Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2950-3752
  • E-ISSN: 2950-3760

Abstract

The traditional drug discovery process is notoriously time-consuming, expensive, and damaged, with high failure rates. However, the recent surge in Artificial Intelligence (AI) has presented itself as a game-changer in this field. This comprehensive review delves into the profound impact of AI on various aspects of drug discovery, encompassing crucial stages like target identification, molecular analysis, compound screening, and even drug development. Machine learning algorithms are pivotal in analyzing vast datasets to predict important aspects of potential drug candidates. These predictions include their pharmacokinetic properties (how the body absorbs and eliminates them) and possible toxicity, effectively streamlining the process and reducing risks associated with further development. Additionally, AI facilitates the exploration of vast chemical spaces, enabling the design and synthesis of novel drug candidates with enhanced efficacy and specificity. The review highlights AI's transformative potential in drug discovery and acknowledges the existing challenges. Concerns surrounding data quality, interpretability of AI models, and ethical considerations are addressed, paving the way for responsible development and integration of AI within the pharmaceutical industry. Ultimately, this review underscores AI's massive potential in revolutionizing drug discovery, offering a path towards faster development of life-saving treatments and fostering healthcare advancements.

Loading

Article metrics loading...

/content/journals/cai/10.2174/0129503752322569241104114248
2024-11-08
2025-05-12
Loading full text...

Full text loading...

References

  1. SinghN. VayerP. TanwarS. PoyetJ-L. TsaiounK. VilloutreixB.O. Drug discovery and development: Introduction to the general public and patient groups.Front. Drug Dis.20233120141910.3389/fddsv.2023.1201419
    [Google Scholar]
  2. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x21091654
    [Google Scholar]
  3. HardmanT.C. AitchisonR. ScaifeR. EdwardsJ. SlaterG. The future of clinical trials and drug development: 2050.Drugs Context20231211110.7573/dic.2023‑2‑237313038
    [Google Scholar]
  4. Garcia-RosaS. de Freitas BrenhaB. da RochaV.F. GoulartE. Silva AraujoB.H. Personalized medicine using cutting edge technologies for genetic epilepsies.Curr. Neuropharmacol.202119681383110.2174/1570159X1866620091515190932933463
    [Google Scholar]
  5. SeyhanA.A. Lost in translation: The valley of death across preclinical and clinical divide – Identification of problems and overcoming obstacles.Transl. Med. Commun.2019411810.1186/s41231‑019‑0050‑7
    [Google Scholar]
  6. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑434393317
    [Google Scholar]
  7. DiasD.A. UrbanS. RoessnerU. A historical overview of natural products in drug discovery.Metabolites20122230333610.3390/metabo202030324957513
    [Google Scholar]
  8. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  9. AyonN.J. High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery.Metabolites202313562510.3390/metabo1305062537233666
    [Google Scholar]
  10. HeilbronK. MozaffariS.V. VacicV. YueP. WangW. ShiJ. JubbA.M. PittsS.J. WangX. Advancing drug discovery using the power of the human genome.J. Pathol.2021254441842910.1002/path.566433748968
    [Google Scholar]
  11. LageO.M. RamosM.C. CalistoR. AlmeidaE. VasconcelosV. VicenteF. Current screening methodologies in drug discovery for selected human diseases.Mar. Drugs201816827910.3390/md1608027930110923
    [Google Scholar]
  12. BatoolM. AhmadB. ChoiS. A structure-based drug discovery paradigm.Int. J. Mol. Sci.20192011278310.3390/ijms2011278331174387
    [Google Scholar]
  13. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/15734091179567760221534921
