Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Object

The study aims to determine whether multimorbidity status is associated with cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders.

Methods

A total of 827 patients were enrolled from the Parkinson’s Progression Markers Initiative (PPMI) database, including 638 patients with early-stage Parkinson’s disease (PD) and 189 healthy controls (HCs). Multimorbidity status was evaluated based on the count of long-term conditions (LTCs) and the multimorbidity pattern. Using linear regression models, cross-sectional and longitudinal analyses were conducted to assess the associations of multimorbidity status with CSF biomarkers for neurodegenerative disorders, including α-synuclein (αSyn), amyloid-β (Aβ), total tau (t-tau), phosphorylated tau (-tau), glial fibrillary acidic protein (GFAP), and neurofilament light chain protein (NfL).

Results

At baseline, the CSF t-tau ( = 0.010), -tau ( = 0.034), and NfL ( = 0.049) levels showed significant differences across the three categories of LTC counts. In the longitudinal analysis, the presence of LTCs was associated with lower Aβ (β < -0.001, = 0.020), and higher t-tau (β = 0.007, = 0.026), GFAP (β = 0.013, = 0.022) and NfL (β = 0.020, = 0.012); Participants with tumor/musculoskeletal/mental disorders showed higher CSF levels of t-tau (β = 0.016, = 0.011) and p-tau (β = 0.032, = 0.044) than those without multimorbidity.

Conclusion

Multimorbidity, especially severe multimorbidity and the pattern of mental/musculoskeletal/tumor disorders, was associated with CSF biomarkers for neurodegenerative disorders in early-stage PD patients, suggesting that multimorbidity might play a crucial role in aggravating neuronal damage in neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050314397240708060314
2024-07-22
2025-01-11
Loading full text...

Full text loading...

References

  1. World Health Organization Multimorbidity.GenevaWorld Health Organization2016
    [Google Scholar]
  2. JohnstonM.C. CrillyM. BlackC. PrescottG.J. MercerS.W. Defining and measuring multimorbidity: A systematic review of systematic reviews.Eur. J. Public Health201929118218910.1093/eurpub/cky09829878097
    [Google Scholar]
  3. BarnettK. MercerS.W. NorburyM. WattG. WykeS. GuthrieB. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study.Lancet20123809836374310.1016/S0140‑6736(12)60240‑222579043
    [Google Scholar]
  4. SkouS.T. MairF.S. FortinM. GuthrieB. NunesB.P. MirandaJ.J. BoydC.M. PatiS. MtengaS. SmithS.M. Multimorbidity.Nat. Rev. Dis. Primers2022814810.1038/s41572‑022‑00376‑435835758
    [Google Scholar]
  5. ChuaY.P. XieY. LeeP.S.S. LeeE.S. Definitions and prevalence of multimorbidity in large database studies: A scoping review.Int. J. Environ. Res. Public Health2021184167310.3390/ijerph1804167333572441
    [Google Scholar]
  6. SalisburyC. Multimorbidity: Redesigning health care for people who use it.Lancet201238098367910.1016/S0140‑6736(12)60482‑622579042
    [Google Scholar]
  7. ChudasamaY.V. KhuntiK. GilliesC.L. DhalwaniN.N. DaviesM.J. YatesT. ZaccardiF. Healthy lifestyle and life expectancy in people with multimorbidity in the UK Biobank: A longitudinal cohort study.PLoS Med.2020179e100333210.1371/journal.pmed.100333232960883
    [Google Scholar]
  8. LozaE. JoverJ.A. RodriguezL. CarmonaL. EPISER Study Group Multimorbidity: Prevalence, effect on quality of life and daily functioning, and variation of this effect when one condition is a rheumatic disease.Semin. Arthritis Rheum.200938431231910.1016/j.semarthrit.2008.01.00418336872
