Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

The pathological manifestations of Alzheimer’s disease (AD) include not only brain amyloid β protein (Aβ) containing neuritic plaques and hyperphosphorylated tau (p-tau) containing neurofibrillary tangles but also microgliosis, astrocytosis, and neurodegeneration mediated by metabolic dysregulation and neuroinflammation.

Methods

While antibody-based therapies targeting Aβ have shown clinical promise, effective therapies targeting metabolism, neuroinflammation, and p-tau are still an urgent need. Based on the observation that Ras homolog (Rho)-associated kinases (ROCK) activities are elevated in AD, ROCK inhibitors have been explored as therapies in AD models. This study determines the effects of fasudil, a ROCK inhibitor, on neuroinflammation and metabolic regulation in the P301S tau transgenic mouse line PS19 that models neurodegenerative tauopathy and AD. Using daily intraperitoneal (i.p.) delivery of fasudil in PS19 mice, we observed a significant hippocampal-specific decrease of the levels of phosphorylated tau (pTau Ser202/Thr205), a decrease of GFAP+ cells and glycolytic enzyme Pkm1 in broad regions of the brain, and a decrease in mitochondrial complex IV subunit I in the striatum and thalamic regions.

Results

Although no overt detrimental phenotype was observed, mice dosed with 100 mg/kg/day for 2 weeks exhibited significantly decreased mitochondrial outer membrane and electron transport chain (ETC) protein abundance, as well as ETC activities.

Conclusion

Our results provide insights into dose-dependent neuroinflammatory and metabolic responses to fasudil and support further refinement of ROCK inhibitors for the treatment of AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050317608240531130204
2024-06-21
2025-01-11
Loading full text...

Full text loading...

References

  1. 2022 Alzheimer’s disease facts and figures.Alzheimers Dement.202218470078910.1002/alz.1263835289055
    [Google Scholar]
  2. WangW. ZhaoF. MaX. PerryG. ZhuX. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances.Mol. Neurodegener.20201513010.1186/s13024‑020‑00376‑632471464
    [Google Scholar]
  3. AustadS.N.B.S. BufordT.W. CarterC.S. SmithD.L.Jr Darley-UsmarV. ZhangJ. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer’s disease.Acta Pharm. Sin. B202112251153135256932
    [Google Scholar]
  4. ButterfieldD.A. HalliwellB. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease.Nat. Rev. Neurosci.201920314816010.1038/s41583‑019‑0132‑630737462
    [Google Scholar]
  5. HenekaM.T. CarsonM.J. KhouryJ.E. LandrethG.E. BrosseronF. FeinsteinD.L. JacobsA.H. Wyss-CorayT. VitoricaJ. RansohoffR.M. HerrupK. FrautschyS.A. FinsenB. BrownG.C. VerkhratskyA. YamanakaK. KoistinahoJ. LatzE. HalleA. PetzoldG.C. TownT. MorganD. ShinoharaM.L. PerryV.H. HolmesC. BazanN.G. BrooksD.J. HunotS. JosephB. DeigendeschN. GaraschukO. BoddekeE. DinarelloC.A. BreitnerJ.C. ColeG.M. GolenbockD.T. KummerM.P. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑525792098
    [Google Scholar]
  6. SelkoeD.J. Alzheimer’s disease is a synaptic failure.Science2002298559478979110.1126/science.107406912399581
    [Google Scholar]
  7. van DyckC.H. SwansonC.J. AisenP. BatemanR.J. ChenC. GeeM. KanekiyoM. LiD. ReydermanL. CohenS. FroelichL. KatayamaS. SabbaghM. VellasB. WatsonD. DhaddaS. IrizarryM. KramerL.D. IwatsuboT. Lecanemab in early alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa221294836449413
    [Google Scholar]
  8. GueorguievaI. WillisB.A. ChuaL. ChowK. ErnestC.S. ShcherbininS. ArdayfioP. MullinsG.R. SimsJ.R. Donanemab population pharmacokinetics, amyloid plaque reduction, and safety in participants with alzheimer’s disease.Clin. Pharmacol. Ther.202311361258126710.1002/cpt.287536805552