    [Google Scholar]
  14. LiontaE. SpyrouG. VassilatisD. CourniaZ. Structure-based virtual screening for drug discovery: Principles, applications and recent advances.Curr. Top. Med. Chem.201414161923193810.2174/156802661466614092912444525262799
    [Google Scholar]
  15. PunF.W. OzerovI.V. ZhavoronkovA. AI-powered therapeutic target discovery.Trends Pharmacol. Sci.202344956157210.1016/j.tips.2023.06.01037479540
    [Google Scholar]
  16. SchidlitzkiA. BascuñanaP. SrivastavaP.K. WelzelL. TweleF. TöllnerK. KäuferC. GerickeB. FelekeR. MeierM. PolyakA. RossT.L. GerhauserI. BankstahlJ.P. JohnsonM.R. BankstahlM. LöscherW. Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy.Neurobiol. Dis.202013410466410.1016/j.nbd.2019.10466431678583
    [Google Scholar]
  17. EmmerichC.H. GamboaL.M. HofmannM.C.J. Bonin-AndresenM. ArbachO. SchendelP. GerlachB. HempelK. BespalovA. DirnaglU. ParnhamM.J. Improving target assessment in biomedical research: The GOT-IT recommendations.Nat. Rev. Drug Discov.2021201648110.1038/s41573‑020‑0087‑333199880
    [Google Scholar]
  18. RahmanM. BilalM. ShahJ.A. KaushikA. TeissedreP.L. KujawskaM. CRISPR-Cas9-based technology and its relevance to gene editing in Parkinson’s disease.Pharmaceutics2022146125210.3390/pharmaceutics1406125235745824
    [Google Scholar]
  19. AlghamdiS. RehmanS.U. SheshaN.T. FaidahH. KhurramM. RehmanS.U. Promising lead compounds in the development of potential clinical drug candidate for drug-resistant tuberculosis.Molecules20202523568510.3390/molecules2523568533276545
    [Google Scholar]
  20. SzymańskiP. MarkowiczM. Mikiciuk-OlasikE. Adaptation of high-throughput screening in drug discovery-toxicological screening tests.Int. J. Mol. Sci.201113142745210.3390/ijms1301042722312262
    [Google Scholar]
  21. KumarV. Chunchagatta LakshmanP.K. PrasadT.K. ManjunathK. BairyS. VasuA.S. GanaviB. JastiS. KamariahN. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening.Heliyon2024101e2386410.1016/j.heliyon.2023.e2386438226204
    [Google Scholar]
  22. BokhariF.F. AlbukhariA. Design and implementation of high throughput screening assays for drug discoveries.High-Throughput Screening for Drug DiscoveryIntechOpenLondon, UK SaxenaS.K. 2021
    [Google Scholar]
  23. TemmlV. KutilZ. Structure-based molecular modeling in SAR analysis and lead optimization.Comput. Struct. Biotechnol. J.2021191431144410.1016/j.csbj.2021.02.01833777339
    [Google Scholar]
  24. HugginsD.J. ShermanW. TidorB. Rational approaches to improving selectivity in drug design.J. Med. Chem.20125541424144410.1021/jm201033222239221
    [Google Scholar]
  25. ChenJ. LuoX. QiuH. MackeyV. SunL. OuyangX. Drug discovery and drug marketing with the critical roles of modern administration.Am. J. Transl. Res.201810124302431230662672
    [Google Scholar]
  26. CuiM. ChengC. ZhangL. High-throughput proteomics: A methodological mini-review.Lab. Invest.2022102111170118110.1038/s41374‑022‑00830‑735922478
    [Google Scholar]
  27. DaiX. ShenL. Advances and trends in omics technology development.Front. Med. (Lausanne)2022991186110.3389/fmed.2022.91186135860739
    [Google Scholar]
  28. LiY. KongX. WangZ. XuanL. Recent advances of transcriptomics and proteomics in triple‐negative breast cancer prognosis assessment.J. Cell. Mol. Med.20222651351136210.1111/jcmm.1712435150062
    [Google Scholar]
  29. DuP. FanR. ZhangN. WuC. ZhangY. Advances in integrated multi-omics analysis for drug-target identification.Biomolecules202414669210.3390/biom1406069238927095
    [Google Scholar]
  30. LynchC. SakamuruS. OokaM. HuangR. Klumpp-ThomasC. ShinnP. GerholdD. RossoshekA. MichaelS. CaseyW. SantilloM.F. FitzpatrickS. ThomasR.S. SimeonovA. XiaM. High-throughput screening to advance in vitro toxicology: Accomplishments, challenges, and future directions.Annu. Rev. Pharmacol. Toxicol.202464119120910.1146/annurev‑pharmtox‑112122‑10431037506331