    [Google Scholar]
  9. KanesarajahJ. WallerM. WhittyJ.A. MishraG.D. Multimorbidity and quality of life at mid-life: A systematic review of general population studies.Maturitas2018109536210.1016/j.maturitas.2017.12.00429452782
    [Google Scholar]
  10. RizzutoD OrsiniN QiuC WangH-X FratiglioniL Lifestyle, social factors, and survival after age 75: Population based study.BMJ20123452e5568
    [Google Scholar]
  11. RaiS.N. SinghP. SteinbuschH.W.M. VamanuE. AshrafG. SinghM.P. The role of vitamins in neurodegenerative disease: An update.Biomedicines2021910128410.3390/biomedicines910128434680401
    [Google Scholar]
  12. MasnoonN. ShakibS. Kalisch-EllettL. CaugheyG.E. What is polypharmacy? A systematic review of definitions.BMC Geriatr.201717123010.1186/s12877‑017‑0621‑229017448
    [Google Scholar]
  13. MakovskiT.T. SchmitzS. ZeegersM.P. StrangesS. van den AkkerM. Multimorbidity and quality of life: Systematic literature review and meta-analysis.Ageing Res. Rev.20195310090310.1016/j.arr.2019.04.00531048032
    [Google Scholar]
  14. HuY. WangZ. HeH. PanL. TuJ. ShanG. Prevalence and patterns of multimorbidity in China during 2002–2022: A systematic review and meta-analysis.Ageing Res. Rev.20249310216510.1016/j.arr.2023.10216538096988
    [Google Scholar]
  15. GrandeG. MarengoniA. VetranoD.L. Roso-LlorachA. RizzutoD. ZucchelliA. QiuC. FratiglioniL. Calderón-LarrañagaA. Multimorbidity burden and dementia risk in older adults: The role of inflammation and genetics.Alzheimers Dement.202117576877610.1002/alz.1223733403740
    [Google Scholar]
  16. WetterlingT. Pathogenesis of multimorbidity—what is known?Z. Gerontol. Geriatr.202154659059610.1007/s00391‑020‑01752‑z32651847
    [Google Scholar]
  17. BarnesP.J. Mechanisms of development of multimorbidity in the elderly.Eur. Respir. J.201545379080610.1183/09031936.0022971425614163
    [Google Scholar]
  18. HelyM.A. ReidW.G.J. AdenaM.A. HallidayG.M. MorrisJ.G.L. The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years.Mov. Disord.200823683784410.1002/mds.2195618307261
    [Google Scholar]
  19. RamakrishnaK. NallaL.V. NareshD. VenkateswarluK. ViswanadhM.K. NalluriB.N. ChakravarthyG. DuguluriS. SinghP. RaiS.N. KumarA. SinghV. SinghS.K. WNT-β catenin signaling as a potential therapeutic target for neurodegenerative diseases: Current status and future perspective.Diseases20231138910.3390/diseases1103008937489441
    [Google Scholar]
  20. VassilakiM. AakreJ.A. MielkeM.M. GedaY.E. KremersW.K. AlhuraniR.E. MachuldaM.M. KnopmanD.S. PetersenR.C. LoweV.J. JackC.R.Jr RobertsR.O. Multimorbidity and neuroimaging biomarkers among cognitively normal persons.Neurology201686222077208410.1212/WNL.000000000000262427164657
    [Google Scholar]
  21. MendesA. Tezenas du MontcelS. LevyM. BertrandA. HabertM.O. BertinH. DuboisB. EpelbaumS. INSIGHT-PreAD study group Multimorbidity is associated with preclinical alzheimer’s disease neuroimaging biomarkers.Dement. Geriatr. Cogn. Disord.2018455-627228110.1159/00048900729953971
    [Google Scholar]
  22. VassilakiM. AakreJ.A. KremersW.K. MielkeM.M. GedaY.E. AlhuraniR.E. DuttT. MachuldaM.M. KnopmanD.S. VemuriP. ColomaP.M. SchaubleB. LoweV.J. JackC.R.Jr PetersenR.C. RobertsR.O. The association of multimorbidity with preclinical AD stages and SNAP in cognitively unimpaired persons.J. Gerontol. A Biol. Sci. Med. Sci.201974687788310.1093/gerona/gly14930124772
    [Google Scholar]