    [Google Scholar]
  9. SimsJ.R. ZimmerJ.A. EvansC.D. LuM. ArdayfioP. SparksJ. WesselsA.M. ShcherbininS. WangH. Monkul NeryE.S. CollinsE.C. SolomonP. SallowayS. ApostolovaL.G. HanssonO. RitchieC. BrooksD.A. MintunM. SkovronskyD.M. AbreuR. AgarwalP. AggarwalP. AgroninM. AllenA. AltamiranoD. AlvaG. AndersenJ. AndersonA. AndersonD. ArnoldJ. AsadaT. AsoY. AtitV. AyalaR. BadruddojaM. Badzio-jagielloH. BajacekM. BartonD. BearD. BenjaminS. BergeronR. BhatiaP. BlackS. BlockA. BolouriM. BondW. BouthillierJ. BrangmanS. BrewB. BrisbinS. BriskenT. BrodtmannA. BrodyM. BroschJ. BrownC. BrownstoneP. BukowczanS. BurnsJ. CabreraA. CapoteH. CarrascoA. Cevallos YepezJ. ChavezE. ChertkowH. Chyrchel-paszkiewiczU. CiabarraA. ClemmonsE. CohenD. CohenR. CohenI. ConchaM. CostellB. CrimminsD. Cruz-paganY. CueliA. CupeloR. CzarneckiM. DarbyD. DautzenbergP. De DeynP. De La GandaraJ. DeckK. DibenedettoD. DibuonoM. DinnersteinE. DiricanA. DixitS. DobryniewskiJ. DrakeR. DrysdaleP. DuaraR. DuffyJ. EllenbogenA. FaradjiV. FeinbergM. FeldmanR. FishmanS. FlitmanS. ForchettiC. FragaI. FrankA. FrishbergB. FujigasakiH. FukaseH. FumeroI. FurihataK. GallowayC. GandhiR. GeorgeK. GermainM. GitelmanD. GoetschN. GoldfarbD. GoldsteinM. GoldstickL. RojasY.G. GoodmanI. GreeleyD. GriffinC. GrigsbyE. GroszD. HafnerK. HartD. HeneinS. HerskowitzB. HigashiS. HigashiY. HoG. HodgsonJ. HohenbergM. HollenbeckL. HolubR. HoriT. HortJ. IlkowskiJ. IngramK.J. IsaacM. IshikawaM. JanuL. JohnstonM. JulioW. JustizW. KagaT. KakigiT. KalaferM. KamijoM. KaplanJ. KarathanosM. KatayamaS. KaulS. KeeganA. KerwinD. KhanU. KhanA. KimuraN. KirkG. KlodowskaG. KowaH. KutzC. KwentusJ. LaiR. LallA. LawrenceM. LeeE. LeonR. LinkerG. LisewskiP. LissJ. LiuC. LoskS. LukaszykE. LynchJ. MacfarlaneS. MacsweeneyJ. ManneringN. MarkovicO. MarksD. MasdeuJ. MatsuiY. MatsuishiK. McallisterP. McconneheyB. McelveenA. McgillL. MeccaA. MegaM. MensahJ. MickielewiczA. MinaeianA. MocherlaB. MurphyC. MurphyP. NagashimaH. NairA. NairM. NardandreaJ. NashM. NasreddineZ. NishidaY. NortonJ. NunezL. OchiaiJ. OhkuboT. OkamuraY. OkorieE. OliveraE. O’mahonyJ. OmidvarO. Ortiz-CruzD. OsowaA. PapkaM. ParkerA. PatelP. PatelA. PatelM. PatryC. PeckhamE. PfefferM. PietrasA. PlopperM. PorsteinssonA. Poulin RobitailleR. PrinsN. PuenteO. RatajczakM. RheeM. RitterA. RodriguezR. Rodriguez AblesL. RojasJ. RossJ. RoyerP. RubinJ. RussellD. RutgersS.M. RutrickS. SadowskiM. SafirsteinB. SagisakaT. ScharreD. SchneiderL. SchreiberC. SchriftM. SchulzP. SchwartzH. SchwartzbardJ. ScottJ. SelemL. SethiP. ShaS. SharlinK. SharmaS. ShiovitzT. ShiwachR. SladekM. SloanB. SmithA. SolomonP. SorialE. SosaE. StedmanM. SteenS. SteinL. StolyarA. StoukidesJ. SudohS. SuttonJ. SyedJ. SzigetiK. TachibanaH. TakahashiY. TatenoA. TaylorJ.D. TaylorK. TcheremissineO. ThebaudA. TheinS. ThurmanL. ToenjesS. TojiH. TomaM. TranD. TruebaP. TsujimotoM. TurnerR. UchiyamaA. UssorowskaD. VaishnaviS. ValorE. VandersluisJ. VasquezA. VelezJ. VergheseC. Vodickova-borzovaK. WatsonD. WeidmanD. WeismanD. WhiteA. WillinghamK. WinkelI. WinnerP. WinstonJ. WolffA. YagiH. YamamotoH. YathirajS. YoshiyamaY. ZbochM. TRAILBLAZER-ALZ 2 Investigators Donanemab in early symptomatic alzheimer disease.JAMA2023330651252710.1001/jama.2023.1323937459141
    [Google Scholar]
  10. ReardonS. Alzheimer’s drug donanemab helps most when taken at earliest disease stage, study finds.Nature2023619797168268310.1038/d41586‑023‑02321‑137460689
    [Google Scholar]
  11. ManlyJ.J. DetersK.D. Donanemab for alzheimer disease—who benefits and who is harmed?JAMA2023330651051110.1001/jama.2023.1170437459138
    [Google Scholar]
  12. GueorguievaI. WillisB.A. ChuaL. ChowK. ErnestC.S.II WangJ. ShcherbininS. SimsJ.R. ChigutsaE. Donanemab exposure and efficacy relationship using modeling in Alzheimer’s disease.Alzheimers Dement.202392e1240410.1002/trc2.1240437388759
