Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2950-3752
  • E-ISSN: 2950-3760

Abstract

Artificial Intelligence (AI) has ushered in a profound revolution within the pharmaceutical sector, effectively streamlining the processes of drug development and delivery. The application of AI-driven tools and methodologies, including machine learning and natural language processing, in the realm of pharmaceutical research and development has yielded recent breakthroughs. This accelerated the drug discovery process by meticulously scrutinizing copious data and pinpointing potential drug targets, as expounded upon in this comprehensive review. Furthermore, AI has found utility in optimizing clinical trials, thereby refining trial designs and cost-effectiveness and bolstering patient safety. Notably, AI-based strategies are being harnessed to enhance drug delivery, fostering the creation of intelligent drug delivery systems engineered to target specific cells or organs. This results in heightened efficacy and a concomitant reduction in undesirable side effects. This review also delves into the potential biases residing within AI algorithms and the challenges associated with data quality when integrating AI into the pharmaceutical sphere. The findings of this study underscore the immense potential of artificial intelligence in reshaping the pharmaceutical industry, thereby enhancing the quality of life for patients worldwide.

Loading

Article metrics loading...

/content/journals/cai/10.2174/0129503752250813231124092946
2023-12-05
2025-01-17
Loading full text...

Full text loading...

References

  1. PatelV. ShahM. Artificial intelligence and machine learning in drug discovery and development.Intell. Med.20222313414010.1016/j.imed.2021.10.001
    [Google Scholar]
  2. HenstockP.V. Artificial intelligence for pharma: Time for internal investment.Trends Pharmacol. Sci.201940854354610.1016/j.tips.2019.05.00331204059
    [Google Scholar]
  3. Al-SafariniM.Y. El-SayedH.H. The role of artificial intelligence in revealing the results of the interaction of biological materials with each other or with chemicals.Mater. Today Proc.2021454954495910.1016/j.matpr.2021.01.387
    [Google Scholar]
  4. MakK.K. PichikaM.R. Artificial intelligence in drug development: Present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.01430472429
    [Google Scholar]
  5. WengY. LinC. ZengX. LiangY. Drug target interaction prediction using multi-task learning and co-attention.2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)201952853310.1109/BIBM47256.2019.8983254
    [Google Scholar]
  6. MargulisE. Dagan-WienerA. IvesR.S. JaffariS. SiemsK. NivM.Y. Intense bitterness of molecules: Machine learning for expediting drug discovery.Comput. Struct. Biotechnol. J.20211956857610.1016/j.csbj.2020.12.03033510862
    [Google Scholar]
  7. BenderA. Cortes-CirianoI. Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 2: a discussion of chemical and biological data.Drug Discov. Today20212641040105210.1016/j.drudis.2020.11.03733508423
    [Google Scholar]
  8. DeckerS. SausvilleE.A. Drug discovery.Principles of Clinical Pharmacology.Elsevier200743944710.1016/B978‑012369417‑1/50068‑7
    [Google Scholar]
  9. McLeanL. Drug development.Rheumatology.Elsevier201539540010.1016/B978‑0‑323‑09138‑1.00049‑8
    [Google Scholar]
  10. PaulS.M. MytelkaD.S. DunwiddieC.T. PersingerC.C. MunosB.H. LindborgS.R. SchachtA.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge.Nat. Rev. Drug Discov.20109320321410.1038/nrd307820168317
    [Google Scholar]
  11. WangL. DingJ. PanL. CaoD. JiangH. DingX. Artificial intelligence facilitates drug design in the big data era.Chemom. Intell. Lab. Syst.201919410385010.1016/j.chemolab.2019.103850
    [Google Scholar]