  23. AerqinQ. ChenX.T. OuY.N. MaY.H. ZhangY.R. HuH.Y. TanL. YuJ.T. Associations between multimorbidity burden and Alzheimer’s pathology in older adults without dementia: The CABLE study.Neurobiol. Aging20241341810.1016/j.neurobiolaging.2023.09.01437950963
    [Google Scholar]
  24. ParnettiL. GaetaniL. EusebiP. PaciottiS. HanssonO. El-AgnafO. MollenhauerB. BlennowK. CalabresiP. CSF and blood biomarkers for Parkinson’s disease.Lancet Neurol.201918657358610.1016/S1474‑4422(19)30024‑930981640
    [Google Scholar]
  25. Van MaurikI.S. VosS.J. BosI. BouwmanF.H. TeunissenC.E. ScheltensP. BarkhofF. FrolichL. KornhuberJ. WiltfangJ. MaierW. PetersO. RütherE. NobiliF. FrisoniG.B. SpiruL. Freund-LeviY. WallinA.K. HampelH. SoininenH. TsolakiM. VerheyF. KłoszewskaI. MecocciP. VellasB. LovestoneS. GalluzziS. HerukkaS.K. SantanaI. BaldeirasI. de MendonçaA. SilvaD. ChetelatG. EgretS. PalmqvistS. HanssonO. VisserP.J. BerkhofJ. van der FlierW.M. Alzheimer’s Disease Neuroimaging Initiative Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): A modelling study.Lancet Neurol.201918111034104410.1016/S1474‑4422(19)30283‑231526625
    [Google Scholar]
  26. CousinsK.A.Q. IrwinD.J. TropeaT.F. RhodesE. PhillipsJ.S. Chen-PlotkinA.S. Parkinson's progression markers initiative. Evaluation of ATN PD framework and biofluid markers to predict cognitive decline in early parkinson disease.Neurology.20231024e208033
    [Google Scholar]
  27. Milà-AlomàM. SalvadóG. GispertJ.D. Vilor-TejedorN. Grau-RiveraO. Sala-VilaA. Sánchez-BenavidesG. Arenaza-UrquijoE.M. Crous-BouM. González-de-EchávarriJ.M. MinguillonC. FauriaK. SimonM. KollmorgenG. ZetterbergH. BlennowK. Suárez-CalvetM. MolinuevoJ.L. ALFA study Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum.Alzheimers Dement.202016101358137110.1002/alz.1213132573951
    [Google Scholar]
  28. LleóA. CavedoE. ParnettiL. VandersticheleH. HerukkaS.K. AndreasenN. GhidoniR. LewczukP. JerominA. WinbladB. TsolakiM. MroczkoB. VisserP.J. SantanaI. SvenningssonP. BlennowK. AarslandD. MolinuevoJ.L. ZetterbergH. MollenhauerB. Cerebrospinal fluid biomarkers in trials for Alzheimer and Parkinson diseases.Nat. Rev. Neurol.2015111415510.1038/nrneurol.2014.23225511894
    [Google Scholar]
  29. MarekK. ChowdhuryS. SiderowfA. LaschS. CoffeyC.S. Caspell-GarciaC. SimuniT. JenningsD. TannerC.M. TrojanowskiJ.Q. ShawL.M. SeibylJ. SchuffN. SingletonA. KieburtzK. TogaA.W. MollenhauerB. GalaskoD. ChahineL.M. WeintraubD. ForoudT. Tosun-TurgutD. PostonK. ArnedoV. FrasierM. ShererT. Parkinson’s Progression Markers Initiative The Parkinson’s progression markers initiative (PPMI) – establishing a PD biomarker cohort.Ann. Clin. Transl. Neurol.20185121460147710.1002/acn3.64430564614
    [Google Scholar]
  30. MarekK. JenningsD. LaschS. SiderowfA. TannerC. SimuniT. CoffeyC. KieburtzK. FlaggE. ChowdhuryS. PoeweW. MollenhauerB. KlinikP-E. ShererT. FrasierM. MeunierC. RudolphA. CasaceliC. SeibylJ. MendickS. SchuffN. ZhangY. TogaA. CrawfordK. AnsbachA. De BlasioP. PiovellaM. TrojanowskiJ. ShawL. SingletonA. HawkinsK. EberlingJ. BrooksD. RussellD. LearyL. FactorS. SommerfeldB. HogarthP. PighettiE. WilliamsK. StandaertD. GuthrieS. HauserR. DelgadoH. JankovicJ. HunterC. SternM. TranB. LeverenzJ. BacaM. FrankS. ThomasC-A. RichardI. DeeleyC. ReesL. SprengerF. LangE. ShillH. ObradovS. FernandezH. WintersA. BergD. GaussK. GalaskoD. FontaineD. MariZ. GerstenhaberM. BrooksD. MalloyS. BaroneP. LongoK. ComeryT. RavinaB. GrachevI. GallagherK. CollinsM. WidnellK.L. OstrowizkiS. FontouraP. HoT. LuthmanJ. BrugM. ReithA.D. TaylorP. Parkinson Progression Marker Initiative The parkinson progression marker initiative (PPMI).Prog. Neurobiol.201195462963510.1016/j.pneurobio.2011.09.00521930184