    [Google Scholar]
  13. CongdonE.E. JiC. TetlowA.M. JiangY. SigurdssonE.M. Tau-targeting therapies for Alzheimer disease: Current status and future directions.Nat. Rev. Neurol.2023191271573610.1038/s41582‑023‑00883‑237875627
    [Google Scholar]
  14. AyalonG. LeeS.H. AdolfssonO. Foo-AtkinsC. AtwalJ.K. BlendstrupM. BoolerH. BravoJ. BrendzaR. BrunsteinF. ChanR. ChandraP. CouchJ.A. DatwaniA. DemeuleB. DiCaraD. EricksonR. ErnstJ.A. ForemanO. HeD. HötzelI. KeeleyM. KwokM.C.M. Lafrance-VanasseJ. LinH. LuY. LukW. ManserP. MuhsA. NguH. PfeiferA. PihlgrenM. RaoG.K. Scearce-LevieK. SchauerS.P. SmithW.B. SolanoyH. TengE. WildsmithK.R. YadavD.B. YingY. FujiR.N. KerchnerG.A. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer’s disease.Sci. Transl. Med.202113593eabb263910.1126/scitranslmed.abb263933980574
    [Google Scholar]
  15. CunnaneS.C. TrushinaE. MorlandC. PrigioneA. CasadesusG. AndrewsZ.B. BealM.F. BergersenL.H. BrintonR.D. de la MonteS. EckertA. HarveyJ. JeggoR. JhamandasJ.H. KannO. la CourC.M. MartinW.F. MithieuxG. MoreiraP.I. MurphyM.P. NaveK.A. NurielT. OlietS.H.R. SaudouF. MattsonM.P. SwerdlowR.H. MillanM.J. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing.Nat. Rev. Drug Discov.202019960963310.1038/s41573‑020‑0072‑x32709961
    [Google Scholar]
  16. TaiY.H. EngelsD. LocatelliG. EmmanouilidisI. FecherC. TheodorouD. MüllerS.A. Licht-MayerS. KreutzfeldtM. WagnerI. de MelloN.P. GkotzamaniS.N. TrovòL. KendirliA. AljovićA. BreckwoldtM.O. NaumannR. BareyreF.M. PerocchiF. MahadD. MerklerD. LichtenthalerS.F. KerschensteinerM. MisgeldT. Targeting the TCA cycle can ameliorate widespread axonal energy deficiency in neuroinflammatory lesions.Nat. Metab.2023581364138110.1038/s42255‑023‑00838‑337430025
    [Google Scholar]
  17. Pålsson-McDermottE.M. O’NeillL.A.J. Targeting immunometabolism as an anti-inflammatory strategy.Cell Res.202030430031410.1038/s41422‑020‑0291‑z32132672
    [Google Scholar]
  18. RaiS.N. ZahraW. BirlaH. SinghS.S. SinghS.P. Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization.Front. Aging Neurosci.20181019210.3389/fnagi.2018.0019229988480
    [Google Scholar]
  19. RaiS.N. SinghC. SinghA. SinghM.P. SinghB.K. Mitochondrial dysfunction: a potential therapeutic target to treat alzheimer’s disease.Mol. Neurobiol.20205773075308810.1007/s12035‑020‑01945‑y32462551
    [Google Scholar]
  20. TripathiP.N. SrivastavaP. SharmaP. TripathiM.K. SethA. TripathiA. RaiS.N. SinghS.P. ShrivastavaS.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory.Bioorg. Chem.201985829610.1016/j.bioorg.2018.12.01730605887
    [Google Scholar]
  21. SrivastavaP. TripathiP.N. SharmaP. RaiS.N. SinghS.P. SrivastavaR.K. ShankarS. ShrivastavaS.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory.Eur. J. Med. Chem.201916311613510.1016/j.ejmech.2018.11.04930503937
    [Google Scholar]
  22. LeeD.H. LeeJ.Y. HongD.Y. LeeE.C. ParkS.W. JoY.N. ParkY.J. ChoJ.Y. ChoY.J. ChaeS.H. LeeM.R. OhJ.S. ROCK and PDE-5 inhibitors for the treatment of dementia: literature review and meta-analysis.Biomedicines2022106134810.3390/biomedicines1006134835740369
    [Google Scholar]
  23. ChongC.M. AiN. LeeS. ROCK in CNS: Different roles of isoforms and therapeutic target for neurodegenerative disorders.Curr. Drug Targets201718445546210.2174/138945011766616040112382527033194
    [Google Scholar]
  24. HendersonB.W. GentryE.G. RushT. TroncosoJ.C. ThambisettyM. MontineT.J. HerskowitzJ.H. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer’s disease and ROCK 1 depletion reduces amyloid-β levels in brain.J. Neurochem.2016138452553110.1111/jnc.1368827246255
    [Google Scholar]
