Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

As the world's population ages, Alzheimer's disease is currently the seventh most common cause of death globally; the burden is anticipated to increase, especially among middle-class and elderly persons. Artificial intelligence-based algorithms that work well in hospital environments can be used to identify Alzheimer's disease. A number of databases were searched for English-language articles published up until March 1, 2024, that examined the relationships between artificial intelligence techniques, eye movements, and Alzheimer's disease. A novel non-invasive method called eye movement analysis may be able to reflect cognitive processes and identify anomalies in Alzheimer's disease. Artificial intelligence, particularly deep learning, and machine learning, is required to enhance Alzheimer's disease detection using eye movement data. One sort of deep learning technique that shows promise is convolutional neural networks, which need further data for precise classification. Nonetheless, machine learning models showed a high degree of accuracy in this context. Artificial intelligence-driven eye movement analysis holds promise for enhancing clinical evaluations, enabling tailored treatment, and fostering the development of early and precise Alzheimer's disease diagnosis. A combination of artificial intelligence-based systems and eye movement analysis can provide a window for early and non-invasive diagnosis of Alzheimer's disease. Despite ongoing difficulties with early Alzheimer's disease detection, this presents a novel strategy that may have consequences for clinical evaluations and customized medication to improve early and accurate diagnosis.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050322607240529075641
2024-06-04
2025-01-10
Loading full text...

Full text loading...

References

  1. PorsteinssonA.P. IsaacsonR.S. KnoxS. SabbaghM.N. RubinoI. Diagnosis of early alzheimer’s disease: Clinical practice in 2021.J. Prev. Alzheimers Dis.20218337138634101796
    [Google Scholar]
  2. LynchC. World Alzheimer Report 2019: Attitudes to dementia, a global survey.Alzheimers Dement.202016S10e03825510.1002/alz.038255
    [Google Scholar]
  3. PenkeB. SzűcsM. BogárF. New pathways identify novel drug targets for the prevention and treatment of alzheimer’s disease.Int. J. Mol. Sci.2023246538310.3390/ijms2406538336982456
    [Google Scholar]
  4. DeTureM.A. DicksonD.W. The neuropathological diagnosis of alzheimer’s disease.Mol. Neurodegener.20191413210.1186/s13024‑019‑0333‑531375134
    [Google Scholar]
  5. SurguchovA. EmamzadehF.N. TitovaM. SurguchevA.A. Controversial properties of amyloidogenic proteins and peptides: New data in the COVID era.Biomedicines2023114121510.3390/biomedicines1104121537189833
    [Google Scholar]
  6. NandiA. CountsN. ChenS. SeligmanB. TortoriceD. VigoD. BloomD.E. Global and regional projections of the economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: A value of statistical life approach.EClinicalMedicine20225110158010.1016/j.eclinm.2022.10158035898316
    [Google Scholar]
  7. Tahami MonfaredA.A. ByrnesM.J. WhiteL.A. ZhangQ. The humanistic and economic burden of Alzheimer’s disease.Neurol. Ther.202211252555110.1007/s40120‑022‑00335‑x35192176
    [Google Scholar]
  8. Gómez-RíoM. CaballeroM.M. SáezM.G.J. Mínguez-CastellanosA. Diagnosis of neurodegenerative diseases: The clinical approach.Curr. Alzheimer Res.201613546947410.2174/156720501366615111614160326567736
    [Google Scholar]