  12. PolykovskiyD. ZhebrakA. VetrovD. IvanenkovY. AladinskiyV. MamoshinaP. BozdaganyanM. AliperA. ZhavoronkovA. KadurinA. Entangled conditional adversarial autoencoder for de novo drug discovery.Mol. Pharm.201815104398440510.1021/acs.molpharmaceut.8b0083930180591
    [Google Scholar]
  13. KalraD. StroetmannV. SundgrenM. DupontD. SchlünderI. ThienpontG. CoorevitsP. De MoorG. The EUROPEAN INSTITUTE FOR INNOVATION THROUGH HEALTH DATA.Learn. Health Syst.201711e1000810.1002/lrh2.1000831245550
    [Google Scholar]
  14. KalyaneD. Artificial intelligence in the pharmaceutical sector: Current scene and future prospect.The Future of Pharmaceutical Product Development and Research.Elsevier20207310710.1016/B978‑0‑12‑814455‑8.00003‑7
    [Google Scholar]
  15. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.01033099022
    [Google Scholar]
  16. LusciA. PollastriG. BaldiP. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules.J. Chem. Inf. Model.20135371563157510.1021/ci400187y23795551
    [Google Scholar]
  17. ZhouY. WangF. TangJ. NussinovR. ChengF. Artificial intelligence in COVID-19 drug repurposing.Lancet Digit. Health2020212e667e67610.1016/S2589‑7500(20)30192‑832984792
    [Google Scholar]
  18. TanoliZ. Vähä-KoskelaM. AittokallioT. Artificial intelligence, machine learning, and drug repurposing in cancer.Expert Opin. Drug Discov.202116997798910.1080/17460441.2021.188358533543671
    [Google Scholar]
  19. LiebmanM. The role of artificial intelligence in drug discovery and development.Chem. Int.2022441161910.1515/ci‑2022‑0105
    [Google Scholar]
  20. CastroV.M. MinnierJ. MurphyS.N. KohaneI. ChurchillS.E. GainerV. CaiT. HoffnagleA.G. DaiY. BlockS. WeillS.R. Nadal-VicensM. PollastriA.R. RosenquistJ.N. GoryachevS. OngurD. SklarP. PerlisR.H. SmollerJ.W. SmollerJ.W. PerlisR.H. LeeP.H. CastroV.M. HoffnagleA.G. SklarP. StahlE.A. PurcellS.M. RuderferD.M. CharneyA.W. RoussosP. PatoC. PatoM. MedeirosH. SobelJ. CraddockN. JonesI. FortyL. DiFlorioA. GreenE. JonesL. DunjewskiK. LandénM. HultmanC. JuréusA. BergenS. SvantessonO. McCarrollS. MoranJ. SmollerJ.W. ChambertK. BelliveauR.A.Jr Validation of electronic health record phenotyping of bipolar disorder cases and controls.Am. J. Psychiatry2015172436337210.1176/appi.ajp.2014.1403042325827034
    [Google Scholar]
  21. Jiménez-LunaJ. GrisoniF. WeskampN. SchneiderG. Artificial intelligence in drug discovery: Recent advances and future perspectives.Expert Opin. Drug Discov.202116994995910.1080/17460441.2021.190956733779453
    [Google Scholar]
  22. SchorkN.J. Artificial intelligence and personalized medicine.Cancer Treat. Res.201917826528310.1007/978‑3‑030‑16391‑4_1131209850
    [Google Scholar]
  23. SavageN. Tapping into the drug discovery potential of AI.Biopharma Dealmakers2021(May)10.1038/d43747‑021‑00045‑7
    [Google Scholar]
  24. ChenZ. LiuX. HoganW. ShenkmanE. BianJ. Applications of artificial intelligence in drug development using real-world data.Drug Discov. Today20212651256126410.1016/j.drudis.2020.12.01333358699
    [Google Scholar]
  25. SchroedlS. Current methods and challenges for deep learning in drug discovery.Drug Discov. Today. Technol.201932-3391710.1016/j.ddtec.2020.07.00333386100
    [Google Scholar]
  26. ShenJ. NicolaouC.A. Molecular property prediction: Recent trends in the era of artificial intelligence.Drug Discov. Today. Technol.201932-33293610.1016/j.ddtec.2020.05.00133386091
    [Google Scholar]
  27. GurungA.B. AliM.A. LeeJ. FarahM.A. Al-AnaziK.M. An updated review of computer-aided drug design and its application to COVID-19.BioMed Res. Int.2021202111810.1155/2021/885305634258282
    [Google Scholar]
  28. MasysD.R. JarvikG.P. AbernethyN.F. AndersonN.R. PapanicolaouG.J. PaltooD.N. HoffmanM.A. KohaneI.S. LevyH.P. Technical desiderata for the integration of genomic data into Electronic Health Records.J. Biomed. Inform.201245341942210.1016/j.jbi.2011.12.00522223081