    [Google Scholar]
  31. The Lancet Neurology Biomarker promise for Parkinson’s disease.Lancet Neurol.2010912113910.1016/S1474‑4422(10)70284‑221087732
    [Google Scholar]
  32. MonestimeJP MayerRW BlackwoodA Analyzing the ICD-10-CM transition and post-implementation stages: A public health institution case study.Perspect. Health Inf. Manag.2019161a
    [Google Scholar]
  33. TopazM. Shafran-TopazL. BowlesK.H. ICD-9 to ICD-10: Evolution.Revolution, and Current Debates in the United States2013
    [Google Scholar]
  34. JacksonH. Anzures-CabreraJ. TaylorK.I. PaganoG. PASADENA Investigators Prasinezumab Study Group Hoehn and yahr stage and striatal dat-spect uptake are predictors of parkinson’s disease motor progression.Front. Neurosci.20211576576510.3389/fnins.2021.76576534966256
    [Google Scholar]
  35. BrummM.C. SiderowfA. SimuniT. BurghardtE. ChoiS.H. Caspell-GarciaC. ChahineL.M. MollenhauerB. ForoudT. GalaskoD. MerchantK. ArnedoV. HuttenS.J. O’GradyA.N. PostonK.L. TannerC.M. WeintraubD. KieburtzK. MarekK. CoffeyC.S. Parkinson’s Progression Markers Initiative Parkinson’s progression markers initiative: A milestone-based strategy to monitor parkinson’s disease progression.J. Parkinsons Dis.202313689991610.3233/JPD‑22343337458046
    [Google Scholar]
  36. Calderón-LarrañagaA. VetranoD.L. OnderG. Gimeno-FeliuL.A. Coscollar-SantaliestraC. CarfíA. PisciottaM.S. AnglemanS. MelisR.J.F. SantoniG. MangialascheF. RizzutoD. WelmerA-K. BernabeiR. Prados-TorresA. MarengoniA. FratiglioniL. Assessing and measuring chronic nMultimorbidity in the older population: A proposal for its operationalization.J. Gerontol. A Biol. Sci. Med. Sci.2016glw23310.1093/gerona/glw23328003375
    [Google Scholar]
  37. Guisado-ClaveroM. Roso-LlorachA. López-JimenezT. Pons-ViguésM. Foguet-BoreuQ. MuñozM.A. ViolánC. Multimorbidity patterns in the elderly: A prospective cohort study with cluster analysis.BMC Geriatr.20181811610.1186/s12877‑018‑0705‑729338690
    [Google Scholar]
  38. KangJ.H. MollenhauerB. CoffeyC.S. ToledoJ.B. WeintraubD. GalaskoD.R. IrwinD.J. Van DeerlinV. Chen-PlotkinA.S. Caspell-GarciaC. WaligórskaT. TaylorP. ShahN. PanS. ZeroP. FrasierM. MarekK. KieburtzK. JenningsD. TannerC.M. SimuniT. SingletonA. TogaA.W. ChowdhuryS. TrojanowskiJ.Q. ShawL.M. Parkinson’s Progression Marker Initiative CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: The Parkinson’s Progression Markers Initiative study.Acta Neuropathol.2016131693594910.1007/s00401‑016‑1552‑227021906
    [Google Scholar]
  39. BartlM. DaknaM. GalaskoD. HuttenS.J. ForoudT. QuanM. MarekK. SiderowfA. FranzJ. TrenkwalderC. MollenhauerB. Parkinson’s Progression Markers Initiative Biomarkers of neurodegeneration and glial activation validated in Alzheimer’s disease assessed in longitudinal cerebrospinal fluid samples of Parkinson’s disease.PLoS One20211610e025737210.1371/journal.pone.025737234618817
    [Google Scholar]
  40. ShengZ.H. MaL.Z. LiuJ.Y. OuY.N. ZhaoB. MaY.H. TanL. Cerebrospinal fluid neurofilament dynamic profiles predict cognitive progression in individuals with de novo Parkinson’s disease.Front. Aging Neurosci.202214106109610.3389/fnagi.2022.106109636589544
    [Google Scholar]
  41. RonaldsonA. Arias de la TorreJ. AshworthM. HansellA.L. HotopfM. MudwayI. StewartR. DreganA. BakolisI. Associations between air pollution and multimorbidity in the UK Biobank: A cross-sectional study.Front. Public Health202210103541510.3389/fpubh.2022.103541536530697
    [Google Scholar]