  9. WeinerM.W. GórrizJ.M. RamírezJ. CastiglioniI. Editorial: Statistical signal processing in the analysis, characterization and detection of Aalzheimer's disease.Curr. Alzheimer Res.201613546646810.2174/15672050130416032518032127025774
    [Google Scholar]
  10. AfzalS. MaqsoodM. KhanU. MehmoodI. NawazH. AadilF. SongO-Y. NamY. Alzheimer disease detection techniques and methods: A review.Int. J. Interact. Multi.2021672610.9781/ijimai.2021.04.005
    [Google Scholar]
  11. LeeS.A.W. SposatoL.A. HachinskiV. CiprianoL.E. Cost-effectiveness of cerebrospinal biomarkers for the diagnosis of Alzheimer’s disease.Alzheimers Res. Ther.2017911810.1186/s13195‑017‑0243‑028302164
    [Google Scholar]
  12. Martinez-MurciaF.J. GórrizJ.M. RamírezJ. OrtizA. For The Alzheimer’s Disease Neuroimaging Initiative A spherical brain mapping of MR images for the detection of alzheimer’s disease.Curr. Alzheimer Res.201613557558810.2174/156720501366616031414515826971941
    [Google Scholar]
  13. JuganavarA. JoshiA. ShegekarT. Navigating early alzheimer’s diagnosis: A comprehensive review of diagnostic innovations.Cureus2023159e4493710.7759/cureus.4493737818489
    [Google Scholar]
  14. WolfA. TripanpitakK. UmedaS. Otake-MatsuuraM. Eye-tracking paradigms for the assessment of mild cognitive impairment: A systematic review.Front. Psychol.202314119756710.3389/fpsyg.2023.119756737546488
    [Google Scholar]
  15. NajjarR. Redefining radiology: A review of artificial intelligence integration in medical imaging.Diagnostics20231317276010.3390/diagnostics1317276037685300
    [Google Scholar]
  16. YousefiM. MalekiS.F. JafarizadehA. YoushanluiM.A. JafariA. PedrammehrS. Advancements in radiomics and artificial intelligence for thyroid cancer diagnosis.arXiv preprint arXiv:2404.07239 2024
    [Google Scholar]
  17. ZhangB. ZhuJ. SuH. Toward the third generation artificial intelligence.Sci. China Inf. Sci.202366212110110.1007/s11432‑021‑3449‑x
    [Google Scholar]
  18. PedroA.R. DiasM.B. LaranjoL. CunhaA.S. CordeiroJ.V. Artificial intelligence in medicine: A comprehensive survey of medical doctor’s perspectives in Portugal.PLoS One2023189e029061310.1371/journal.pone.029061337676884
    [Google Scholar]
  19. MirzaeiG. AdeliH. Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia.Biomed. Signal Process. Control20227210329310.1016/j.bspc.2021.103293
    [Google Scholar]
  20. AshayeriH. JafarizadehA. YousefiM. FarhadiF. JavadzadehA. Retinal imaging and Alzheimer’s disease: A future powered by Artificial Intelligence.Graefes Arch. Clin. Exp. Ophthalmol.202410.1007/s00417‑024‑06394‑038358524
    [Google Scholar]
  21. InselP.S. WeinerM. MackinR.S. MorminoE. LimY.Y. StomrudE. PalmqvistS. MastersC.L. MaruffP.T. HanssonO. MattssonN. Determining clinically meaningful decline in preclinical Alzheimer disease.Neurology2019934e322e33310.1212/WNL.000000000000783131289148
    [Google Scholar]
  22. KrashenyiI. RamírezJ. PopovA. Manuel GórrizJ. The Alzheimer’s Disease Neuroimaging Initiative Fuzzy computer-aided alzheimer’s disease diagnosis based on MRI data.Curr. Alzheimer Res.201613554555610.2174/156720501366616031414500826971942
    [Google Scholar]
  23. ZetterbergH. BlennowK. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics.Mol. Neurodegener.20211611010.1186/s13024‑021‑00430‑x33608044
    [Google Scholar]
  24. NiemantsverdrietE. ValckxS. BjerkeM. EngelborghsS. Alzheimer’s disease CSF biomarkers: Clinical indications and rational use.Acta Neurol. Belg.2017117359160210.1007/s13760‑017‑0816‑528752420
    [Google Scholar]
  25. Salas-GonzalezD. SegoviaF. Martínez-MurciaF.J. LangE.W. GorrizJ.M. RamırezJ. An optimal approach for selecting discriminant regions for the diagnosis of alzheimer’s disease.Curr. Alzheimer Res.201613783884410.2174/156720501366616041515485227087440