    [Google Scholar]
  29. FaraoneS.V. BleharM. PeppleJ. MoldinS.O. NortonJ. NurnbergerJ.I. MalaspinaD. KaufmannC.A. ReichT. CloningerC.R. DePauloJ.R. BergK. GershonE.S. KirchD.G. TsuangM.T. Diagnostic accuracy and confusability analyses: An application to the Diagnostic Interview for Genetic Studies.Psychol. Med.199626240141010.1017/S00332917000347968685296
    [Google Scholar]
  30. RodriguesT. The good, the bad, and the ugly in chemical and biological data for machine learning.Drug Discov. Today. Technol.201932-333810.1016/j.ddtec.2020.07.00133386092
    [Google Scholar]
  31. LawsonC.E. MartíJ.M. RadivojevicT. JonnalagaddaS.V.R. GentzR. HillsonN.J. PeisertS. KimJ. SimmonsB.A. PetzoldC.J. SingerS.W. MukhopadhyayA. TanjoreD. DunnJ.G. Garcia MartinH. Machine learning for metabolic engineering: A review.Metab. Eng.202163346010.1016/j.ymben.2020.10.00533221420
    [Google Scholar]
  32. AyresL.B. GomezF.J.V. LintonJ.R. SilvaM.F. GarciaC.D. Taking the leap between analytical chemistry and artificial intelligence: A tutorial review.Anal. Chim. Acta2021116133840310.1016/j.aca.2021.33840333896558
    [Google Scholar]
  33. LeeK. YangA. LinY.C. RekerD. BernardesG.J.L. RodriguesT. Combating small-molecule aggregation with machine learning.Cell Rep. Phys. Sci.20212910057310.1016/j.xcrp.2021.100573
    [Google Scholar]
  34. NielsenM.K. AhnemanD.T. RieraO. DoyleA.G. Deoxyfluorination with sulfonyl fluorides: Navigating reaction space with machine learning.J. Am. Chem. Soc.2018140155004500810.1021/jacs.8b0152329584953
    [Google Scholar]
  35. AhnemanD.T. EstradaJ.G. LinS. DreherS.D. DoyleA.G. Predicting reaction performance in C–N cross-coupling using machine learning.Science2018360638510.1126/science.aar5169
    [Google Scholar]
  36. OsakweO. The significance of discovery screening and structure optimization studies.Social Aspects of Drug Discovery, Development and Commercialization.Elsevier201610912810.1016/B978‑0‑12‑802220‑7.00005‑3
    [Google Scholar]
  37. SofiM.Y. ShafiA. MasoodiK.Z. Introduction to computer-aided drug design.Bioinformatics for Everyone.Elsevier202221522910.1016/B978‑0‑323‑91128‑3.00002‑1
    [Google Scholar]
  38. AcharyaC. CoopA. PolliJ.E. MackerellA.D.Jr Recent advances in ligand-based drug design: Relevance and utility of the conformationally sampled pharmacophore approach.Curr. Computeraided Drug Des.201171102210.2174/15734091179374354720807187
    [Google Scholar]
  39. TiwariA. SinghS. Computational approaches in drug designing.Bioinformatics.Elsevier202220721710.1016/B978‑0‑323‑89775‑4.00010‑9
    [Google Scholar]
  40. WooM. An AI boost for clinical trials.Nature20195737775S100S10210.1038/d41586‑019‑02871‑331554996
    [Google Scholar]
  41. SharplessN.E. KerlavageA.R. The potential of AI in cancer care and research.Biochim. Biophys. Acta Rev. Cancer20211876118857310.1016/j.bbcan.2021.18857334052390
    [Google Scholar]
  42. HarrerS. ShahP. AntonyB. HuJ. Artificial intelligence for clinical trial design.Trends Pharmacol. Sci.201940857759110.1016/j.tips.2019.05.00531326235
    [Google Scholar]
  43. HayM. ThomasD.W. CraigheadJ.L. EconomidesC. RosenthalJ. Clinical development success rates for investigational drugs.Nat. Biotechnol.2014321405110.1038/nbt.278624406927
    [Google Scholar]
  44. RomeroK. ItoK. RogersJ.A. PolhamusD. QiuR. StephensonD. MohsR. LalondeR. SinhaV. WangY. BrownD. IsaacM. VamvakasS. HemmingsR. PaniL. BainL.J. CorriganB. The future is now: Model-based clinical trial design for Alzheimer’s disease.Clin. Pharmacol. Ther.201597321021410.1002/cpt.1625669145
    [Google Scholar]
  45. WongC.H. SiahK.W. LoA.W. Estimation of clinical trial success rates and related parameters.Biostatistics201920227328610.1093/biostatistics/kxx06929394327