  42. Ben HassenC. FayosseA. LandréB. RaggiM. BloombergM. SabiaS. Singh-ManouxA. Association between age at onset of multimorbidity and incidence of dementia: 30 year follow-up in Whitehall II prospective cohort study.BMJ2022376e06800510.1136/bmj‑2021‑06800535110302
    [Google Scholar]
  43. HanlonP. JaniB. MairF. McAllisterD. Multimorbidity and frailty in middle-aged adults with type 2 diabetes mellitus.Diabetes and endocrine disease.American Academy of Family Physicians2022291010.1370/afm.20.s1.2910
    [Google Scholar]
  44. NieF. XueJ. WuD. WangR. LiH. LiX. Coordinate descent method for k-means.IEEE Trans. Pattern Anal. Mach. Intell.20211110.1109/TPAMI.2021.308573934061737
    [Google Scholar]
  45. ChenYT WittenDM Selective inference for k-means clustering. arXiv2024
    [Google Scholar]
  46. LiuB. ZhangT. LiY. LiuZ. ZhangZ. Kernel probabilistic k-means clustering.Sensors2021215189210.3390/s2105189233800353
    [Google Scholar]
  47. WangQ. ZhangS. WangY. ZhaoD. ChenX. ZhouC. The effect of dual sensory impairment and multimorbidity patterns on functional impairment: A longitudinal cohort of middle-aged and older adults in China.Front. Aging Neurosci.20221480738310.3389/fnagi.2022.80738335462686
    [Google Scholar]
  48. MattsonM.P. ChanS.L. DuanW. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior.Physiol. Rev.200282363767210.1152/physrev.00004.200212087131
    [Google Scholar]
  49. PetzingerG.M. FisherB.E. McEwenS. BeelerJ.A. WalshJ.P. JakowecM.W. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease.Lancet Neurol.201312771672610.1016/S1474‑4422(13)70123‑623769598
    [Google Scholar]
  50. MusiekE.S. HoltzmanD.M. Mechanisms linking circadian clocks, sleep, and neurodegeneration.Science201635463151004100810.1126/science.aah496827885006
    [Google Scholar]
  51. ZuccatoC. CattaneoE. Brain-derived neurotrophic factor in neurodegenerative diseases.Nat. Rev. Neurol.20095631132210.1038/nrneurol.2009.5419498435
    [Google Scholar]
  52. BreenD.P. VuonoR. NawarathnaU. FisherK. ShneersonJ.M. ReddyA.B. BarkerR.A. Sleep and circadian rhythm regulation in early Parkinson disease.JAMA Neurol.201471558959510.1001/jamaneurol.2014.6524687146
    [Google Scholar]
  53. LarkinM. Polly Matzinger: Immunology’s dangerous thinker.Lancet199735090703810.1016/S0140‑6736(05)66254‑X9229665
    [Google Scholar]
  54. SungY.J. YangC. NortonJ. JohnsonM. FaganA. BatemanR.J. PerrinR.J. MorrisJ.C. FarlowM.R. ChhatwalJ.P. SchofieldP.R. ChuiH. WangF. NovotnyB. EteleebA. KarchC. SchindlerS.E. RhinnH. JohnsonE.C.B. OhH.S.H. RutledgeJ.E. DammerE.B. SeyfriedN.T. Wyss-CorayT. HarariO. CruchagaC. Proteomics of brain, CSF, and plasma identifies molecular signatures for distinguishing sporadic and genetic Alzheimer’s disease.Sci. Transl. Med.202315703eabq592310.1126/scitranslmed.abq592337406134
    [Google Scholar]
  55. HafiziS. RajjiT.K. Modifiable risk factors of dementia linked to excitation-inhibition imbalance.Ageing Res. Rev.20238310180410.1016/j.arr.2022.10180436410620
    [Google Scholar]
  56. MorrisA. Peripheral Aβ linked to pathogenesis of T2DM.Nat. Rev. Endocrinol.2017131056456410.1038/nrendo.2017.11828862268
    [Google Scholar]
  57. BallatoreC. LeeV.M.Y. TrojanowskiJ.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders.Nat. Rev. Neurosci.20078966367210.1038/nrn219417684513
    [Google Scholar]
  58. TracyT.E. Madero-PérezJ. SwaneyD.L. ChangT.S. MoritzM. KonradC. WardM.E. StevensonE. HüttenhainR. KauweG. MercedesM. Sweetland-MartinL. ChenX. MokS.A. WongM.Y. TelpoukhovskaiaM. MinS.W. WangC. SohnP.D. MartinJ. ZhouY. LuoW. TrojanowskiJ.Q. LeeV.M.Y. GongS. ManfrediG. CoppolaG. KroganN.J. GeschwindD.H. GanL. Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration.Cell20221854712728.e1410.1016/j.cell.2021.12.04135063084