    [Google Scholar]
  31. MennenS.M. AlhambraC. AllenC.L. BarberisM. BerrittS. BrandtT.A. CampbellA.D. CastañónJ. CherneyA.H. ChristensenM. DamonD.B. Eugenio de DiegoJ. García-CerradaS. García-LosadaP. HaroR. JaneyJ. LeitchD.C. LiL. LiuF. LobbenP.C. MacMillanD.W.C. MaganoJ. McInturffE. MonfetteS. PostR.J. SchultzD. SitterB.J. StevensJ.M. StrambeanuI.I. TwiltonJ. WangK. ZajacM.A. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future.Org. Process Res. Dev.20192361213124210.1021/acs.oprd.9b00140
    [Google Scholar]
  32. Martins LimaA. BraginaM.E. BurriO. Bortoli ChapalayJ. Costa-FragaF.P. ChambonM. Fraga-SilvaR.A. StergiopulosN. An optimized and validated 384-well plate assay to test platelet function in a high-throughput screening format.Platelets201930556357110.1080/09537104.2018.151410630183501
    [Google Scholar]
  33. Ben-YakarA. High-content and high-throughput in vivo drug screening platforms using microfluidics.Assay Drug Dev. Technol.201917181310.1089/adt.2018.90830657702
    [Google Scholar]
  34. WuX. ZhangQ. GuoY. ZhangH. GuoX. YouQ. WangL. Methods for the discovery and identification of small molecules targeting oxidative stress-related protein–protein interactions: An update.Antioxidants202211461910.3390/antiox1104061935453304
    [Google Scholar]
  35. LomenickB. OlsenR.W. HuangJ. Identification of direct protein targets of small molecules.ACS Chem. Biol.201161344610.1021/cb100294v21077692
    [Google Scholar]
  36. MayrL. BojanicD. Novel trends in high-throughput screening.Curr. Opin. Pharmacol.2009958058810.1016/j.coph.2009.08.00419775937
    [Google Scholar]
  37. LiQ. Application of fragment-based drug discovery to versatile targets.Front. Mol. Biosci.2020718010.3389/fmolb.2020.0018032850968
    [Google Scholar]
  38. de Souza NetoL.R. Moreira-FilhoJ.T. NevesB.J. MaidanaR.L.B.R. GuimarãesA.C.R. FurnhamN. AndradeC.H. SilvaF.P. In silico strategies to support fragment-to-lead optimization in drug discovery.Front Chem.202089310.3389/fchem.2020.0009332133344
    [Google Scholar]
  39. BonM. BilslandA. BowerJ. McAulayK. Fragment‐based drug discovery - The importance of high‐quality molecule libraries.Mol. Oncol.202216213761377710.1002/1878‑0261.1327735749608
    [Google Scholar]
  40. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  41. VisanA.I. NegutI. Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery.Life (Basel)202414223310.3390/life1402023338398742
    [Google Scholar]
  42. MakhobaX.H. ViegasC. MosaR.A. ViegasF.P.D. PooeO.J. Potential impact of the multi-target drug approach in the treatment of some complex diseases.Drug Des. Devel. Ther.2020143235324910.2147/DDDT.S25749432884235
    [Google Scholar]
  43. KirschP. HartmanA.M. HirschA.K.H. EmptingM. Concepts and core principles of fragment-based drug design.Molecules20192423430910.3390/molecules2423430931779114
    [Google Scholar]
  44. CavasottoC.N. Di FilippoJ.I. Artificial intelligence in the early stages of drug discovery.Arch. Biochem. Biophys.202169810873010.1016/j.abb.2020.10873033347838
    [Google Scholar]
  45. Blanco-GonzálezA. CabezónA. Seco-GonzálezA. Conde-TorresD. Antelo-RiveiroP. PiñeiroÁ. Garcia-FandinoR. The role of AI in drug discovery: Challenges, opportunities, and strategies.Pharmaceuticals (Basel)202316689110.3390/ph1606089137375838
    [Google Scholar]
  46. CaudaiC. GaliziaA. GeraciF. Le PeraL. MoreaV. SalernoE. ViaA. ColomboT. AI applications in functional genomics.Comput. Struct. Biotechnol. J.2021195762579010.1016/j.csbj.2021.10.00934765093
    [Google Scholar]
  47. ZitnikM. NguyenF. WangB. LeskovecJ. GoldenbergA. HoffmanM.M. Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities.Inf. Fusion201950719110.1016/j.inffus.2018.09.01230467459
    [Google Scholar]