    [Google Scholar]
  46. FogelD.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review.Contemp. Clin. Trials Commun.20181115616410.1016/j.conctc.2018.08.00130112460
    [Google Scholar]
  47. CheD. LiuQ. RasheedK. TaoX. Decision tree and ensemble learning algorithms with their applications in bioinformatics.Adv. Exp. Med. Biol.201169619119910.1007/978‑1‑4419‑7046‑6_1921431559
    [Google Scholar]
  48. ChoiD.J. ParkJ.J. AliT. LeeS. Artificial intelligence for the diagnosis of heart failure.NPJ Digit. Med.2020311610.1038/s41746‑020‑0261‑3
    [Google Scholar]
  49. WangJ. YuH. HuaQ. JingS. LiuZ. PengX. CaoC. LuoY. A descriptive study of random forest algorithm for predicting COVID-19 patients outcome.PeerJ20208e994510.7717/peerj.994532974109
    [Google Scholar]
  50. MosqueraO.A. Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: An analysis of the Spanish Myeloma Group.Blood Cancer J.20221241910.1038/s41408‑022‑00647‑z
    [Google Scholar]
  51. TuZ. TianT. ChenQ. LiC. Overall survival analyses following adjuvant chemotherapy or nonadjuvant chemotherapy in patients with stage IB non-small-cell lung cancer.J. Oncol.2021202111010.1155/2021/805275234335761
    [Google Scholar]
  52. TanX. YuF. ZhaoX. Support vector machine algorithm for artificial intelligence optimization.Cluster Comput.201922S6150151502110.1007/s10586‑018‑2490‑7
    [Google Scholar]
  53. ChangC.H. LinC.H. LaneH.Y. Machine learning and novel biomarkers for the diagnosis of Alzheimer’s Disease.Int. J. Mol. Sci.2021225276110.3390/ijms2205276133803217
    [Google Scholar]
  54. McCoyC. Understanding the use of composite endpoints in clinical trials.West. J. Emerg. Med.201819463163410.5811/westjem.2018.4.3838330013696
    [Google Scholar]
  55. BallariniN.M. RosenkranzG.K. JakiT. KönigF. PoschM. Subgroup identification in clinical trials via the predicted individual treatment effect.PLoS One20181310e020597110.1371/journal.pone.020597130335831
    [Google Scholar]
  56. RajpurkarP. ChenE. BanerjeeO. TopolE.J. AI in health and medicine.Nat. Med.2022281313810.1038/s41591‑021‑01614‑035058619
    [Google Scholar]
  57. JohannetP. CoudrayN. DonnellyD.M. JourG. Illa-BochacaI. XiaY. JohnsonD.B. WhelessL. PatrinelyJ.R. NomikouS. RimmD.L. PavlickA.C. WeberJ.S. ZhongJ. TsirigosA. OsmanI. Using machine learning algorithms to predict immunotherapy response in patients with advanced melanoma.Clin. Cancer Res.202127113114010.1158/1078‑0432.CCR‑20‑241533208341
    [Google Scholar]
  58. O’NeilJ. BenitaY. FeldmanI. ChenardM. RobertsB. LiuY. LiJ. KralA. LejnineS. LobodaA. ArthurW. CristescuR. HainesB.B. WinterC. ZhangT. BloecherA. ShumwayS.D. An unbiased oncology compound screen to identify novel combination strategies.Mol. Cancer Ther.20161561155116210.1158/1535‑7163.MCT‑15‑084326983881
    [Google Scholar]
  59. LiT. LeW. Biomarkers for Parkinson’s Disease: How good are they?Neurosci. Bull.202036218319410.1007/s12264‑019‑00433‑131646434
    [Google Scholar]
  60. AgeronB. BenzidiaS. BourlakisM. Healthcare logistics and supply chain – issues and future challenges. Supply Chain Forum.Int. J.20181911310.1080/16258312.2018.1433353
    [Google Scholar]
  61. AshJ.S. BergM. CoieraE. Some unintended consequences of information technology in health care: The nature of patient care information system-related errors.J. Am. Med. Inform. Assoc.200311210411210.1197/jamia.M147114633936
    [Google Scholar]
  62. BentaharO. BenzidiaS. FabbriR. Traceability project of a blood supply chain.Supply Chain Forum: Int J.2016171152510.1080/16258312.2016.1177916
    [Google Scholar]
  63. What is artificial intelligence in healthcare? Available from: https://www.ibm.com/topics/artificial-intelligence-healthcare (Accessed on: Mar. 06, 2023).
