Skip to content
2000
image of Computer-aided Drug Design: Innovation and its Application in Reshaping Modern Medicine

Abstract

Computer-aided drug design has revolutionized the landscape of drug discovery, accompanied by a new era of innovation and efficiency of novel therapeutic agents. This article review explores the diverse innovations and practical applications that have propelled CADD into the forefront of modern medicine. CADD, a multidisciplinary field at the interaction of biology, chemistry, and computational science, offers a toolkit for the identification and development of pharmaceutical compounds. It has the ability to predict molecular interaction between drug and biological targets with remarkable precision, reducing the dependency on laborious and costly laboratory experiments. The review deals with two primary domains of CADD: structure-based and ligand-based design. This three-dimensional protein structure and screening of chemical libraries have led to rational changes. The analysis of known drug compounds' chemical and biological properties has enabled the creation of predictive models, opening new routes for drug discovery. The impact of CADD on the pharmaceutical industry is clear. This review highlights its instrumental role in the development of antiviral agents, cancer therapeutics, and treatment for various diseases. The transformation potential of CADD is not without challenges, including the need for substantial computational resources and the essential requirement of experimental analysis. The synergy between innovation and practical application is clear, driving unexpected efficiency and precision in the identification of therapeutic solutions. As pharmaceutical research continues to evolve, the role of CADD remains pivotal, assuring the rapid translation of scientific innovation into real-world medical advancements.

Loading

Article metrics loading...

/content/journals/cai/10.2174/0129503752321279241126091807
2024-12-16
2024-12-25
Loading full text...

Full text loading...

References

  1. Marshall G.R. Computer-aided drug design. Annu. Rev. Pharmacol. Toxicol. 1987 27 1 193 213 10.1146/annurev.pa.27.040187.001205 3555315
    [Google Scholar]
  2. Surabhi S. Singh B.K. Computer aided drug design: An overview. J. Drug Deliv. Ther. 2018 8 5 504 509 10.22270/jddt.v8i5.1894
    [Google Scholar]
  3. Veselovsky A. Ivanov A. Strategy of computer-aided drug design. Curr. Drug Targets Infect. Disord. 2003 3 1 33 40 10.2174/1568005033342145 12570731
    [Google Scholar]
  4. Güner O. History and evolution of the pharmacophore concept in computer-aided drug design. Curr. Top. Med. Chem. 2002 2 12 1321 1332 10.2174/1568026023392940 12470283
    [Google Scholar]
  5. Taft C.A. da Silva V.B. da Silva C.H.T.P. Current topics in computer‐aided drug design. J. Pharm. Sci. 2008 97 3 1089 1098 10.1002/jps.21293 18214973
    [Google Scholar]
  6. Baig M.H. Ahmad K. Rabbani G. Danishuddin M. Choi I. Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Curr. Neuropharmacol. 2018 16 6 740 748 10.2174/1570159X15666171016163510 29046156
    [Google Scholar]
  7. Mezey P.G. Computer aided drug design: Some fundamental aspects. Mol. Mod. Ann. 2000 6 150 157 10.1007/PL00010725
    [Google Scholar]
  8. Zhang S. Computer-aided drug discovery and development. Drug Design and Discovery Humana Press Satyanarayanajois S. 2011 23 38 10.1007/978‑1‑61779‑012‑6_2