  48. QureshiR. IrfanM. GondalT.M. KhanS. WuJ. HadiM.U. HeymachJ. LeX. YanH. AlamT. AI in drug discovery and its clinical relevance.Heliyon202397e1757510.1016/j.heliyon.2023.e1757537396052
    [Google Scholar]
  49. AskrH. ElgeldawiE. Aboul EllaH. ElshaierY.A.M.M. GomaaM.M. HassanienA.E. Deep learning in drug discovery: An integrative review and future challenges.Artif. Intell. Rev.20235675975603710.1007/s10462‑022‑10306‑136415536
    [Google Scholar]
  50. CaiZ. PoulosR.C. LiuJ. ZhongQ. Machine learning for multi-omics data integration in cancer.iScience202225210379810.1016/j.isci.2022.10379835169688
    [Google Scholar]
  51. ChenC. WangJ. PanD. Applications of multi-omics analysis in human diseases.MedComm202344e31510.1002/mco2.315
    [Google Scholar]
  52. NguyenL.P. TungD.D. NguyenD.T. LeH.N. TranT.Q. BinhT.V. PhamD.T.N. The Utilization of machine learning algorithms for assisting physicians in the diagnosis of diabetes.Diagnostics (Basel)20231312208710.3390/diagnostics1312208737370981
    [Google Scholar]
  53. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.01033099022
    [Google Scholar]
  54. AkterS. DwivediY.K. SajibS. BiswasK. BandaraR.J. MichaelK. Algorithmic bias in machine learning-based marketing models.J. Bus. Res.202214420121610.1016/j.jbusres.2022.01.083
    [Google Scholar]
  55. TorresP.H.M. SoderoA.C.R. JofilyP. Silva-JrF.P. Key topics in molecular docking for drug design.Int. J. Mol. Sci.20192018457410.3390/ijms2018457431540192
    [Google Scholar]
  56. GuedesI.A. PereiraF.S.S. DardenneL.E. Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges.Front. Pharmacol.20189108910.3389/fphar.2018.0108930319422
    [Google Scholar]
  57. KinningsS.L. LiuN. TongeP.J. JacksonR.M. XieL. BourneP.E. A machine learning-based method to improve docking scoring functions and its application to drug repurposing.J. Chem. Inf. Model.201151240841910.1021/ci100369f21291174
    [Google Scholar]
  58. WójcikowskiM. BallesterP.J. SiedleckiP. Performance of machine-learning scoring functions in structure-based virtual screening.Sci. Rep.2017714671010.1038/srep4671028440302
    [Google Scholar]
  59. AbiodunO.I. JantanA. OmolaraA.E. DadaK.V. MohamedN.A. ArshadH. State-of-the-art in artificial neural network applications: A survey.Heliyon2018411e0093810.1016/j.heliyon.2018.e0093830519653
    [Google Scholar]
  60. Stepniewska-DziubinskaM.M. ZielenkiewiczP. SiedleckiP. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction.Bioinformatics201834213666367410.1093/bioinformatics/bty37429757353
    [Google Scholar]
  61. Malandraki-MillerS. RileyP.R. Use of artificial intelligence to enhance phenotypic drug discovery.Drug Discov. Today202126488790110.1016/j.drudis.2021.01.01333484947
    [Google Scholar]
  62. ShimaharaY. SugawaraK. KojoK.H. KawaiH. YoshidaY. HasezawaS. KutsunaN. IMACEL: A cloud-based bioimage analysis platform for morphological analysis and image classification.PLoS One2019142e021261910.1371/journal.pone.021261930794647
    [Google Scholar]
  63. PushkaranA.C. ArabiA.A. From understanding diseases to drug design: Can artificial intelligence bridge the gap?Artif. Intell. Rev.20245748610.1007/s10462‑024‑10714‑5
    [Google Scholar]
  64. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics1507191637514102
    [Google Scholar]
  65. GimenoA. Ojeda-MontesM.J. Tomás-HernándezS. Cereto-MassaguéA. Beltrán-DebónR. MuleroM. PujadasG. Garcia-VallvéS. The light and dark sides of virtual screening: What is there to know?Int. J. Mol. Sci.2019206137510.3390/ijms2006137530893780
    [Google Scholar]
  66. HanR. YoonH. KimG. LeeH. LeeY. Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery.Pharmaceuticals (Basel)2023169125910.3390/ph1609125937765069
    [Google Scholar]
  67. NagS. BaidyaA.T.K. MandalA. Deep learning tools for advancing drug discovery and development.3 Biotech202212511010.1007/s13205‑022‑03165‑8
    [Google Scholar]