  64. SiebergC.B. SmithA. WhiteM. ManganellaJ. SethnaN. LoganD.E. Changes in maternal and paternal pain-related attitudes, behaviors, and perceptions across pediatric pain rehabilitation treatment: A multilevel modeling approach.J. Pediatr. Psychol.2016421jsw04610.1093/jpepsy/jsw04628175324
    [Google Scholar]
  65. TzeliosC. NathavitharanaR.R. Can AI technologies close the diagnostic gap in tuberculosis?Lancet Digit. Health202139e535e53610.1016/S2589‑7500(21)00142‑434446263
    [Google Scholar]
  66. What is artificial intelligence in medicine? Available from: https://www.ibm.com/topics/artificial-intelligence-medicine (Accessed on: Mar. 06, 2023).
  67. Artificial Intelligence for Drug Discovery Artificial Intelligence for Drug Discovery. Available from: https://www.atomwise.com/ (Accessed on: Mar. 07, 2023).
  68. MuhammadW. HartG.R. NartowtB. FarrellJ.J. JohungK. LiangY. DengJ. Pancreatic cancer prediction through an artificial neural network.Front. Artif. Intell.20192210.3389/frai.2019.0000233733091
    [Google Scholar]
  69. BajwaJ. MunirU. NoriA. WilliamsB. Artificial intelligence in healthcare: Transforming the practice of medicine.Future Healthc. J.202182e188e19410.7861/fhj.2021‑009534286183
    [Google Scholar]
  70. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑434393317
    [Google Scholar]
  71. MazzocatoP. SavageC. BrommelsM. AronssonH. ThorJ. Lean thinking in healthcare: A realist review of the literature.BMJ Qual. Saf.201019537638210.1136/qshc.2009.03798620724397
    [Google Scholar]
  72. WalczakS. The role of artificial intelligence in clinical decision support systems and a classification framework.Int. J. Comput. Clin. Pract.201832314710.4018/IJCCP.2018070103
    [Google Scholar]
  73. MotulskyA. NikiemaJ.N. Bosson-RieutortD. Artificial intelligence and medication management.Multiple Perspectives on Artificial Intelligence in Healthcare20219110110.1007/978‑3‑030‑67303‑1_8
    [Google Scholar]
  74. CirilloD. Catuara-SolarzS. MoreyC. GuneyE. SubiratsL. MellinoS. GiganteA. ValenciaA. RementeriaM.J. ChadhaA.S. MavridisN. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare.NPJ Digit. Med.2020318110.1038/s41746‑020‑0288‑532529043
    [Google Scholar]
  75. RommE.L. TsigelnyI.F. Artificial Intelligence in Drug Treatment.Annu. Rev. Pharmacol. Toxicol.202060135336910.1146/annurev‑pharmtox‑010919‑02374631348869
    [Google Scholar]
  76. KandothC. McLellanM.D. VandinF. YeK. NiuB. LuC. XieM. ZhangQ. McMichaelJ.F. WyczalkowskiM.A. LeisersonM.D.M. MillerC.A. WelchJ.S. WalterM.J. WendlM.C. LeyT.J. WilsonR.K. RaphaelB.J. DingL. Mutational landscape and significance across 12 major cancer types.Nature2013502747133333910.1038/nature1263424132290
    [Google Scholar]
  77. Case Studies Case Studies. Available from: https://www.ibm.com/case-studies/search (Accessed on: Feb. 28, 2023).
  78. IBM Watson Health | AI Healthcare Solutions | IBM.Available from: https://www.ibm.com/watson-health(Accessed on: Mar. 01, 2023).