    [Google Scholar]
  26. LeeJ.C. KimS.J. HongS. KimY. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers.Exp. Mol. Med.201951511010.1038/s12276‑019‑0250‑231073121
    [Google Scholar]
  27. AndersonT.J. MacAskillM.R. Eye movements in patients with neurodegenerative disorders.Nat. Rev. Neurol.201392748510.1038/nrneurol.2012.27323338283
    [Google Scholar]
  28. OpwonyaJ. DoanD.N.T. KimS.G. KimJ.I. KuB. KimS. ParkS. KimJ.U. Saccadic eye movement in mild cognitive impairment and alzheimer’s disease: A systematic review and meta-analysis.Neuropsychol. Rev.202232219322710.1007/s11065‑021‑09495‑333959887
    [Google Scholar]
  29. LageC. López-GarcíaS. BejaninA. KazimierczakM. Aracil-BolañosI. Calvo-CórdobaA. PozuetaA. García-MartínezM. Fernández-RodríguezA. Bravo-GonzálezM. Jiménez-BonillaJ. BanzoI. Irure-VenturaJ. PeguerolesJ. Illán-GalaI. ForteaJ. Rodríguez-RodríguezE. Lleó-BisaA. García-CenaC.E. Sánchez-JuanP. Distinctive oculomotor behaviors in alzheimer’s disease and frontotemporal dementia.Front. Aging Neurosci.20211260379010.3389/fnagi.2020.60379033613262
    [Google Scholar]
  30. TokushigeS. MatsumotoH. MatsudaS. Inomata-TeradaS. KotsukiN. HamadaM. TsujiS. UgawaY. TeraoY. Early detection of cognitive decline in Alzheimer’s disease using eye tracking.Front. Aging Neurosci.202315112345610.3389/fnagi.2023.112345637025964
    [Google Scholar]
  31. MaxS.M. PlewniaC. ZipfelS. GielK.E. SchagK. Combined antisaccade task and transcranial direct current stimulation to increase response inhibition in binge eating disorder.Eur. Arch. Psychiatry Clin. Neurosci.20212711172810.1007/s00406‑020‑01164‑532661703
    [Google Scholar]
  32. AlichniewiczK.K. BrunnerF. KlünemannH.H. GreenleeM.W. Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment.Front. Psychol.2013446710.3389/fpsyg.2013.0046723898312
    [Google Scholar]
  33. KaufmanL.D. PrattJ. LevineB. BlackS.E. Antisaccades: A probe into the dorsolateral prefrontal cortex in Alzheimer’s disease. A critical review.J. Alzheimers Dis.201019378179310.3233/JAD‑2010‑127520157236
    [Google Scholar]
  34. Ouerfelli-EthierJ SalemmeR FournetR UrquizarC PisellaL KhanAZ Impaired spatial inhibition processes for interhemispheric anti-saccades following dorsal posterior parietal lesions.Cereb. Cortex Commun.202123tgab05410.1093/texcom/tgab054
    [Google Scholar]
  35. GorgesM. PinkhardtE.H. KassubekJ. Alterations of eye movement control in neurodegenerative movement disorders.J. Ophthalmol.2014201411110.1155/2014/65824324955249
    [Google Scholar]
  36. WangJ. GuoX. ZhuangX. ChenT. YanW. Disrupted pursuit compensation during self-motion perception in early Alzheimer’s disease.Sci. Rep.201771404910.1038/s41598‑017‑04377‑228642572
    [Google Scholar]
  37. FletcherW.A. SharpeJ.A. Smooth pursuit dysfunction in Alzheimer’s disease.Neurology198838227227710.1212/WNL.38.2.2723340292
    [Google Scholar]
  38. ScheweH.J. UebelhackR. VohsK. Abnormality in saccadic eye movement in dementia.Eur. Psychiatry1999141525310.1016/S0924‑9338(99)80716‑010572325
    [Google Scholar]
  39. MahanamaB. JayawardanaY. RengarajanS. JayawardenaG. ChukoskieL. SniderJ. JayarathnaS. Eye movement and pupil measures: A review.Front. Comput. Sci.2022373353110.3389/fcomp.2021.733531
    [Google Scholar]
  40. LiD. ButalaA.A. Moro-VelazquezL. MeyerT. OhE.S. MotleyC. VillalbaJ. DehakN. Automating the analysis of eye movement for different neurodegenerative disorders.Comput. Biol. Med.202417010795110.1016/j.compbiomed.2024.10795138219646
    [Google Scholar]
  41. AntoniadesC.A. KennardC. Ocular motor abnormalities in neurodegenerative disorders.Eye201529220020710.1038/eye.2014.27625412716