  68. TripathiM.K. NathA. SinghT.P. EthayathullaA.S. KaurP. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.Mol. Divers.20212531439146010.1007/s11030‑021‑10256‑w34159484
    [Google Scholar]
  69. SinghS. GuptaH. SharmaP. SahiS. Advances in Artificial Intelligence (AI)-assisted approaches in drug screening.Artif. Intell. Chem.20242110003910.1016/j.aichem.2023.100039
    [Google Scholar]
  70. NiaziS. The coming of age of AI/ML in drug discovery, development, clinical testing, and manufacturing: The FDA perspectives.Drug Des. Devel. Ther.2023172691272510.2147/DDDT.S42499137701048
    [Google Scholar]
  71. VidhyaK.S. SultanaA. MN.K. RangareddyH. Artificial Intelligence’s Impact on drug discovery and development from bench to bedside.Cureus20231510e4748610.7759/cureus.4748637881323
    [Google Scholar]
  72. SinghS. KumarR. PayraS. SinghS.K. Artificial intelligence and machine learning in pharmacological research: Bridging the gap between data and drug discovery.Cureus2023158e4435910.7759/cureus.4435937779744
    [Google Scholar]
  73. GuleriaV. Integrative computational approaches for discovery and evaluation of lead compound for drug design.Front. Drug Discov. (Lausanne)•••41362456
    [Google Scholar]
  74. Carracedo-ReboredoP. Liñares-BlancoJ. Rodríguez-FernándezN. CedrónF. NovoaF.J. CarballalA. MaojoV. PazosA. Fernandez-LozanoC. A review on machine learning approaches and trends in drug discovery.Comput. Struct. Biotechnol. J.2021194538455810.1016/j.csbj.2021.08.01134471498
    [Google Scholar]
  75. Abou HajalA. Al MeslamaniA.Z. Insights into artificial intelligence utilisation in drug discovery.J. Med. Econ.202427130430810.1080/13696998.2024.231586438385328
    [Google Scholar]
  76. YangS. KarS. Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity.Artif. Intell. Chem.20231210001110.1016/j.aichem.2023.100011
    [Google Scholar]
  77. StaszakM. StaszakK. WieszczyckaK. BajekA. RoszkowskiK. TylkowskiB. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship.Wiley Interdiscip. Rev. Comput. Mol. Sci.2022122e156810.1002/wcms.1568
    [Google Scholar]
  78. MicheelC.M. NassS.J. OmennG.S. Omics-based clinical discovery: Science, technology, and applications.Evolution of Translational Omics: Lessons Learned and the Path Forward.Washington (DC)National Academies Press MicheelC.M. NassS.J. OmennG.S. 2012
    [Google Scholar]
  79. VilhekarR.S. RawekarA. Artificial intelligence in genetics.Cureus2024161e5203538344556
    [Google Scholar]
  80. AliF. KhanA. MuhammadS.A. HassanS.S. Quantitative real-time analysis of differentially expressed genes in peripheral blood samples of hypertension patients.Genes (Basel)202213218710.3390/genes1302018735205232
    [Google Scholar]
  81. SarkarC. DasB. RawatV.S. WahlangJ.B. NongpiurA. TiewsohI. LyngdohN.M. DasD. BidarolliM. SonyH.T. Artificial intelligence and machine learning technology driven modern drug discovery and development.Int. J. Mol. Sci.2023243202610.3390/ijms2403202636768346
    [Google Scholar]
  82. RahmanM. SchellhornH.E. Metabolomics of infectious diseases in the era of personalized medicine.Front. Mol. Biosci.202310112037610.3389/fmolb.2023.112037637275959
    [Google Scholar]
  83. ZhangY. LuoM. WuP. WuS. LeeT.Y. BaiC. Application of computational biology and artificial intelligence in drug design.Int. J. Mol. Sci.202223211356810.3390/ijms23211356836362355
    [Google Scholar]
  84. RaoV.S. SrinivasK. SujiniG.N. KumarG.N.S. Protein-protein interaction detection: Methods and analysis.Int. J. Proteomics2014201411210.1155/2014/14764824693427
    [Google Scholar]
  85. PrasadK. KumarV. Artificial intelligence-driven drug repurposing and structural biology for SARS-CoV-2.Curr. Res. Pharmacol. Drug Discov.2021210004210.1016/j.crphar.2021.10004234870150
    [Google Scholar]