    [Google Scholar]
  9. Yu W. MacKerell A.D. Computer-aided drug design methods. Antibiotics New York, NY Humana Press Sass P. 2017 85 106 10.1007/978‑1‑4939‑6634‑9_5
    [Google Scholar]
  10. Bassani D. Moro S. Past, present, and future perspectives on computer-aided drug design methodologies. Molecules 2023 28 9 3906 10.3390/molecules28093906 37175316
    [Google Scholar]
  11. Macalino S.J.Y. Gosu V. Hong S. Choi S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 2015 38 9 1686 1701 10.1007/s12272‑015‑0640‑5 26208641
    [Google Scholar]
  12. Iwaloye O. Ottu P.O. Olawale F. Babalola O.O. Elekofehinti O.O. Kikiowo B. Adegboyega A.E. Ogbonna H.N. Adeboboye C.F. Folorunso I.M. Fakayode A.E. Akinjiyan M.O. Onikanni S.A. Shityakov S. Computer-aided drug design in anti-cancer drug discovery: What have we learnt and what is the way forward? Inform. Med. Unlocked 2023 41 101332 10.1016/j.imu.2023.101332
    [Google Scholar]
  13. Van Drie J.H. Computer-aided drug design: The next 20 years. J. Comput. Aided Mol. Des. 2007 21 10-11 591 601 10.1007/s10822‑007‑9142‑y 17989929
    [Google Scholar]
  14. Lionta E. Spyrou G. Vassilatis D. Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem. 2014 14 16 1923 1938 10.2174/1568026614666140929124445 25262799
    [Google Scholar]
  15. Pliushcheuskaya P. Künze G. Recent advances in computer-aided structure-based drug design on ion channels. Int. J. Mol. Sci. 2023 24 11 9226 10.3390/ijms24119226 37298178
    [Google Scholar]
  16. Nascimento I.J.S. de Aquino T.M. da Silva-Júnior E.F. The new era of drug discovery: The power of computer-aided drug design (CADD). Lett. Drug Des. Discov. 2022 19 11 951 955 10.2174/1570180819666220405225817
    [Google Scholar]
  17. Tabeshpour J. Sahebkar A. Zirak M.R. Zeinali M. Hashemzaei M. Rakhshani S. Rakhshani S. Computer-aided drug design and drug pharmacokinetic prediction: A mini-review. Curr. Pharm. Des. 2018 24 26 3014 3019 10.2174/1381612824666180903123423 30179125
    [Google Scholar]
  18. Douguet D. Munier-Lehmann H. Labesse G. Pochet S. LEA3D: A computer-aided ligand design for structure-based drug design. J. Med. Chem. 2005 48 7 2457 2468 10.1021/jm0492296 15801836
    [Google Scholar]
  19. Hawkins P.C. Stahl G. Ligand-based methods in GPCR computer-aided drug design. Computational Methods for GPCR Drug Discovery New York, NY Humana Press Heifetz A. 2018 365 374 10.1007/978‑1‑4939‑7465‑8_18
    [Google Scholar]
  20. Ye J. Yang X. Ma C. Ligand-based drug design of novel antimicrobials against Staphylococcus aureus by targeting bacterial transcription. Int. J. Mol. Sci. 2022 24 1 339 10.3390/ijms24010339 36613782
    [Google Scholar]
  21. Daina A. Blatter M.C. Baillie Gerritsen V. Palagi P.M. Marek D. Xenarios I. Schwede T. Michielin O. Zoete V. Drug design workshop: A web-based educational tool to introduce computer-aided drug design to the general public. J. Chem. Educ. 2017 94 3 335 344 10.1021/acs.jchemed.6b00596
    [Google Scholar]
  22. Krüger D.M. Evers A. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem 2010 5 1 148 158 10.1002/cmdc.200900314 19908272
    [Google Scholar]
  23. Hall D.R. Enyedy I.J. The use of fake ligands from computational solvent mapping in ligand and structure-based virtual screening. Future Med. Chem. 2016 8 15 1815 1823 10.4155/fmc‑2016‑0115 27630057
    [Google Scholar]