    [Google Scholar]
  42. ViñaJ. Sanz-RosJ. Alzheimer’s disease: Only prevention makes sense.Eur. J. Clin. Invest.20184810e1300510.1111/eci.1300530028503
    [Google Scholar]
  43. McDougalD.H. GamlinP.D. Autonomic control of the eye.Comprehen. Physiol.20155143947310.1002/cphy.c140014
    [Google Scholar]
  44. HuoL. JiaoL. WangS. YangS. Object-level saliency detection with color attributes.Pattern Recognit.20164916217310.1016/j.patcog.2015.07.005
    [Google Scholar]
  45. BeltránJ. García-VázquezM.S. Benois-PineauJ. Gutierrez-RobledoL.M. DartiguesJ.F. Computational techniques for eye movements analysis towards supporting early diagnosis of alzheimer’s disease: A review.Comput. Math. Methods Med.2018201811310.1155/2018/267640929887912
    [Google Scholar]
  46. KhaleelAH AbbasTH IbrahimA-WS Best low-cost methods for real-time detection of the eye and gaze tracking.i-com2024231
    [Google Scholar]
  47. GideM.S. KaramL.J. Computational visual attention models.Now Publishers20171034742710.1561/9781680832815
    [Google Scholar]
  48. TreismanA.M. GeladeG. A feature-integration theory of attention.Cognit. Psychol.19801219713610.1016/0010‑0285(80)90005‑57351125
    [Google Scholar]
  49. ChaitanuwongP. SinghanetrP. ChainakulM. ArjkongharnN. RuamviboonsukP. GrzybowskiA. Potential ocular biomarkers for early detection of alzheimer’s disease and their roles in artificial intelligence studies.Neurol. Ther.20231251517153210.1007/s40120‑023‑00526‑037468682
    [Google Scholar]
  50. KumarY. KoulA. SinglaR. IjazM.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda.J. Ambient Intell. Humaniz. Comput.20231478459848610.1007/s12652‑021‑03612‑z35039756
    [Google Scholar]
  51. BazarganiY.S. MirzaeiM. SobhiN. AbdollahiM. JafarizadehA. PedrammehrS. Artificial intelligence and diabetes mellitus: An inside look through the retina.arXiv preprint arXiv:2402.186002024
    [Google Scholar]
  52. DasK. BeheraR.N. A survey on machine learning: Concept, algorithms and applications.IJIRCCE20175213011309
    [Google Scholar]
  53. JafarizadehA. MalekiS.F. PouyaP. SobhiN. AbdollahiM. PedrammehrS. Current and future roles of artificial intelligence in retinopathy of prematurity.arXiv preprint arXiv:2402.099752024
    [Google Scholar]
  54. LagunD. ManzanaresC. ZolaS.M. BuffaloE.A. AgichteinE. Detecting cognitive impairment by eye movement analysis using automatic classification algorithms.J. Neurosci. Methods2011201119620310.1016/j.jneumeth.2011.06.02721801750
    [Google Scholar]
  55. NamU. LeeK. KoH. LeeJ.Y. LeeE.C. Analyzing facial and eye movements to screen for Alzheimer’s disease.Sensors20202018534910.3390/s2018534932961984
    [Google Scholar]
  56. MuhuriP.S. ChatterjeeP. YuanX. RoyK. EsterlineA. Using a long short-term memory recurrent neural network (LSTM-RNN) to classify network attacks.Information202011524310.3390/info11050243
    [Google Scholar]
  57. JangH. SoroskiT. RizzoM. BarralO. HarisinghaniA. Newton-MasonS. GranbyS. Stutz da Cunha VascoT.M. LewisC. TuttP. CareniniG. ConatiC. FieldT.S. Classification of alzheimer’s disease leveraging multi-task machine learning analysis of speech and eye-movement data.Front. Hum. Neurosci.20211571667010.3389/fnhum.2021.71667034616282
    [Google Scholar]
  58. FraserK.C. Lundholm ForsK. EckerströmM. ÖhmanF. KokkinakisD. Predicting MCI status from multimodal language data using cascaded classifiers.Front. Aging Neurosci.20191120510.3389/fnagi.2019.0020531427959
    [Google Scholar]
  59. BarralO. JangH. Newton-MasonS. ShajanS. SoroskiT. CareniniG. Non-invasive classification of Alzheimer’s disease using eye tracking and language.PMLR2020126813841