  25. WeberA.J. HerskowitzJ.H. Perspectives on ROCK2 as a therapeutic target for alzheimer’s disease.Front. Cell. Neurosci.20211563601710.3389/fncel.2021.63601733790742
    [Google Scholar]
  26. HerskowitzJ.H. FengY. MattheysesA.L. HalesC.M. HigginbothamL.A. DuongD.M. MontineT.J. TroncosoJ.C. ThambisettyM. SeyfriedN.T. LeveyA.I. LahJ.J. Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer’s disease mouse model.J. Neurosci.20133349190861909810.1523/JNEUROSCI.2508‑13.201324305806
    [Google Scholar]
  27. CaiR. WangY. HuangZ. ZouQ. PuY. YuC. CaiZ. Role of RhoA/ROCK signaling in Alzheimer’s disease.Behav. Brain Res.202141411348110.1016/j.bbr.2021.11348134302876
    [Google Scholar]
  28. Ono-SaitoN. NikiI. HidakaH. H-series protein kinase inhibitors and potential clinical applications.Pharmacol. Ther.1999822-312313110.1016/S0163‑7258(98)00070‑910454191
    [Google Scholar]
  29. CouchB.A. DeMarcoG.J. GourleyS.L. KoleskeA.J. Increased dendrite branching in AbetaPP/PS1 mice and elongation of dendrite arbors by fasudil administration.J. Alzheimers Dis.20102041003100810.3233/JAD‑2010‑09111420413901
    [Google Scholar]
  30. ZhaoY. TsengI-C. HeyserC.J. RockensteinE. ManteM. AdameA. ZhengQ. HuangT. WangX. ArslanP.E. ChakrabartyP. WuC. BuG. MobleyW.C. ZhangY.W. St George-HyslopP. MasliahE. FraserP. XuH. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis.Neuron201587596397510.1016/j.neuron.2015.08.02026335643
    [Google Scholar]
  31. GuoH. ZhaoZ. ZhangR. ChenP. ZhangX. ChengF. GouX. Monocytes in the peripheral clearance of amyloid-β and alzheimer’s disease.J. Alzheimers Dis.20196841391140010.3233/JAD‑18117730958361
    [Google Scholar]
  32. HamanoT. ShirafujiN. YenS.H. YoshidaH. KanaanN.M. HayashiK. IkawaM. YamamuraO. FujitaY. KuriyamaM. NakamotoY. Rho-kinase ROCK inhibitors reduce oligomeric tau protein.Neurobiol. Aging202089415410.1016/j.neurobiolaging.2019.12.00931982202
    [Google Scholar]
  33. ElliottC. RojoA.I. RibeE. BroadstockM. XiaW. MorinP. SemenovM. BaillieG. CuadradoA. Al-ShawiR. BallardC.G. SimonsP. KillickR. A role for APP in Wnt signalling links synapse loss with β-amyloid production.Transl. Psychiatry20188117910.1038/s41398‑018‑0231‑630232325
    [Google Scholar]
  34. GuoM.F. ZhangH.Y. ZhangP.J. LiuX.Q. SongL.J. WeiW.Y. WangY.Y. MuB.T. ChaiZ. YuJ.Z. MaC.G. Fasudil reduces β-amyloid levels and neuronal apoptosis in APP/PS1 transgenic mice via inhibition of the Nogo-A/NgR/RhoA signaling axis.J. Integr. Neurosci.202019465166210.31083/j.jin.2020.04.24333378839
    [Google Scholar]
  35. WeiW. WangY. ZhangJ. GuQ. LiuX. SongL. ChaiZ. GuoM. YuJ. MaC. Fasudil ameliorates cognitive deficits, oxidative stress and neuronal apoptosis via inhibiting ROCK/MAPK and activating Nrf2 signalling pathways in APP/PS1 mice.Folia Neuropathol.2021591324910.5114/fn.2021.10513033969676
    [Google Scholar]
  36. YanY. GaoY. FangQ. ZhangN. KumarG. YanH. SongL. LiJ. ZhangY. SunJ. WangJ. ZhaoL. SkaggsK. ZhangH.T. MaC.G. Inhibition of Rho kinase by fasudil ameliorates cognition impairment in APP/PS1 transgenic mice via modulation of gut microbiota and metabolites.Front. Aging Neurosci.20211375516410.3389/fnagi.2021.75516434721000
    [Google Scholar]
  37. YoshiyamaY. HiguchiM. ZhangB. HuangS.M. IwataN. SaidoT.C. MaedaJ. SuharaT. TrojanowskiJ.Q. LeeV.M.Y. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model.Neuron200753333735110.1016/j.neuron.2007.01.01017270732
    [Google Scholar]
  38. BenavidesG.A. MuellerT. Darley-UsmarV. ZhangJ. Optimization of measurement of mitochondrial electron transport activity in postmortem human brain samples and measurement of susceptibility to rotenone and 4-hydroxynonenal inhibition.Redox Biol.20225010224110.1016/j.redox.2022.10224135066289
    [Google Scholar]