  24. Arunachalam M. Chiranjeev C. Mondal B. Sanjay T. Generative AI revolution: Shaping the future of healthcare innovation. Revolutionizing the Healthcare Sector with AI IGI Global 2024 341 364 10.4018/979‑8‑3693‑3731‑8.ch017
    [Google Scholar]
  25. Vemula D. Jayasurya P. Sushmitha V. Kumar Y.N. Bhandari V. CADD, AI and ML in drug discovery: A comprehensive review. Eur. J. Pharm. Sci. 2023 181 106324 10.1016/j.ejps.2022.106324 36347444
    [Google Scholar]
  26. Gu R. Wu F. Huang Z. Role of computer-aided drug design in drug development. Molecules 2023 28 20 7160 10.3390/molecules28207160 37894639
    [Google Scholar]
  27. Spivey R.N. Jones J.K. Wardell W. Vodra W.W. The US FDA in the drug development, evaluation and approval process. The Textbook of Pharmaceutical Medicine Wiley Griffin J.P. Posner J. Barker G.R. 2013 10.1002/9781118532331.ch25
    [Google Scholar]
  28. Scott Dixon J. Computer-aided drug design: Getting the best results. Trends Biotechnol. 1992 10 10 357 363 10.1016/0167‑7799(92)90268‑Z 1368875
    [Google Scholar]
  29. Khan M.F. Kandwal S. Fayne D. DataPype: A fully automated unified software platform for computer-aided drug design. ACS Omega 2023 8 42 39468 39480 10.1021/acsomega.3c05207 37901539
    [Google Scholar]
  30. Lloyd D.G. Golfis G. Knox A.J.S. Fayne D. Meegan M.J. Oprea T.I. Oncology exploration: Charting cancer medicinal chemistry space. Drug Discov. Today 2006 11 3-4 149 159 10.1016/S1359‑6446(05)03688‑3 16533713
    [Google Scholar]
  31. Moret M. Pachon Angona I. Cotos L. Yan S. Atz K. Brunner C. Baumgartner M. Grisoni F. Schneider G. Leveraging molecular structure and bioactivity with chemical language models for de novo drug design. Nat. Commun. 2023 14 1 114 10.1038/s41467‑022‑35692‑6 36611029
    [Google Scholar]
  32. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  33. Ooms F. Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry. Curr. Med. Chem. 2000 7 2 141 158 10.2174/0929867003375317 10637360
    [Google Scholar]
  34. Acuna V.V. Hopper R.M. Yoder R.J. Computer-aided drug design for the organic chemistry laboratory using accessible molecular modeling tools. J. Chem. Educ. 2020 97 3 760 763 10.1021/acs.jchemed.9b00592
    [Google Scholar]
  35. Anwar T. Kumar P. Khan A.U. Chapter 1 - Modern tools and techniques in computer-aided drug design. Molecular Docking for Computer-Aided Drug Design Academic Press 2021 1 30 10.1016/B978‑0‑12‑822312‑3.00011‑4
    [Google Scholar]
  36. Abdolmaleki A. Ghasemi J. Ghasemi F. Computer aided drug design for multi-target drug design: SAR/QSAR, molecular docking and pharmacophore methods. Curr. Drug Targets 2017 18 5 556 575 10.2174/1389450117666160101120822 26721410
    [Google Scholar]
  37. Romanov A.N. Grigor'ev F.V. Sulimov A.V. Lushchekina S.V. Martynov Y.B. Sulimov V.B. The SOL docking package for computer-aided drug design. Num. Meth. Prog. 2008 9 3 213 233
    [Google Scholar]
  38. Edache E.I. Uzairu A. Mamza P.A. Shallangwa G.A. Yagin F.H. Abdel Samee N. Mahmoud N.F. Combining docking, molecular dynamics simulations, AD-MET pharmacokinetics properties, and MMGBSA calculations to create specialized protocols for running effective virtual screening campaigns on the autoimmune disorder and SARS-CoV-2 main protease. Front. Mol. Biosci. 2023 10 1254230 10.3389/fmolb.2023.1254230 37771457
    [Google Scholar]