    [Google Scholar]
  60. LinJ XuT YangX YangQ ZhuY WanM A detection model of cognitive impairment via the integrated gait and eye movement analysis from a large Chinese community cohort.Alzheimers Dement20242021089110110.1002/alz.13517
    [Google Scholar]
  61. ZdarskyN. TreueS. EsghaeiM. A deep learning-based approach to video-based eye tracking for human psychophysics.Front. Hum. Neurosci.20211568583010.3389/fnhum.2021.68583034366813
    [Google Scholar]
  62. KimS.Y. ParkJ. ChoiH. LoeserM. RyuH. SeoK. Digital marker for early screening of mild cognitive impairment through hand and eye movement analysis in virtual reality using machine learning: First validation study.J. Med. Internet Res.202325e4809310.2196/4809337862101
    [Google Scholar]
  63. YangS. ZhuF. LingX. LiuQ. ZhaoP. Intelligent health care: Applications of deep learning in computational medicine.Front. Genet.20211260747110.3389/fgene.2021.60747133912213
    [Google Scholar]
  64. AbdollahiM. JafarizadehA. AsbaghA.G. SobhiN. PourmoghtaderK. PedrammehrS. Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade.arXiv preprint arXiv:2311.076092023
    [Google Scholar]
  65. SunJ. LiuY. WuH. JingP. JiY. A novel deep learning approach for diagnosing Alzheimer’s disease based on eye-tracking data.Front. Hum. Neurosci.20221697277310.3389/fnhum.2022.97277336158627
    [Google Scholar]
  66. JiangJ. YanZ. ShenT. XuG. GuanQ. YuZ. Use of deep belief network model to discriminate mild cognitive impairment and normal controls based on EEG, eye movement signals and neuropsychological tests.J. Med. Imaging Health Inform.2019991978198510.1166/jmihi.2019.2825
    [Google Scholar]
  67. BiondiJ. FernandezG. CastroS. AgamennoniO. Eye movement behavior identification for Alzheimer’s disease diagnosis.JIN2018174349354
    [Google Scholar]
  68. HarisinghaniA SriramH ConatiC CareniniG FieldT JangH MurrayG. Classification of alzheimer's using deep-learning methods on webcam-based gaze data.Proc. ACM Hum-Comput. Interact.2023715711710.1145/3591126
    [Google Scholar]
  69. ZuoF. JingP. SunJ. JiY. LiuY Deep learning-based eye-tracking analysis for diagnosis of alzheimer’s disease using 3d comprehensive visual stimuli.arXiv preprint arXiv:2303.06868 2023
    [Google Scholar]
  70. HaqueR.U. PongosA.L. ManzanaresC.M. LahJ.J. LeveyA.I. CliffordG.D. Deep convolutional neural networks and transfer learning for measuring cognitive impairment using eye-tracking in a distributed tablet-based environment.IEEE Trans. Biomed. Eng.2021681111810.1109/TBME.2020.299073432340935
    [Google Scholar]
  71. McNaboeR. BeardsleeL. KongY. SmithB.N. ChenI.P. Posada-QuinteroH.F. ChonK.H. Design and validation of a multimodal wearable device for simultaneous collection of electrocardiogram, electromyogram, and electrodermal activity.Sensors20222222885110.3390/s2222885136433449
    [Google Scholar]
  72. ZhengW.L. DongB.N. LuB.L. Multimodal emotion recognition using EEG and eye tracking data.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.201420145040504325571125
    [Google Scholar]
  73. OrtizA. LozanoF. GórrizJ.M. RamírezJ. Martínez MurciaF.J. Neuroimaging InitiativeA.D. Alzheimer’s Disease Neuroimaging Initiative Discriminative sparse features for alzheimer’s disease diagnosis using multimodal image data.Curr. Alzheimer Res.2017151677910.2174/156720501466617092210113528934923
    [Google Scholar]
  74. CarrD.B. GroverP. The role of eye tracking technology in assessing older driver safety.Geriatrics2020523610.3390/geriatrics502003632517336
    [Google Scholar]