  39. HuynhV.N. BenavidesG.A. JohnsonM.S. OuyangX. ChackoB.K. OsumaE. MuellerT. ChathamJ. Darley-UsmarV.M. ZhangJ. Acute inhibition of OGA sex-dependently alters the networks associated with bioenergetics, autophagy, and neurodegeneration.Mol. Brain20221512210.1186/s13041‑022‑00906‑x35248135
    [Google Scholar]
  40. HaC. BakshiS. BrahmaM.K. PotterL.A. ChangS.F. SunZ. BenavidesG.A. HeL. UmbarkarP. ZouL. CurfmanS. SunnyS. PatersonA.J. RajasekaranN.S. BarnesJ.W. ZhangJ. LalH. XieM. Darley-UsmarV.M. ChathamJ.C. WendeA.R. Sustained increases in cardiomyocyte protein O-linked β-N-acetylglucosamine levels lead to cardiac hypertrophy and reduced mitochondrial function without systolic contractile impairment.J Am Heart Assoc.20231219e029898
    [Google Scholar]
  41. KaneM.S. BenavidesG.A. OsumaE. JohnsonM.S. CollinsH.E. HeY. WestbrookD. LitovskyS.H. MitraK. ChathamJ.C. Darley-UsmarV. YoungM.E. ZhangJ. The interplay between sex, time of day, fasting status, and their impact on cardiac mitochondrial structure, function, and dynamics.Sci. Rep.20231312163810.1038/s41598‑023‑49018‑z38062139
    [Google Scholar]
  42. OuyangX. BakshiS. BenavidesG.A. SunZ. Hernandez-MorenoG. CollinsH.E. KaneM.S. LitovskyS. YoungM.E. ChathamJ.C. Darley-UsmarV. WendeA.R. ZhangJ. Cardiomyocyte ZKSCAN3 regulates remodeling following pressure-overload.Physiol. Rep.2023119e1568610.14814/phy2.1568637144628
    [Google Scholar]
  43. Acin-PerezR. BenadorI.Y. PetcherskiA. VeliovaM. BenavidesG.A. LagarrigueS. CaudalA. VergnesL. MurphyA.N. KaramanlidisG. TianR. ReueK. WanagatJ. SacksH. AmatiF. Darley-UsmarV.M. LiesaM. DivakaruniA.S. StilesL. ShirihaiO.S. A novel approach to measure mitochondrial respiration in frozen biological samples.EMBO J.20203913e10407310.15252/embj.201910407332432379
    [Google Scholar]
  44. YangW. WeiH. BenavidesG.A. TurbittW.J. BuckleyJ.A. OuyangX. ZhouL. ZhangJ. HarringtonL.E. Darley-UsmarV.M. QinH. BenvenisteE.N. Protein kinase CK2 controls CD8+ T cell effector and memory function during infection.J. Immunol.2022209589690610.4049/jimmunol.210108035914835
    [Google Scholar]
  45. OuyangX. AhmadI. JohnsonM.S. RedmannM. CraverJ. WaniW.Y. BenavidesG.A. ChackoB. LiP. YoungM. JeggaA.G. Darley-UsmarV. ZhangJ. Nuclear receptor binding factor 2 (NRBF2) is required for learning and memory.Lab. Invest.202010091238125110.1038/s41374‑020‑0433‑432350405
    [Google Scholar]
  46. WrightJ.N. BenavidesG.A. JohnsonM.S. WaniW. OuyangX. ZouL. CollinsH.E. ZhangJ. Darley-UsmarV. ChathamJ.C. Acute increases in O -GlcNAc indirectly impair mitochondrial bioenergetics through dysregulation of LonP1-mediated mitochondrial protein complex turnover.Am. J. Physiol. Cell Physiol.20193166C862C87510.1152/ajpcell.00491.201830865517
    [Google Scholar]
  47. RedmannM. BenavidesG.A. WaniW.Y. BerryhillT.F. OuyangX. JohnsonM.S. RaviS. MitraK. BarnesS. Darley-UsmarV.M. ZhangJ. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture.Redox Biol.201817596910.1016/j.redox.2018.04.00529677567
    [Google Scholar]
  48. BernardK. LogsdonN.J. BenavidesG.A. SandersY. ZhangJ. Darley-UsmarV.M. ThannickalV.J. Glutaminolysis is required for transforming growth factor-β1–induced myofibroblast differentiation and activation.J. Biol. Chem.201829341218122810.1074/jbc.RA117.00044429222329
    [Google Scholar]
  49. DodsonM. WaniW.Y. RedmannM. BenavidesG.A. JohnsonM.S. OuyangX. CofieldS.S. MitraK. Darley-UsmarV. ZhangJ. Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons.Autophagy201713111828184010.1080/15548627.2017.135694828837411
    [Google Scholar]
  50. WaniW.Y. OuyangX. BenavidesG.A. RedmannM. CofieldS.S. ShackaJ.J. ChathamJ.C. Darley-UsmarV. ZhangJ. O-GlcNAc regulation of autophagy and α-synuclein homeostasis; implications for Parkinson’s disease.Mol. Brain20171013210.1186/s13041‑017‑0311‑128724388
    [Google Scholar]