    [Google Scholar]
  59. DolatshahiM. PourmirbabaeiS. KamalianA. Ashraf-GanjoueiA. YaseriM. AarabiM.H. Longitudinal alterations of alpha-synuclein, amyloid beta, total, and phosphorylated tau in cerebrospinal fluid and correlations between their changes in parkinson’s disease.Front. Neurol.2018956010.3389/fneur.2018.0056030050494
    [Google Scholar]
  60. VisserD. WoltersE.E. VerfaillieS.C.J. CoomansE.M. TimmersT. TuncelH. ReimandJ. BoellaardR. WindhorstA.D. ScheltensP. van der FlierW.M. OssenkoppeleR. van BerckelB.N.M. Tau pathology and relative cerebral blood flow are independently associated with cognition in Alzheimer’s disease.Eur. J. Nucl. Med. Mol. Imaging202047133165317510.1007/s00259‑020‑04831‑w32462397
    [Google Scholar]
  61. WangY. MandelkowE. Tau in physiology and pathology.Nat. Rev. Neurosci.2016171223510.1038/nrn.2015.126631930
    [Google Scholar]
  62. OchoaE. RamirezP. GonzalezE. De MangeJ. RayW.J. BieniekK.F. FrostB. Pathogenic tau–induced transposable element–derived dsRNA drives neuroinflammation.Sci. Adv.202391eabq542310.1126/sciadv.abq542336608133
    [Google Scholar]
  63. MiddeldorpJ. HolE.M. GFAP in health and disease.Prog. Neurobiol.201193342144310.1016/j.pneurobio.2011.01.00521219963
    [Google Scholar]
  64. YangZ. WangK.K.W. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker.Trends Neurosci.201538636437410.1016/j.tins.2015.04.00325975510
    [Google Scholar]
  65. KatsipisG. TzekakiE.E. TsolakiM. PantazakiA.A. Salivary GFAP as a potential biomarker for diagnosis of mild cognitive impairment and Alzheimer’s disease and its correlation with neuroinflammation and apoptosis.J. Neuroimmunol.202136157774410.1016/j.jneuroim.2021.57774434655990
    [Google Scholar]
  66. TanseyM.G. WallingsR.L. HouserM.C. HerrickM.K. KeatingC.E. JoersV. Inflammation and immune dysfunction in Parkinson disease.Nat. Rev. Immunol.2022221165767310.1038/s41577‑022‑00684‑635246670
    [Google Scholar]
  67. BlöndalV. MalinovschiA. SundbomF. JamesA. MiddelveldR. FranklinK.A. LundbäckB. JansonC. Multimorbidity in asthma, association with allergy, inflammatory markers and symptom burden, results from the Swedish GA 2 LEN study.Clin. Exp. Allergy202151226227210.1111/cea.1375933053244
    [Google Scholar]
  68. FerrucciL. FabbriE. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty.Nat. Rev. Cardiol.201815950552210.1038/s41569‑018‑0064‑230065258
    [Google Scholar]
  69. KhalilM. TeunissenC.E. OttoM. PiehlF. SormaniM.P. GattringerT. BarroC. KapposL. ComabellaM. FazekasF. PetzoldA. BlennowK. ZetterbergH. KuhleJ. Neurofilaments as biomarkers in neurological disorders.Nat. Rev. Neurol.2018141057758910.1038/s41582‑018‑0058‑z30171200
    [Google Scholar]
  70. PeltzC.B. KenneyK. GillJ. Diaz-ArrastiaR. GardnerR.C. YaffeK. Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans.Neurology2020959e1126e113310.1212/WNL.000000000001008732571850
    [Google Scholar]
  71. UyarM. LeziusS. BuhmannC. Pötter-NergerM. SchulzR. MeierS. GerloffC. KuhleJ. ChoeC. Diabetes, Glycated Hemoglobin (HbA1c), and Neuroaxonal Damage in Parkinson’s Disease (MARK-PD Study).Mov. Disord.20223761299130410.1002/mds.2900935384057
    [Google Scholar]
  72. AamodtW.W. WaligorskaT. ShenJ. TropeaT.F. SiderowfA. WeintraubD. GrossmanM. IrwinD. WolkD.A. XieS.X. TrojanowskiJ.Q. ShawL.M. Chen-PlotkinA.S. Neurofilament light chain as a biomarker for cognitive decline in parkinson disease.Mov. Disord.202136122945295010.1002/mds.2877934480363