  39. Wei Z. High performance computing simulation of intelligent logistics management based on shortest path algorithm. Comput. Intell. Neurosci. 2022 2022 1 1 10 10.1155/2022/7930553 35720907
    [Google Scholar]
  40. Suhag D. Kaushik S. Taxak V.B. Challenges and future directions. Handbook of Biomaterials for Medical Applications, Volume 1 Singapore Springer 2024 329 355 10.1007/978‑981‑97‑4818‑1_12
    [Google Scholar]
  41. Yang L. Song X. High-performance computing analysis and location selection of logistics distribution center space based on whale optimization algorithm. Comput. Intell. Neurosci. 2022 2022 1 1 9 10.1155/2022/2055241 35785074
    [Google Scholar]
  42. Christley S. Scarborough W. Salinas E. Rounds W.H. Toby I.T. Fonner J.M. Levin M.K. Kim M. Mock S.A. Jordan C. Ostmeyer J. Buntzman A. Rubelt F. Davila M.L. Monson N.L. Scheuermann R.H. Cowell L.G. VDJServer: A cloud-based analysis portal and data commons for immune repertoire sequences and rearrangements. Front. Immunol. 2018 9 976 10.3389/fimmu.2018.00976 29867956
    [Google Scholar]
  43. Bhinder B. Gilvary C. Madhukar N.S. Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 2021 11 4 900 915 10.1158/2159‑8290.CD‑21‑0090 33811123
    [Google Scholar]
  44. Zauhar R.J. Moyna G. Tian L. Li Z. Welsh W.J. Shape signatures: A new approach to computer-aided ligand- and receptor-based drug design. J. Med. Chem. 2003 46 26 5674 5690 10.1021/jm030242k 14667221
    [Google Scholar]
  45. Kolluri S. Lin J. Liu R. Zhang Y. Zhang W. Machine learning and artificial intelligence in pharmaceutical research and development: A review. AAPS J. 2022 24 1 19 10.1208/s12248‑021‑00644‑3 34984579
    [Google Scholar]
  46. Seibert K. Domhoff D. Bruch D. Schulte-Althoff M. Fürstenau D. Biessmann F. Wolf-Ostermann K. Application scenarios for artificial intelligence in nursing care: Rapid review. J. Med. Internet Res. 2021 23 11 e26522 10.2196/26522 34847057
    [Google Scholar]
  47. Dutta S. Sutradhar S. Sachan K. Computer-aided drug design - A new approach in drug design and discovery. Computer 2010 4 3
    [Google Scholar]
  48. Gupta R. Srivastava D. Sahu M. Tiwari S. Ambasta R.K. Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021 25 3 1315 1360 10.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  49. Connor C.W. Artificial intelligence and machine learning in anesthesiology. Anesthesiology 2019 131 6 1346 1359 10.1097/ALN.0000000000002694 30973516
    [Google Scholar]
  50. Soori M. Arezoo B. Dastres R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics 2023 3 54 70 10.1016/j.cogr.2023.04.001
    [Google Scholar]
  51. Lee J.W. Maria-Solano M.A. Vu T.N.L. Yoon S. Choi S. Big data and artificial intelligence (AI) methodologies for computer-aided drug design (CADD). Biochem. Soc. Trans. 2022 50 1 241 252 10.1042/BST20211240 35076690
    [Google Scholar]
  52. Zhang L. Lin J. Liu B. Zhang Z. Yan X. Wei M. A review on deep learning applications in prognostics and health management. IEEE Access 2019 7 162415 162438 10.1109/ACCESS.2019.2950985
    [Google Scholar]
  53. Subramanian I. Verma S. Kumar S. Jere A. Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform. Biol. Insights 2020 14 10.1177/1177932219899051 32076369
    [Google Scholar]
  54. Conesa A. Beck S. Making multi-omics data accessible to researchers. Sci. Data 2019 6 1 251 10.1038/s41597‑019‑0258‑4 31672978
    [Google Scholar]
  55. Niazi S.K. Mariam Z. Computer-aided drug design and drug discovery: A prospective analysis. Pharmaceuticals (Basel) 2023 17 1 22 10.3390/ph17010022 38256856