  79. ArticleR. Recent apporaches in bilayered technology: Review.Int. J. Pharm. Sci. Res.20123124681468810.13040/IJPSR.0975‑8232.3(12).4681‑88
    [Google Scholar]
  80. Diagnostic imaging solutions | IBM.Available from: https://www.ibm.com/watson-health/solutions/diagnostic-imaging
  81. MishimaH. SuzukiH. DoiM. MiyazakiM. WatanabeS. MatsumotoT. MorifujiK. MoriuchiH. YoshiuraK. KondohT. KosakiK. Evaluation of Face2Gene using facial images of patients with congenital dysmorphic syndromes recruited in Japan.J. Hum. Genet.201964878979410.1038/s10038‑019‑0619‑z31138847
    [Google Scholar]
  82. ZarateY.A. BosankoK.A. GrippK.W. Using facial analysis technology in a typical genetic clinic: Experience from 30 individuals from a single institution.J. Hum. Genet.201964121243124510.1038/s10038‑019‑0673‑631551534
    [Google Scholar]
  83. GurovichY. HananiY. BarO. NadavG. FleischerN. GelbmanD. Basel-SalmonL. KrawitzP.M. KamphausenS.B. ZenkerM. BirdL.M. GrippK.W. Identifying facial phenotypes of genetic disorders using deep learning.Nat. Med.2019251606410.1038/s41591‑018‑0279‑030617323
    [Google Scholar]
  84. AI-enabled drug discovery.Available from: https://www.benevolent.com/(Accessed on: Feb. 28, 2023).
  85. SahuA. MishraJ. KushwahaN. Artificial intelligence (AI) in drugs and pharmaceuticals.Comb. Chem. High Throughput Screen.202225111818183710.2174/138620732566621120715394334875986
    [Google Scholar]
  86. BenevolentAI Achieves Further Milestones In AI-Enabled Target Identification Collaboration With AstraZeneca BenevolentAI Achieves Further Milestones In AI-Enabled Target Identification Collaboration With AstraZeneca.Available from: https://www.benevolent.com/news/benevolentai-achieves-further-milestones-in-ai-enabled-target-identification-collaboration-with-astrazeneca(Accessed on: Mar. 01, 2023).
  87. ALWAYS ON AI ALWAYS ON AI. Connecting all points of care.Available from: https://www.aidoc.com/(Accessed on: Mar. 02, 2023).
  88. Radiologists’ Go-To AI Solution.Available from: https://www.aidoc.com/radiology-ai/ (Accessed on: Mar. 02, 2023).
  89. IBM - Announcements.Available from: https://newsroom.ibm.com/announcements?item=122916 (Accessed on: Mar. 02, 2023).
  90. Medtronic and IBM Release Sweet Insights on Sugar.IQ.Available from: https://www.mddionline.com/digital-health/medtronic-and-ibm-release-sweet-insights-sugariq (Accessed on: Mar. 02, 2023).
  91. Drug The Undruggable.Available from: https://www.atomwise.com/drug-the-undruggable/ (Accessed on: Mar. 02, 2023).
  92. Q&A:Atomwise’s journey from discoverer to developer.Available from: https://www.pharmaceutical-technology.com/features/atomwise-qa/ (Accessed on: Mar. 02, 2023).
    [Google Scholar]
  93. Atomwise, which uses AI to improve drug discovery, raises $45M Series A.Available from: https://techcrunch.com/2018/03/07/atomwise-which-uses-ai-to-improve-drug-discovery-raises-45m-series-a/ (Accessed on: Mar. 02, 2023).
  94. Artificial intelligence for every step of pharmaceutical research and development.Available from: https://insilico.com/ (Accessed on: Mar. 02, 2023).
  95. PunF.W. LiuB.H.M. LongX. LeungH.W. LeungG.H.D. MewborneQ.T. GaoJ. ShneydermanA. OzerovI.V. WangJ. RenF. AliperA. BischofE. IzumchenkoE. GuanX. ZhangK. LuB. RothsteinJ.D. CudkowiczM.E. ZhavoronkovA. Identification of therapeutic targets for amyotrophic lateral sclerosis using pandaOmics – An AI-enabled biological target discovery platform.Front. Aging Neurosci.20221491401710.3389/fnagi.2022.91401735837482
    [Google Scholar]
  96. Insilico Medicine begins first human trial of its AI-designed drug for pulmonary fibrosis.Available from: https://www.fiercebiotech.com/medtech/insilico-medicine-begins-first-human-trial-its-ai-designed-drug-for-pulmonary-fibrosis (Accessed on: Mar. 02, 2023).