    [Google Scholar]
  73. DisantoG. BarroC. BenkertP. NaegelinY. SchädelinS. GiardielloA. ZeccaC. BlennowK. ZetterbergH. LeppertD. KapposL. GobbiC. KuhleJ. Swiss Multiple Sclerosis Cohort Study Group Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis.Ann. Neurol.201781685787010.1002/ana.2495428512753
    [Google Scholar]
  74. OlssonB. PorteliusE. CullenN.C. SandeliusÅ. ZetterbergH. AndreassonU. HöglundK. IrwinD.J. GrossmanM. WeintraubD. Chen-PlotkinA. WolkD. McCluskeyL. ElmanL. ShawL.M. ToledoJ.B. McBrideJ. Hernandez-ConP. LeeV.M.Y. TrojanowskiJ.Q. BlennowK. Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders.JAMA Neurol.201976331832510.1001/jamaneurol.2018.374630508027
    [Google Scholar]
  75. MollenhauerB. Caspell-GarciaC.J. CoffeyC.S. TaylorP. ShawL.M. TrojanowskiJ.Q. SingletonA. FrasierM. MarekK. GalaskoD. MarekK. JenningsD. LaschS. TannerC. SimuniT. CoffeyC. KieburtzK. WilsonR. PoeweW. MollenhauerB. ForoudT. ShererT. ChowdhuryS. FrasierM. KopilC. ArnedoV. RudolphA. CasaceliC. SeibylJ. MendickS. SchuffN. CaspellC. UribeL. FosterE. GloerK. YankeyJ. TogaA. CrawfordK. CasalinP. MalferrariG. MollenhauerB. GalaskoD. SingletonA. HawkinsK.A. RussellD. FactorS. HogarthP. StandaertD. HauserR. JankovicJ. SternM. ChahineL. LeverenzJ. FrankS. RichardI. SeppiK. ShillH. FernandezH. BergD. WursterI. GalaskoD. MariZ. BrooksD. PaveseN. BaroneP. IsaacsonS. EspayA. RoweD. BrandaburM. TetrudJ. LiangG. IranzoA. TolosaE. LearyL. RiordanC. ReesL. PortilloA. LenahanA. WilliamsK. GuthrieS. RawlinsA. HarlanS. HunterC. TranB. DarinA. LinderC. BacaM. VenkovH. ThomasC-A. JamesR. DeeleyC. BishopC. Fabienne Sprenger WillekeD. ObradovS. MuleJ. MonahanN. GaussK. FontaineD. GigliottiC. McCoyA. DunlopB. ShahB. SusanA. JamesA. SilversteinR. EspayK. RanolaM. MarekK. InvestigatorP. JenningsD. LaschS. SiderowfA. CarolineT. SimuniT. CoffeyC. Karl Kieburtz FlaggE. ChowdhuryS. PoeweW. MollenhauerB. ShererT. FrasierM. MeunierC. RudolphA. CasaceliC. SeibylJ. InvestigatorP. MendickS. SchuffN. Ying Zhang TogaA. CrawfordK. AnsbachA. De BlasioP. PiovellaM. TrojanowskiJ. ShawL. SingletonA. HawkinsK. PsyDMichaelJ. EberlingJ. BrooksD. RussellD. LearyL. FactorS. SommerfeldB. HogarthP. PighettiE. WilliamsK. StandaertD. GuthrieS. HauserR. DelgadoH. JankovicJ. HunterC. SternM. TranB. LeverenzJ. BacaM. FrankS. ThomasC-A. RichardI. DeeleyC. ReesL. SprengerF. OertelW. LangE. ShillH. ObradovS. FernandezH. WintersA. BergD. GaussK. GalaskoD. FontaineD. MariZ. GerstenhaberM. BrooksD. MalloyS. BaroneP. LongoK. ComeryT. RavinaB. GrachevI. GallagherK. CollinsM. WidnellK.L. OstrowizkiS. FontouraP. La-RocheF.H. HoT. LuthmanJ. van der BrugM. ReithA.D. TaylorP. Parkinson’s Progression Marker Initiative Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls.Neurology201789191959196910.1212/WNL.000000000000460929030452
    [Google Scholar]
  76. AbbasiN. MohajerB. AbbasiS. HasanabadiP. AbdolalizadehA. RajimehrR. Relationship between cerebrospinal fluid biomarkers and structural brain network properties in Parkinson’s disease.Mov. Disord.201833343143910.1002/mds.2728429436735
    [Google Scholar]
  77. LeiP. AytonS. FinkelsteinD.I. AdlardP.A. MastersC.L. BushA.I. Tau protein: Relevance to parkinson’s disease.Int. J. Biochem. Cell Biol.201042111775177810.1016/j.biocel.2010.07.01620678581
    [Google Scholar]
  78. ShimK.H. KangM.J. YounY.C. AnS.S.A. KimS. Alpha-synuclein: A pathological factor with Aβ and tau and biomarker in Alzheimer’s disease.Alzheimers Res. Ther.202214120110.1186/s13195‑022‑01150‑036587215