    [Google Scholar]
  56. Ejalonibu M.A. Ogundare S.A. Elrashedy A.A. Ejalonibu M.A. Lawal M.M. Mhlongo N.N. Kumalo H.M. Drug discovery for Mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int. J. Mol. Sci. 2021 22 24 13259 10.3390/ijms222413259 34948055
    [Google Scholar]
  57. Santiago-Rodriguez T.M. Hollister E.B. Multi 'omic data integration: A review of concepts, considerations, and approaches. Semin. Perinatol. 2021 45 6 151456 10.1016/j.semperi.2021.151456
    [Google Scholar]
  58. Gill S.S. Kumar A. Singh H. Singh M. Kaur K. Usman M. Buyya R. Quantum computing: A taxonomy, systematic review and future directions. Softw. Pract. Exper. 2022 52 1 66 114 10.1002/spe.3039
    [Google Scholar]
  59. Preskill J. Quantum computing 40 years later. Feynman Lectures on Computation CRC Press 2023 10.1201/9781003358817‑7
    [Google Scholar]
  60. Medina-Franco J.L. Grand challenges of computer-aided drug design: The road ahead. Front. Drug Discov. (Lausanne) 2021 1 728551 10.3389/fddsv.2021.728551
    [Google Scholar]
  61. Chauhan V. Negi S. Jain D. Singh P. Sagar A.K. Sharma A.K. Quantum computers: A review on how quantum computing can boom AI. 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) Greater Noida, India, 28-29 Apr. 2022, pp. 559-563. 10.1109/ICACITE53722.2022.9823619
    [Google Scholar]
  62. Ebhohimen I.E. Edemhanria L. Awojide S. Onyijen O.H. Anywar G. Chapter 3 - Advances in computer-aided drug discovery. Phytochemicals as Lead Compounds for New Drug Discovery Elsevier 2020 25 37 10.1016/B978‑0‑12‑817890‑4.00003‑2
    [Google Scholar]
  63. Narayan A. Chanana A. Shanker O. Kulkarni Y.R. Gupta P. Patel A. Havelikar U. Singh R.P. Chawra H.S. Role of artificial intelligence in pharmaceutical drug development. Curr. Indian Sci. 2024 2 1 9 10.2174/012210299X313252240521111358
    [Google Scholar]
  64. Prachayasittikul V. Worachartcheewan A. Shoombuatong W. Songtawee N. Simeon S. Prachayasittikul V. Nantasenamat C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem. 2015 15 18 1780 1800 10.2174/1568026615666150506151101 25961523
    [Google Scholar]
  65. Kelley E.W. Computer-aided drug design project for introductory high school students. J. Chem. Educ. 2023 100 3 1179 1188 10.1021/acs.jchemed.2c00989
    [Google Scholar]
  66. Krishnamurthy N. Grimshaw A.A. Axson S.A. Choe S.H. Miller J.E. Drug repurposing: A systematic review on root causes, barriers and facilitators. BMC Health Serv. Res. 2022 22 1 970 10.1186/s12913‑022‑08272‑z 35906687
    [Google Scholar]
  67. Aguayo-Ortiz R. Fernández-de Gortari E. Chapter 2 - Overview of computer-aided drug design for epigenetic targets. Epi-Informatics Academic Press 2016 21 52 10.1016/B978‑0‑12‑802808‑7.00002‑2
    [Google Scholar]
  68. Dalkas G.A. Vlachakis D. Tsagkrasoulis D. Kastania A. Kossida S. State-of-the-art technology in modern computer-aided drug design. Brief. Bioinform. 2013 14 6 745 752 10.1093/bib/bbs063 23148324
    [Google Scholar]
  69. Pushpakom S. Iorio F. Eyers P.A. Escott K.J. Hopper S. Wells A. Doig A. Guilliams T. Latimer J. McNamee C. Norris A. Sanseau P. Cavalla D. Pirmohamed M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019 18 1 41 58 10.1038/nrd.2018.168 30310233
    [Google Scholar]