  51. BernardK. LogsdonN.J. MiguelV. BenavidesG.A. ZhangJ. CarterA.B. Darley-UsmarV.M. ThannickalV.J. NADPH oxidase 4 (Nox4) suppresses mitochondrial biogenesis and bioenergetics in lung fibroblasts via a nuclear factor erythroid-derived 2-like 2 (Nrf2)-dependent pathway.J. Biol. Chem.201729273029303810.1074/jbc.M116.75226128049732
    [Google Scholar]
  52. RedmannM. BenavidesG.A. BerryhillT.F. WaniW.Y. OuyangX. JohnsonM.S. RaviS. BarnesS. Darley-UsmarV.M. ZhangJ. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons.Redox Biol.201711738110.1016/j.redox.2016.11.00427889640
    [Google Scholar]
  53. Boyer-GuittautM. PoilletL. LiangQ. Bôle-RichardE. OuyangX. BenavidesG.A. ChakramaF.Z. FraichardA. Darley-UsmarV.M. DespouyG. JouvenotM. Delage-MourrouxR. ZhangJ. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells.Autophagy2014106986100310.4161/auto.2839024879149
    [Google Scholar]
  54. BenavidesG.A. LiangQ. DodsonM. Darley-UsmarV. ZhangJ. Inhibition of autophagy and glycolysis by nitric oxide during hypoxia–reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons.Free Radic. Biol. Med.2013651215122810.1016/j.freeradbiomed.2013.09.00624056030
    [Google Scholar]
  55. LiangQ. BenavidesG.A. VassilopoulosA. GiusD. Darley-UsmarV. ZhangJ. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts.Biochem. J.2013454224925710.1042/BJ2013041423767918
    [Google Scholar]
  56. HigdonA.N. BenavidesG.A. ChackoB.K. OuyangX. JohnsonM.S. LandarA. ZhangJ. Darley-UsmarV.M. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: The protective role of autophagy.Am. J. Physiol. Heart Circ. Physiol.20123027H1394H140910.1152/ajpheart.00584.201122245770
    [Google Scholar]
  57. HillB.G. BenavidesG.A. LancasterJ.R.Jr BallingerS. Dell’ItaliaL. ZhangJ. Darley-UsmarV.M. Integration of cellular bioenergetics with mitochondrial quality control and autophagy.bchm2012393121485151210.1515/hsz‑2012‑019823092819
    [Google Scholar]
  58. SchneiderL. GiordanoS. ZelicksonB.R. S JohnsonM. A BenavidesG. OuyangX. FinebergN. Darley-UsmarV.M. ZhangJ. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress.Free Radic. Biol. Med.201151112007201710.1016/j.freeradbiomed.2011.08.03021945098
    [Google Scholar]
  59. DrankaB.P. BenavidesG.A. DiersA.R. GiordanoS. ZelicksonB.R. ReilyC. ZouL. ChathamJ.C. HillB.G. ZhangJ. LandarA. Darley-UsmarV.M. Assessing bioenergetic function in response to oxidative stress by metabolic profiling.Free Radic. Biol. Med.20115191621163510.1016/j.freeradbiomed.2011.08.00521872656
    [Google Scholar]
  60. XiaY. ProkopS. GorionK.M.M. KimJ.D. SorrentinoZ.A. BellB.M. ManaoisA.N. ChakrabartyP. DaviesP. GiassonB.I. Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimer’s disease and other tauopathies.Acta Neuropathol. Commun.2020818810.1186/s40478‑020‑00967‑w32571418
    [Google Scholar]
  61. LuanW. WangY. ChenX. ShiY. WangJ. ZhangJ. QianJ. LiR. TaoT. WeiW. HuQ. LiuN. YouY. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop.Oncotarget2015615130061301810.18632/oncotarget.351425948776
    [Google Scholar]
  62. MoritaM. SatoT. NomuraM. SakamotoY. InoueY. TanakaR. ItoS. KurosawaK. YamaguchiK. SugiuraY. TakizakiH. YamashitaY. KatakuraR. SatoI. KawaiM. OkadaY. WatanabeH. KondohG. MatsumotoS. KishimotoA. ObataM. MatsumotoM. FukuharaT. MotohashiH. SuematsuM. KomatsuM. NakayamaK.I. WatanabeT. SogaT. ShimaH. MaemondoM. TanumaN. PKM1 confers metabolic advantages and promotes cell-autonomous tumor cell growth.Cancer Cell2018333355367.e710.1016/j.ccell.2018.02.00429533781
    [Google Scholar]
  63. DavidsonS.M. SchmidtD.R. HeymanJ.E. O’BrienJ.P. LiuA.C. IsraelsenW.J. DaytonT.L. SehgalR. BronsonR.T. FreinkmanE. MakH.H. FanelliG.N. MalstromS. BellingerG. CarracedoA. PandolfiP.P. CourtneyK.D. JhaA. DePinhoR.A. HornerJ.W. ThomasC.J. CantleyL.C. LodaM. Vander HeidenM.G. Pyruvate kinase M1 suppresses development and progression of prostate adenocarcinoma.Cancer Res.202282132403241610.1158/0008‑5472.CAN‑21‑235235584006