    [Google Scholar]
  79. PechU. VerstrekenP. α-Synuclein and Tau: Mitochondrial kill switches.Neuron20189713410.1016/j.neuron.2017.12.02429301103
    [Google Scholar]
  80. McAleeseK.E. CollobyS.J. ThomasA.J. Al-SarrajS. AnsorgeO. NealJ. RoncaroliF. LoveS. FrancisP.T. AttemsJ. Concomitant neurodegenerative pathologies contribute to the transition from mild cognitive impairment to dementia.Alzheimers Dement.20211771121113310.1002/alz.1229133663011
    [Google Scholar]
  81. ViolánC. Roso-LlorachA. Foguet-BoreuQ. Guisado-ClaveroM. Pons-ViguésM. Pujol-RiberaE. ValderasJ.M. Multimorbidity patterns with K-means nonhierarchical cluster analysis.BMC Fam. Pract.201819110810.1186/s12875‑018‑0790‑x29969997
    [Google Scholar]
  82. KyrkanidesS. TallentsR.H. MillerJ.H. OlschowkaM.E. JohnsonR. YangM. OlschowkaJ.A. BrouxhonS.M. O’BanionM.K. Osteoarthritis accelerates and exacerbates Alzheimer’s disease pathology in mice.J. Neuroinflammation20118111210.1186/1742‑2094‑8‑11221899735
    [Google Scholar]
  83. RamakersI.H.G.B. VerheyF.R.J. ScheltensP. HampelH. SoininenH. AaltenP. RikkertM.O. VerbeekM.M. SpiruL. BlennowK. TrojanowskiJ.Q. ShawL.M. VisserP.J. Alzheimer’s Disease Neuroimaging Initiative and DESCRIPA Investigators Anxiety is related to Alzheimer cerebrospinal fluid markers in subjects with mild cognitive impairment.Psychol. Med.201343591192010.1017/S003329171200187022954311
    [Google Scholar]
  84. BabulalG.M. GhoshalN. HeadD. VernonE.K. HoltzmanD.M. BenzingerT.L.S. FaganA.M. MorrisJ.C. RoeC.M. Mood changes in cognitively normal older adults are linked to alzheimer disease biomarker levels.Am. J. Geriatr. Psychiatry201624111095110410.1016/j.jagp.2016.04.00427426238
    [Google Scholar]
  85. LebedevaA. WestmanE. LebedevA.V. LiX. WinbladB. SimmonsA. WahlundL.O. AarslandD. Alzheimer’s Disease Neuroimaging Initiative Structural brain changes associated with depressive symptoms in the elderly with Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry201485893093510.1136/jnnp‑2013‑30711024421287
    [Google Scholar]
  86. GonzalesM.M. InselP.S. NelsonC. TosunD. SchöllM. MattssonN. SacuiuS. BickfordD. WeinerM.W. MackinR.S. Alzheimer’s Disease Neuroimaging Initiative Chronic depressive symptomatology and CSF amyloid beta and tau levels in mild cognitive impairment.Int. J. Geriatr. Psychiatry201833101305131110.1002/gps.492629953668
    [Google Scholar]
  87. FabbriE. AnY. ZoliM. TanakaT. SimonsickE.M. Kitner-TrioloM.H. StudenskiS.A. ResnickS.M. FerrucciL. Association between accelerated multimorbidity and age-related cognitive decline in older baltimore longitudinal study of aging participants without dementia.J. Am. Geriatr. Soc.201664596597210.1111/jgs.1409227131225
    [Google Scholar]
  88. WeiM.Y. LevineD.A. ZahodneL.B. KabetoM.U. LangaK.M. Multimorbidity and cognitive decline over 14 years in older americans.J. Gerontol. A Biol. Sci. Med. Sci.20207561206121310.1093/gerona/glz14731173065
    [Google Scholar]
  89. BassilF. BrownH.J. PattabhiramanS. IwasykJ.E. MaghamesC.M. MeymandE.S. CoxT.O. RiddleD.M. ZhangB. TrojanowskiJ.Q. LeeV.M.Y. Amyloid-Beta (Aβ) plaques promote seeding and spreading of alpha-synuclein and tau in a mouse model of lewy body disorders with aβ pathology.Neuron20201052260275.e610.1016/j.neuron.2019.10.01031759806
    [Google Scholar]
/content/journals/car/10.2174/0115672050314397240708060314
Loading
/content/journals/car/10.2174/0115672050314397240708060314
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test