Neurochir. Suppl.200696Suppl.29930210.1007/3‑211‑30714‑1_6416671475
    [Google Scholar]
  174. FlynnR.W.V. MacWalterR.S.M. DoneyA.S.F. The cost of cerebral ischaemia.Neuropharmacology200855325025610.1016/j.neuropharm.2008.05.03118573263
    [Google Scholar]
  175. SurawanJ. AreemitS. TiamkaoS. SirithanawuthichaiT. SaensakS. Risk factors associated with post-stroke dementia: A systematic review and meta-analysis.Neurol. Int.201793721610.4081/ni.2017.721629071041
    [Google Scholar]
  176. Ihle-HansenH. ThommessenB. Bruun WyllerT. EngedalK. ØksengårdA.R. StensetV. LøkenK. AabergM. FureB. Incidence and subtypes of MCI and dementia 1 year after first-ever stroke in patients without pre-existing cognitive impairment.Dement. Geriatr. Cogn. Disord.201132640140710.1159/00033536122311341
    [Google Scholar]
  177. DouiriA. RuddA.G. WolfeC.D.A. Prevalence of poststroke cognitive impairment: South London stroke register 1995-2010.Stroke201344113814510.1161/STROKEAHA.112.67084423150656
    [Google Scholar]
  178. JacquinA. BinquetC. RouaudO. Graule-PetotA. DaubailB. OssebyG.V. Bonithon-KoppC. GiroudM. BéjotY. Post-stroke cognitive impairment: High prevalence and determining factors in a cohort of mild stroke.J. Alzheimers Dis.20144041029103810.3233/JAD‑13158024577459
    [Google Scholar]
  179. LoJ.W. CrawfordJ.D. DesmondD.W. GodefroyO. JokinenH. MahinradS. BaeH.J. LimJ.S. KöhlerS. DouvenE. StaalsJ. ChenC. XuX. ChongE.J. AkinyemiR.O. KalariaR.N. OgunniyiA. BarbayM. RousselM. LeeB.C. SrikanthV.K. MoranC. KandiahN. ChanderR.J. SabayanB. JukemaJ.W. MelkasS. ErkinjunttiT. BrodatyH. BordetR. BomboisS. HénonH. LipnickiD.M. KochanN.A. SachdevP.S. Stroke and Cognition (STROKOG) Collaboration Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups.Neurology20199324e2257e227110.1212/WNL.000000000000861231712368
    [Google Scholar]
  180. HashimS. AhmadS. Al HatamlehM.A.I. MustafaM.Z. MohamedM. MohamudR. KadirR. KubT.N.T. Trigona honey as a potential supplementary therapy to halt the progression of post-stroke vascular cognitive impairment.Int. Med. J.202128335338
    [Google Scholar]
  181. El HusseiniN. KatzanI.L. RostN.S. BlakeM.L. ByunE. PendleburyS.T. AparicioH.J. MarquineM.J. GottesmanR.F. SmithE.E. American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Cardiovascular Radiology and Intervention; Council on Hypertension; and Council on Lifestyle and Cardiometabolic Health cognitive impairment after ischemic and hemorrhagic stroke: A scientific statement from the American heart association/American stroke association.Stroke2023546e272e29110.1161/STR.000000000000043037125534
    [Google Scholar]
  182. BraininM. TuomilehtoJ. HeissW.D. BornsteinN.M. BathP.M.W. TeuschlY. RichardE. GuekhtA. QuinnT. Post Stroke Cognition Study Group Post-stroke cognitive decline: An update and perspectives for clinical research.Eur. J. Neurol.2015222229238, e13-e1610.1111/ene.1262625492161
    [Google Scholar]
  183. MokV.C.T. LamB.Y.K. WangZ. LiuW. AuL. LeungE.Y.L. ChenS. YangJ. ChuW.C.W. LauA.Y.L. ChanA.Y.Y. ShiL. FanF. MaS.H. IpV. SooY.O.Y. LeungT.W.H. KwokT.C.Y. HoC.L. WongL.K.S. WongA. Delayed-onset dementia after stroke or transient ischemic attack.Alzheimers Dement.201612111167117610.1016/j.jalz.2016.05.00727327542
    [Google Scholar]
  184. PortegiesM.L.P. WoltersF.J. HofmanA. IkramM.K. KoudstaalP.J. IkramM.A. Prestroke vascular pathology and the risk of recurrent stroke and poststroke dementia.Stroke20164782119212210.1161/STROKEAHA.116.01409427418596
    [Google Scholar]
  185. KimJ.H. LeeY. Dementia and death after stroke in older adults during a 10-year follow-up: Results from a competing risk model.J. Nutr. Health Aging201822229730110.1007/s12603‑017‑0914‑329380858
    [Google Scholar]
  186. PendleburyS.T. WadlingS. SilverL.E. MehtaZ. RothwellP.M. Transient cognitive impairment in TIA and minor stroke.Stroke201142113116312110.1161/STROKEAHA.111.62149021903955
    [Google Scholar]
  187. FillitH. HillJ. The costs of vascular dementia.J. Neurol. Sci.2002203-204353910.1016/S0022‑510X(02)00257‑512417354
    [Google Scholar]
  188. LoebC. GandolfoC. CroceR. ContiM. Dementia associated with lacunar infarction.Stroke19922391225122910.1161/01.STR.23.9.12251519275
    [Google Scholar]
  189. TatemichiT.K. FoulkesM.A. MohrJ.P. HewittJ.R. HierD.B. PriceT.R. WolfP.A. Dementia in stroke survivors in the Stroke Data Bank cohort. Prevalence, incidence, risk factors, and computed tomographic findings.Stroke199021685886610.1161/01.STR.21.6.8582349588
    [Google Scholar]
  190. HénonH. DurieuI. GuerouaouD. LebertF. PasquierF. LeysD. Poststroke dementia.Neurology20015771216122210.1212/WNL.57.7.121611591838
    [Google Scholar]
  191. AltieriM. Di PieroV. PasquiniM. GaspariniM. VanacoreN. VicenziniE. LenziG.L. Delayed poststroke dementia.Neurology200462122193219710.1212/01.WNL.0000130501.79012.1A15210881
    [Google Scholar]
  192. BornsteinN.M. GurA.Y. TrevesT.A. Reider-GroswasserI. AronovichB.D. KlimovitzkyS.S. VarssanoD. KorczynA.D. Do silent brain infarctions predict the development of dementia after first ischemic stroke?Stroke199627590490510.1161/01.STR.27.5.9048623111
    [Google Scholar]
  193. KokmenE. WhisnantJ.P. O’FallonW.M. ChuC.P. BeardC.M. Dementia after ischemic stroke.Neurology199646115415910.1212/WNL.46.1.1548559366
    [Google Scholar]
  194. SnowdonD.A. GreinerL.H. MortimerJ.A. RileyK.P. GreinerP.A. MarkesberyW.R. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study.JAMA19972771081381710.1001/jama.1997.035403400470319052711
    [Google Scholar]
  195. SamuelssonM. SöderfeldtB. OlssonG.B. Functional outcome in patients with lacunar infarction.Stroke199627584284610.1161/01.STR.27.5.8428623103
    [Google Scholar]
/content/journals/car/10.2174/0115672050320921240627050736
Loading
/content/journals/car/10.2174/0115672050320921240627050736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test