    [Google Scholar]
  64. LiQ. LiC. ElnwasanyA. SharmaG. AnY.A. ZhangG. ElhelalyW.M. LinJ. GongY. ChenG. WangM. ZhaoS. DaiC. SmartC.D. LiuJ. LuoX. DengY. TanL. LvS.J. DavidsonS.M. LocasaleJ.W. LorenziP.L. MalloyC.R. GilletteT.G. Vander HeidenM.G. SchererP.E. SzwedaL.I. FuG. WangZ.V. PKM1 exerts critical roles in cardiac remodeling under pressure overload in the heart.Circulation2021144971272710.1161/CIRCULATIONAHA.121.05488534102853
    [Google Scholar]
  65. Shoshan-BarmatzV. Nahon-CrystalE. Shteinfer-KuzmineA. GuptaR. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease.Pharmacol. Res.20181318710110.1016/j.phrs.2018.03.01029551631
    [Google Scholar]
  66. WiegandG. RemingtonS.J. Citrate synthase: Structure, control, and mechanism.Annu. Rev. Biophys. Biophys. Chem.19861519711710.1146/annurev.bb.15.060186.0005253013232
    [Google Scholar]
  67. Shoshan-BarmatzV. IsraelsonA. BrdiczkaD. SheuS. The voltage-dependent anion channel (VDAC): Function in intracellular signalling, cell life and cell death.Curr. Pharm. Des.200612182249227010.2174/13816120677758511116787253
    [Google Scholar]
  68. BaumgartM. PriebeS. GrothM. HartmannN. MenzelU. PandolfiniL. KochP. FelderM. RistowM. EnglertC. GuthkeR. PlatzerM. CellerinoA. Longitudinal RNA-Seq analysis of vertebrate aging identifies mitochondrial complex I as a small-molecule-sensitive modifier of lifespan.Cell Syst.20162212213210.1016/j.cels.2016.01.01427135165
    [Google Scholar]
  69. CopelandJ.M. ChoJ. LoT.Jr HurJ.H. BahadoraniS. ArabyanT. RabieJ. SohJ. WalkerD.W. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain.Curr. Biol.200919191591159810.1016/j.cub.2009.08.01619747824
    [Google Scholar]
  70. TrushinaE. TrushinS. HasanM.F. Mitochondrial complex I as a therapeutic target for Alzheimer’s disease.Acta Pharm. Sin. B202212248349510.1016/j.apsb.2021.11.00335256930
    [Google Scholar]
  71. ColluR. YinZ. GiuntiE. DaleyS. ChenM. MorinP. KillickR. WongS.T.C. XiaW. Effect of the ROCK inhibitor fasudil on the brain proteomic profile in the tau transgenic mouse model of Alzheimer’s disease.Front. Aging Neurosci.202416132356310.3389/fnagi.2024.132356338440100
    [Google Scholar]
  72. EscartinC. GaleaE. LakatosA. O’CallaghanJ.P. PetzoldG.C. Serrano-PozoA. SteinhäuserC. VolterraA. CarmignotoG. AgarwalA. AllenN.J. AraqueA. BarbeitoL. BarzilaiA. BerglesD.E. BonventoG. ButtA.M. ChenW.T. Cohen-SalmonM. CunninghamC. DeneenB. De StrooperB. Díaz-CastroB. FarinaC. FreemanM. GalloV. GoldmanJ.E. GoldmanS.A. GötzM. GutiérrezA. HaydonP.G. HeilandD.H. HolE.M. HoltM.G. IinoM. KastanenkaK.V. KettenmannH. KhakhB.S. KoizumiS. LeeC.J. LiddelowS.A. MacVicarB.A. MagistrettiP. MessingA. MishraA. MolofskyA.V. MuraiK.K. NorrisC.M. OkadaS. OlietS.H.R. OliveiraJ.F. PanatierA. ParpuraV. PeknaM. PeknyM. PellerinL. PereaG. Pérez-NievasB.G. PfriegerF.W. PoskanzerK.E. QuintanaF.J. RansohoffR.M. Riquelme-PerezM. RobelS. RoseC.R. RothsteinJ.D. RouachN. RowitchD.H. SemyanovA. SirkoS. SontheimerH. SwansonR.A. VitoricaJ. WannerI.B. WoodL.B. WuJ. ZhengB. ZimmerE.R. ZorecR. SofroniewM.V. VerkhratskyA. Reactive astrocyte nomenclature, definitions, and future directions.Nat. Neurosci.202124331232510.1038/s41593‑020‑00783‑433589835
    [Google Scholar]
  73. AllenN.J. Astrocyte regulation of synaptic behavior.Annu. Rev. Cell Dev. Biol.201430143946310.1146/annurev‑cellbio‑100913‑01305325288116
    [Google Scholar]
  74. PeregoC. VanoniC. BossiM. MassariS. BasudevH. LonghiR. PietriniG. The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures.J. Neurochem.20007531076108410.1046/j.1471‑4159.2000.0751076.x10936189