  70. Semighini E.P. Resende J.A. de Andrade P. Morais P.A.B. Carvalho I. Taft C.A. Silva C.H.T.P. Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes. J. Biomol. Struct. Dyn. 2011 28 5 787 796 10.1080/07391102.2011.10508606 21294589
    [Google Scholar]
  71. Amaro R.E. Baron R. McCammon J.A. An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J. Comput. Aided Mol. Des. 2008 22 9 693 705 10.1007/s10822‑007‑9159‑2 18196463
    [Google Scholar]
  72. Fajer M. Borrelli K. Abel R. Wang L. Quantitatively accounting for protein reorganization in computer-aided drug design. J. Chem. Theory Comput. 2023 19 11 3080 3090 10.1021/acs.jctc.3c00009 37219932
    [Google Scholar]
  73. Cole D.J. Horton J.T. Nelson L. Kurdekar V. The future of force fields in computer-aided drug design. Future Med. Chem. 2019 11 18 2359 2363 10.4155/fmc‑2019‑0196 31544529
    [Google Scholar]
  74. Sydow D. Morger A. Driller M. Volkamer A. TeachOpenCADD: A teaching platform for computer-aided drug design using open source packages and data. J. Cheminform. 2019 11 1 29 10.1186/s13321‑019‑0351‑x 30963287
    [Google Scholar]
  75. Carlson H.A. Masukawa K.M. McCammon J.A. Method for including the dynamic fluctuations of a protein in computer-aided drug design. J. Phys. Chem. A 1999 103 49 10213 10219 10.1021/jp991997z
    [Google Scholar]
  76. Åqvist J. Medina C. Samuelsson J.E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng. Des. Sel. 1994 7 3 385 391 10.1093/protein/7.3.385 8177887
    [Google Scholar]
  77. Baker N.C. Ekins S. Williams A.J. Tropsha A. A bibliometric review of drug repurposing. Drug Discov. Today 2018 23 3 661 672 10.1016/j.drudis.2018.01.018 29330123
    [Google Scholar]
  78. Talele T. Khedkar S. Rigby A. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem. 2010 10 1 127 141 10.2174/156802610790232251 19929824
    [Google Scholar]
  79. Patil S. Shankar H. Transforming healthcare: Harnessing the power of AI in the modern era. Int. J. Multidiscip. Sci. Arts 2023 2 2 60 70 10.47709/ijmdsa.v2i1.2513
    [Google Scholar]
  80. Sabe V.T. Ntombela T. Jhamba L.A. Maguire G.E.M. Govender T. Naicker T. Kruger H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021 224 113705 10.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  81. Dey G. An overview of drug repurposing: Review article. J. Med. Sci. Clin. Res. 2019 7 2 3 5 10.18535/jmscr/v7i2.12
    [Google Scholar]
  82. Karaman B. Sippl W. Computational drug repurposing: Current trends. Curr. Med. Chem. 2019 26 28 5389 5409 10.2174/0929867325666180530100332 29848268
    [Google Scholar]
  83. Samigulina G. Zarina S. Immune network technology on the basis of random forest algorithm for computer-aided drug design. Bioinformatics and Biomedical Engineering Cham Springer Rojas I. Ortuño F. 2017 50 61 10.1007/978‑3‑319‑56148‑6_4
    [Google Scholar]
  84. Oselusi S.O. Dube P. Odugbemi A.I. Akinyede K.A. Ilori T.L. Egieyeh E. Sibuyi N.R.S. Meyer M. Madiehe A.M. Wyckoff G.J. Egieyeh S.A. The role and potential of computer-aided drug discovery strategies in the discovery of novel antimicrobials. Comput. Biol. Med. 2024 169 107927 10.1016/j.compbiomed.2024.107927 38184864
    [Google Scholar]
  85. Gayathiri E. Prakash P. Kumaravel P. Jayaprakash J. Ragunathan M.G. Sankar S. Pandiaraj S. Thirumalaivasan N. Thiruvengadam M. Govindasamy R. Computational approaches for modeling and structural design of biological systems: A comprehensive review. Prog. Biophys. Mol. Biol. 2023 185 17 32 10.1016/j.pbiomolbio.2023.08.002 37821048