  97. Sanofi taps into Insilico Medicine’s AI platform in deal worth up to $1.2bn. Available from: https://www.biopharma-reporter.com/Article/2022/11/10/Sanofi-taps-into-Insilico-Medicine-s-AI-platform-in-deal-worth-up-to-1.2bn (Accessed on: Mar. 02, 2023).
  98. Cloud Home. Available from: https://www.cloudpharmaceuticals.com/(Accessed on: Feb. 28, 2023).
  99. Cloud Pharmaceuticals - Overview, News & Competitors | Zoom-Info.comAvailable from: https://www.zoominfo.com/c/cloud-pharmaceuticals-inc/363127363 (Accessed on: Mar. 02, 2023).
  100. Cloud Pharmaceuticals forms Drug Design Collaboration with GSK.Available from: https://www.businesswire.com/news/home/20180530006184/en/Cloud-Pharmaceuticals-forms-Drug-Design-Collaboration-with-GSK (Accessed on: Mar. 02, 2023).
  101. BlasiakA. KhongJ. KeeT. CURATE.AI: Optimizing personalized medicine with artificial intelligence.SLAS Technol.20202529510510.1177/247263031989031631771394
    [Google Scholar]
  102. AI drug miner XtalPi strikes gold with $400M infusion, its 2nd VC megaround in a year.Available from: https://www.fiercebiotech.com/medtech/ai-drug-miner-xtalpi-strikes-gold-400m-infusion-its-second-vc-megaround-a-year (Accessed on: Mar. 02, 2023).
  103. XtalPi. Available from: https://www.jingtaikeji.com/en/(Accessed on: Mar. 02, 2023).
  104. SunG. JinY. LiS. YangZ. ShiB. ChangC. AbramovY.A. Virtual coformer screening by crystal structure predictions: Crucial role of crystallinity in pharmaceutical cocrystallization.J. Phys. Chem. Lett.202011208832883810.1021/acs.jpclett.0c0237132969658
    [Google Scholar]
  105. Numerate to Use AI Platform in Developing Drugs for Takeda Numerate to Use AI Platform in Developing Drugs for Takeda.Available from: https://www.genengnews.com/topics/translational-medicine/numerate-to-use-ai-platform-in-developing-drugs-for-takeda/(Accessed on: Mar. 02, 2023).
  106. Numerate - Products, Competitors, Financials, Employees, Headquarters Location.Available from: https://www.cbinsights.com/company/numerate(Accessed on: Mar. 02, 2023).
  107. Numerate and Lundbeck Partner to Apply AI Drug Discovery to Unlock Challenges of Neuroscience Research Numerate and Lundbeck Partner to Apply AI Drug Discovery to Unlock Challenges of Neuroscience Research.Available from: https://www.businesswire.com/news/home/20190107005135/en/Numerate-and-Lundbeck-Partner-to-Apply-AI-Drug-Discovery-to-Unlock-Challenges-of-Neuroscience-Research (Accessed on: Mar. 02, 2023).
  108. Inside perspectives: Numerate aims for speedier drug development with artificial intelligence - WuXi XPress: for WuXi news and R&D insights. Available from: https://wxpress.wuxiapptec.com/inside-perspectives-numerate-aims-speedier-drug-development-artificial-intelligence/ (Accessed on: Mar. 02, 2023).
  109. PuL. NaderiM. LiuT. WuH.C. MukhopadhyayS. BrylinskiM. eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates.BMC Pharmacol. Toxicol.2019201210.1186/s40360‑018‑0282‑630621790
    [Google Scholar]
  110. HungC.L. ChenC.C. Computational approaches for drug discovery.Drug Dev. Res.201475641241810.1002/ddr.2122225195585
    [Google Scholar]
  111. YangS.Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances.Drug Discov. Today20101511-1244445010.1016/j.drudis.2010.03.01320362693
    [Google Scholar]
  112. Billionaire-backed startup puts Big Data, AI at the heart of drug discovery.Available from: https://www.fiercebiotech.com/r-d/billionaire-backed-startup-puts-big-data-ai-at-heart-of-drug-discovery(Accessed on: Mar. 02, 2023).