    [Google Scholar]
  75. LiddelowS.A. GuttenplanK.A. ClarkeL.E. BennettF.C. BohlenC.J. SchirmerL. BennettM.L. MünchA.E. ChungW.S. PetersonT.C. WiltonD.K. FrouinA. NapierB.A. PanickerN. KumarM. BuckwalterM.S. RowitchD.H. DawsonV.L. DawsonT.M. StevensB. BarresB.A. Neurotoxic reactive astrocytes are induced by activated microglia.Nature2017541763848148710.1038/nature2102928099414
    [Google Scholar]
  76. BernardinelliY. RandallJ. JanettE. NikonenkoI. KönigS. JonesE.V. FloresC.E. MuraiK.K. BochetC.G. HoltmaatA. MullerD. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability.Curr. Biol.201424151679168810.1016/j.cub.2014.06.02525042585
    [Google Scholar]
  77. TadayJ. FróesF.T. SeadyM. GonçalvesC.A. LeiteM.C. In vitro astroglial dysfunction induced by neurotoxins: Mimicking astrocytic metabolic alterations of alzheimer’s disease.Metabolites202414315110.3390/metabo1403015138535311
    [Google Scholar]
  78. MoolmanD.L. VitoloO.V. VonsattelJ.P.G. ShelanskiM.L. Dendrite and dendritic spine alterations in alzheimer models.J. Neurocytol.200433337738710.1023/B:NEUR.0000044197.83514.6415475691
    [Google Scholar]
  79. JohanssonC. ThordardottirS. Laffita-MesaJ. Rodriguez-VieitezE. ZetterbergH. BlennowK. GraffC. Plasma biomarker profiles in autosomal dominant Alzheimer’s disease.Brain202314631132114010.1093/brain/awac39936626935
    [Google Scholar]
  80. PaciottiS. WojdałaA.L. BellomoG. TojaA. ChipiE. PiersmaS.R. PhamT.V. GaetaniL. JimenezC.R. ParnettiL. ChiasseriniD. Potential diagnostic value of CSF metabolism-related proteins across the Alzheimer’s disease continuum.Alzheimers Res. Ther.202315112410.1186/s13195‑023‑01269‑837454217
    [Google Scholar]
  81. HanJ. HyunJ. ParkJ. JungS. OhY. KimY. RyuS.H. KimS.H. JeongE.I. JoD.G. ParkS.H. JungY.K. Aberrant role of pyruvate kinase M2 in the regulation of gamma-secretase and memory deficits in Alzheimer’s disease.Cell Rep.2021371011010210.1016/j.celrep.2021.11010234879266
    [Google Scholar]
  82. da SilvaE.M.G. SantosL.G.C. de OliveiraF.S. FreitasF.C.P. ParreiraV.S.C. dos SantosH.G. TavaresR. CarvalhoP.C. Neves-FerreiraA.G.C. HaibaraA.S. de Araujo-SouzaP.S. DiasA.A.M. PassettiF. Proteogenomics reveals orthologous alternatively spliced proteoforms in the same human and mouse brain regions with differential abundance in an alzheimer’s disease mouse model.Cells2021107158310.3390/cells1007158334201730
    [Google Scholar]
  83. MartireS. FusoA. MoscaL. ForteE. CorreaniV. FontanaM. ScarpaS. MarasB. d’ErmeM. Bioenergetic impairment in animal and cellular models of alzheimer’s disease: PARP-1 inhibition rescues metabolic dysfunctions.J. Alzheimers Dis.201654130732410.3233/JAD‑15104027567805
    [Google Scholar]
  84. DayN.J. ZhangT. GaffreyM.J. ZhaoR. FillmoreT.L. MooreR.J. RodneyG.G. QianW.J. A deep redox proteome profiling workflow and its application to skeletal muscle of a Duchenne Muscular Dystrophy model.Free Radic. Biol. Med.2022193Pt 137338410.1016/j.freeradbiomed.2022.10.30036306991
    [Google Scholar]
  85. Garnock-JonesK.P. Ripasudil: First global approval.Drugs201474182211221510.1007/s40265‑014‑0333‑225414122
    [Google Scholar]
  86. NaikM. KapurM. GuptaV. SethiH. SrivastavaK. Ripasudil endgame: Role of rho-kinase inhibitor as a last-ditch-stand towards maximally tolerated medical therapy to a patient of advanced glaucoma.Clin. Ophthalmol.2021152683269210.2147/OPTH.S31889734194222
    [Google Scholar]
/content/journals/car/10.2174/0115672050317608240531130204
Loading
/content/journals/car/10.2174/0115672050317608240531130204
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): Alzheimer’s disease; astrocyte; fasudil; mitochondria; phosphorylated tau; pyruvate kinase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test