    [Google Scholar]
  86. Faver J.C. Ucisik M.N. Yang W. Merz K.M. Computer-aided drug design: Using numbers to your advantage. ACS Med. Chem. Lett. 2013 4 9 812 814 10.1021/ml4002634 24312700
    [Google Scholar]
  87. Salman M.M. Al-Obaidi Z. Kitchen P. Loreto A. Bill R.M. Wade-Martins R. Advances in applying computer-aided drug design for neurodegenerative diseases. Int. J. Mol. Sci. 2021 22 9 4688 10.3390/ijms22094688 33925236
    [Google Scholar]
  88. Bibi S. Sakata K. Current status of computer-aided drug design for type 2 diabetes. Curr. Computeraided Drug Des. 2016 12 2 167 177 10.2174/1573409912666160426120709 27113465
    [Google Scholar]
  89. Zhang Y. Luo M. Wu P. Wu S. Lee T.Y. Bai C. Application of computational biology and artificial intelligence in drug design. Int. J. Mol. Sci. 2022 23 21 13568 10.3390/ijms232113568 36362355
    [Google Scholar]
  90. Tsagkaris C. Corriero A.C. Rayan R.A. Moysidis D.V. Papazoglou A.S. Alexiou A. Chapter 9 - Success stories in computer-aided drug design. Computational Approaches in Drug Discovery, Development and Systems Pharmacology Academic Press 2023 237 253 10.1016/B978‑0‑323‑99137‑7.00001‑0
    [Google Scholar]
  91. Askari S. Ghofrani A. Taherdoost H. Transforming drug design: Innovations in computer-aided discovery for biosimilar agents. BioMedInformatics 2023 3 4 1178 1196 10.3390/biomedinformatics3040070
    [Google Scholar]
  92. Chakrabarty B.K. Integrated CAD by Optimization Cham Springer 2022 10.1007/978‑3‑030‑99306‑1
    [Google Scholar]
  93. Das N.R. Jena G.K. Chapter 15 - Bioinformatics and CADD approaches in drug discovery. Biochemical and Molecular Pharmacology in Drug Discovery Elsevier 2024 313 321 10.1016/B978‑0‑443‑16013‑4.00015‑4
    [Google Scholar]
  94. Trenfield S.J. Awad A. Madla C.M. Hatton G.B. Firth J. Goyanes A. Gaisford S. Basit A.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. Expert Opin. Drug Deliv. 2019 16 10 1081 1094 10.1080/17425247.2019.1660318 31478752
    [Google Scholar]
  95. Pinto-Coelho L. How artificial intelligence is shaping medical imaging technology: A survey of innovations and applications. Bioengineering (Basel) 2023 10 12 1435 10.3390/bioengineering10121435 38136026
    [Google Scholar]
  96. Agu P.C. Obulose C.N. Piquing artificial intelligence towards drug discovery: Tools, techniques, and applications. Drug Dev. Res. 2024 85 2 e22159 10.1002/ddr.22159 38375772
    [Google Scholar]
  97. Khanna A. El Barachi M. Jain S. Kumar M. Nayyar A. Empowering clinical decision making. Artificial Intelligence and machine learning in drug design and development John Wiley & Sons Khanna A. Barachi M.E. Jain S. Kumar M. Nayyar A. 2024 10.1002/9781394234196
    [Google Scholar]
  98. Dutton R.W. Strojwas A.J. Perspectives on technology and technology-driven CAD. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 2000 19 12 1544 1560 10.1109/43.898831
    [Google Scholar]
  99. Olawade D.B. Aderinto N. Olatunji G. Kokori E. David-Olawade A.C. Hadi M. Advancements and applications of Artificial Intelligence in cardiology: Current trends and future prospects. J. Med. Surg. Public Health 2024 3 100109 10.1016/j.glmedi.2024.100109
    [Google Scholar]
  100. Kumari N. Hasija Y. CADD:- Exploring the digital frontier in drug designing. 3rd International Conference on Computational Modelling, Simulation and Optimization (ICCMSO) Phuket, Thailand, 14-16 June 2024, pp. 272-277. 10.1109/ICCMSO61761.2024.00062