  86. VermaS.K. NandiA. SimnaniF.Z. SinghD. SinhaA. NaserS.S. SahooJ. LenkaS.S. PandaP.K. DuttA. KaushikN.K. SinghD. SuarM. In silico nanotoxicology: The computational biology state of art for nanomaterial safety assessments.Mater. Des.202323511245210.1016/j.matdes.2023.112452
    [Google Scholar]
  87. NiaziS.K. MariamZ. Computer-aided drug design and drug discovery: A prospective analysis.Pharmaceuticals (Basel)20231712210.3390/ph1701002238256856
    [Google Scholar]
  88. AldewachiH. Al-ZidanR.N. ConnerM.T. SalmanM.M. High-throughput screening platforms in the discovery of novel drugs for neurodegenerative diseases.Bioengineering (Basel)2021823010.3390/bioengineering802003033672148
    [Google Scholar]
  89. HosnyA. ParmarC. QuackenbushJ. SchwartzL.H. AertsH.J.W.L. Artificial intelligence in radiology.Nat. Rev. Cancer201818850051010.1038/s41568‑018‑0016‑529777175
    [Google Scholar]
  90. VijayanR.S.K. KihlbergJ. CrossJ.B. PoongavanamV. Enhancing preclinical drug discovery with artificial intelligence.Drug Discov. Today202227496798410.1016/j.drudis.2021.11.02334838731
    [Google Scholar]
  91. LuM. YinJ. ZhuQ. LinG. MouM. LiuF. PanZ. YouN. LianX. LiF. ZhangH. ZhengL. ZhangW. ZhangH. ShenZ. GuZ. LiH. ZhuF. Artificial intelligence in pharmaceutical sciences.Engineering (Beijing)202327376910.1016/j.eng.2023.01.014
    [Google Scholar]
  92. BhattamisraS.K. BanerjeeP. GuptaP. MayurenJ. PatraS. CandasamyM. Artificial intelligence in pharmaceutical and healthcare research.Big Data Cogn. Comput.2023711010.3390/bdcc7010010
    [Google Scholar]
  93. SadybekovA.V. KatritchV. Computational approaches streamlining drug discovery.Nature2023616795867368510.1038/s41586‑023‑05905‑z37100941
    [Google Scholar]
  94. VatanseverS. SchlessingerA. WackerD. KaniskanH.Ü. JinJ. ZhouM.M. ZhangB. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions.Med. Res. Rev.20214131427147310.1002/med.2176433295676
    [Google Scholar]
  95. SantorsolaM. LescaiF. The promise of explainable deep learning for omics data analysis: Adding new discovery tools to AI.N. Biotechnol.20237711110.1016/j.nbt.2023.06.00237329982
    [Google Scholar]
  96. AskinS. BurkhalterD. CaladoG. El DakrouniS. Artificial Intelligence applied to clinical trials: opportunities and challenges.Health Technol. (Berl.)202313220321310.1007/s12553‑023‑00738‑236923325
    [Google Scholar]
  97. IsmailA. Al-ZoubiT. El NaqaI. SaeedH. The role of artificial intelligence in hastening time to recruitment in clinical trials.BJR|Open2023512022002310.1259/bjro.2022002337953865
    [Google Scholar]
  98. SchorkN.J. Artificial intelligence and personalized medicine.Cancer Treat. Res.201917826528310.1007/978‑3‑030‑16391‑4_1131209850
    [Google Scholar]
  99. JohnsonK.B. WeiW.Q. WeeraratneD. FrisseM.E. MisulisK. RheeK. ZhaoJ. SnowdonJ.L. Precision medicine, AI, and the future of personalized health care.Clin. Transl. Sci.2021141869310.1111/cts.1288432961010
    [Google Scholar]
  100. AldoseriA. Al-KhalifaK.N. HamoudaA.M. Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and challenges.Appl. Sci. (Basel)20231312708210.3390/app13127082
    [Google Scholar]
  101. LinardatosP. PapastefanopoulosV. KotsiantisS. Explainable AI: A review of machine learning interpretability methods.Entropy (Basel)20202311810.3390/e2301001833375658
    [Google Scholar]
  102. MurdochB. Privacy and artificial intelligence: Challenges for protecting health information in a new era.BMC Med. Ethics202122112210.1186/s12910‑021‑00687‑334525993
    [Google Scholar]
  103. TannaM. DunningW. Bias and discrimination.Artificial Intelligence.Edward Elgar Publishing KerriganC. 202242244110.4337/9781800371729.00035
    [Google Scholar]
  104. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑9431363513
    [Google Scholar]
/content/journals/cai/10.2174/0129503752322569241104114248
Loading
/content/journals/cai/10.2174/0129503752322569241104114248
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test