  75. KourtisL.C. RegeleO.B. WrightJ.M. JonesG.B. Digital biomarkers for Alzheimer’s disease: The mobile/wearable devices opportunity.NPJ Digit. Med.201921910.1038/s41746‑019‑0084‑231119198
    [Google Scholar]
  76. TadokoroK. YamashitaT. FukuiY. NomuraE. OhtaY. UenoS. NishinaS. TsunodaK. WakutaniY. TakaoY. MiyoshiT. HigashiY. OsakadaY. SasakiR. MatsumotoN. KawaharaY. OmoteY. TakemotoM. HishikawaN. MoriharaR. AbeK. Early detection of cognitive decline in mild cognitive impairment and Alzheimer’s disease with a novel eye tracking test.J. Neurol. Sci.202142711752910.1016/j.jns.2021.11752934130064
    [Google Scholar]
  77. SciarroneA. BisioI. GaribottoC. LavagettoF. HamedaniM. PradaV. SchenoneA. BoeroF. GambariG. CereiaM. JurilliM. Early detection of external neurological symptoms through a wearable smart-glasses prototype.J. Commun. Soft. Syst.202117216016810.24138/jcomss‑2021‑0071
    [Google Scholar]
  78. AliS. AbuhmedT. El-SappaghS. MuhammadK. Alonso-MoralJ.M. ConfalonieriR. GuidottiR. Del SerJ. Díaz-RodríguezN. HerreraF. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence.Inf. Fusion20239910180510.1016/j.inffus.2023.101805
    [Google Scholar]
  79. SegoviaF. GórrizJ.M. RamírezJ. PhillipsC. The Alzheimer’s Disease Neuroimaging Initiative Combining feature extraction methods to assist the diagnosis of alzheimer’s disease.Curr. Alzheimer Res.201613783183710.2174/156720501366615111614190626567734
    [Google Scholar]
  80. LombardiA. TavaresJ.M.R. TangaroS. Explainable artificial intelligence (xai) in systems neuroscience.Front. Syst. Neurosci20212766980
    [Google Scholar]
  81. BožićV. Explainable artificial intelligence (XAI): Enhancing transparency and trust in AI systems.Preprint2023
    [Google Scholar]
  82. WilliamsD.R. LeesA.J. Progressive supranuclear palsy: Clinicopathological concepts and diagnostic challenges.Lancet Neurol.20098327027910.1016/S1474‑4422(09)70042‑019233037
    [Google Scholar]
  83. Farabi MalekiS. YousefiM. AfsharS. PedrammehrS. LimC.P. JafarizadehA. AsadiH. Artificial intelligence for multiple sclerosis management using retinal images: Pearl, peaks, and pitfalls.Semin. Ophthalmol.202439427128810.1080/08820538.2023.229303038088176
    [Google Scholar]
  84. ToddO.M. BurtonJ.K. DoddsR.M. HollinghurstJ. LyonsR.A. QuinnT.J. SchneiderA. WalesbyK.E. WilkinsonC. ConroyS. GaleC.P. HallM. WaltersK. CleggA.P. New Horizons in the use of routine data for ageing research.Age Ageing202049571672210.1093/ageing/afaa01832043136
    [Google Scholar]
  85. LyallD.M. KormilitzinA. LancasterC. SousaJ. Petermann-RochaF. BuckleyC. HarshfieldE.L. IvesonM.H. MadanC.R. McArdleR. NewbyD. OrgetaV. TangE. TamburinS. ThakurL.S. LouridaI. LlewellynD.J. RansonJ.M. Deep Dementia Phenotyping (DEMON) Network Artificial intelligence for dementia—Applied models and digital health.Alzheimers Dement.202319125872588410.1002/alz.1339137496259
    [Google Scholar]
  86. ThilderkvistE. DobslawF. On current limitations of online eye- tracking to study the visual processing of source code.SSRN405168810.2139/ssrn.4051688
    [Google Scholar]
  87. PelgrimM.H. EspinosaJ. BuchsbaumD. Head-mounted mobile eye-tracking in the domestic dog: A new method.Behav. Res. Methods20225541924194110.3758/s13428‑022‑01907‑335788974
    [Google Scholar]
  88. AdhanomI.B. MacNeilageP. FolmerE. Eye tracking in virtual reality: A broad review of applications and challenges.Virtual Real.20232721481150510.1007/s10055‑022‑00738‑z37621305
    [Google Scholar]
/content/journals/car/10.2174/0115672050322607240529075641
Loading
/content/journals/car/10.2174/0115672050322607240529075641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test