    [Google Scholar]
  101. Bryden D. CAD and Rapid Prototyping for Product Design Laurence King Publishing 2014
    [Google Scholar]
  102. Balazic M. Kopac J. Improvements of medical implants based on modern materials and new technologies. J. Achiev. Mater. Manuf. Eng. 2007 25 2 31 34
    [Google Scholar]
  103. Thakur A. Mehta V. Nagu P. Goutam K. Computer-Aided Drug Design: QSAR, Molecular Docking, Virtual Screening, Homology and Pharmacophore Modeling Berlin/Boston Walter de Gruyter 2024
    [Google Scholar]
  104. Kumar S. Chanana A. Suman N. Narayan A. Patel A. Havelikar U. Shanker O. Singh R.P. Chawra H.S. Various Artificial Intelligence models in pharmacy practice and drug development: A brief review. Adv. Pharm. J. 2024 9 1 16 24 10.31024/apj.2024.9.1.3
    [Google Scholar]
  105. Bajorath J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 2002 1 11 882 894 10.1038/nrd941 12415248
    [Google Scholar]
  106. Macarron R. Banks M.N. Bojanic D. Burns D.J. Cirovic D.A. Garyantes T. Green D.V.S. Hertzberg R.P. Janzen W.P. Paslay J.W. Schopfer U. Sittampalam G.S. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 2011 10 3 188 195 10.1038/nrd3368 21358738
    [Google Scholar]
  107. Meng X.Y. Zhang H.X. Mezei M. Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des. 2011 7 2 146 157 10.2174/157340911795677602 21534921
    [Google Scholar]
  108. Kitchen D.B. Decornez H. Furr J.R. Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004 3 11 935 949 10.1038/nrd1549 15520816
    [Google Scholar]
  109. Aliper A. Plis S. Artemov A. Ulloa A. Mamoshina P. Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 2016 13 7 2524 2530 10.1021/acs.molpharmaceut.6b00248 27200455
    [Google Scholar]
  110. Regassa Hunde B. Debebe Woldeyohannes A. Future prospects of computer-aided design (CAD) – A review from the perspective of artificial intelligence (AI), extended reality, and 3D printing. Results Eng. 2022 14 100478 10.1016/j.rineng.2022.100478
    [Google Scholar]
  111. Campos M.R.S. Bojórquez N.C.Q. Traditional and novel computer-aided drug design (CADD) approaches in the anticancer drug discovery process. Curr. Cancer Drug Targets 2023 23 5 333 345 10.2174/1568009622666220705104249 35792126
    [Google Scholar]
  112. Aundhia C. Parmar G. Talele C. Shah N. Talele D. Impact of artificial intelligence on drug development and delivery. Curr. Top. Med. Chem. 2024 10.2174/0115680266324522240725053634 39136506
    [Google Scholar]
  113. Arora A. Kaur S. Singh A. Challenges and emerging problems in CADD. Drug Delivery Systems Using Quantum Computing Malviya R. Sundram S. Meenakshi D.U. 2024 407 441 10.1002/9781394159338.ch14
    [Google Scholar]
  114. Zhao L. Ciallella H.L. Aleksunes L.M. Zhu H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov. Today 2020 25 9 1624 1638 10.1016/j.drudis.2020.07.005 32663517
    [Google Scholar]
  115. Nada H. Kim S. Jaemin C. Park S. Choi Y. Lee M.Y. Lee K. From pixels to druggable leads: A CADD strategy for the design and synthesis of potent DDR1 inhibitors. Comput. Methods Programs Biomed. 2024 254 108318 10.1016/j.cmpb.2024.108318 38991374
    [Google Scholar]
/content/journals/cai/10.2174/0129503752321279241126091807
Loading
/content/journals/cai/10.2174/0129503752321279241126091807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test