  113. Welcome to recursion: The future of TechBio.Available from: https://www.recursion.com/(Accessed on: Mar. 02, 2023).
  114. BombiczP. Artificial intelligence and machine learning in crystallography editorial for crystallography reviews, Issue 2 of Volume27, 2021.Crystallogr. Rev.2021277515310.1080/0889311X.2021.2000094
    [Google Scholar]
  115. ReddyA.S. ZhangS. Polypharmacology: Drug discovery for the future.Expert Rev. Clin. Pharmacol.201361414710.1586/ecp.12.7423272792
    [Google Scholar]
  116. MadabhushiA. LeeG. Image analysis and machine learning in digital pathology: Challenges and opportunities.Med. Image Anal.20163317017510.1016/j.media.2016.06.03727423409
    [Google Scholar]
  117. LeisersonM.D.M. VandinF. WuH.T. DobsonJ.R. EldridgeJ.V. ThomasJ.L. PapoutsakiA. KimY. NiuB. McLellanM. LawrenceM.S. Gonzalez-PerezA. TamboreroD. ChengY. RyslikG.A. Lopez-BigasN. GetzG. DingL. RaphaelB.J. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.Nat. Genet.201547210611410.1038/ng.316825501392
    [Google Scholar]
  118. BattleA. BrownC.D. EngelhardtB.E. MontgomeryS.B. Genetic effects on gene expression across human tissues.Nature2017550767520421310.1038/nature2427729022597
    [Google Scholar]
  119. Kebotix. Available from: https://www.kebotix.com/(Accessed on: Mar. 02, 2023).
  120. Al-antariM.A. Al-masniM.A. KimT.S. Deep learning computer-aided diagnosis for breast lesion in digital mammogram.Adv. Exp. Med. Biol.20201213597210.1007/978‑3‑030‑33128‑3_432030663
    [Google Scholar]
  121. BrasilS. PascoalC. FranciscoR. Dos ReisF.V. VideiraP.A. ValadãoA.G. Artificial intelligence (AI) in Rare Diseases: Is the future brighter?Genes2019101297810.3390/genes1012097831783696
    [Google Scholar]
  122. AliperA. PlisS. ArtemovA. UlloaA. MamoshinaP. ZhavoronkovA. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data.Mol. Pharm.20161372524253010.1021/acs.molpharmaceut.6b0024827200455
    [Google Scholar]
  123. QureshiM. QadirA. AqilM. SultanaY. WarsiM.H. IsmailM.V. TalegaonkarS. Berberine loaded dermal quality by design adapted chemically engineered lipid nano-constructs-gel formulation for the treatment of skin acne.J. Drug Deliv. Sci. Technol.20216610280510.1016/j.jddst.2021.102805
    [Google Scholar]
  124. VatanseverS. SchlessingerA. WackerD. KaniskanH.Ü. JinJ. ZhouM.M. ZhangB. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State of the arts and future directions.Med. Res. Rev.20214131427147310.1002/med.2176433295676
    [Google Scholar]
  125. FarghaliH. Kutinová CanováN. AroraM. The potential applications of artificial intelligence in drug discovery and development.Physiol. Res.202170S4S715S72210.33549/physiolres.93476535199553
    [Google Scholar]
  126. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  127. NayarisseriA. KhandelwalR. TanwarP. MadhaviM. SharmaD. ThakurG. Speck-PlancheA. SinghS.K. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery.Curr. Drug Targets202122663165510.2174/18735592MTEzsMDMnz33397265
    [Google Scholar]
  128. SchirleM. JenkinsJ.L. Identifying compound efficacy targets in phenotypic drug discovery.Drug Discov. Today2016211828910.1016/j.drudis.2015.08.00126272035
    [Google Scholar]
  129. TripathiM.K. NathA. SinghT.P. EthayathullaA.S. KaurP. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.Mol. Divers.20212531439146010.1007/s11030‑021‑10256‑w34159484
    [Google Scholar]
  130. UpretiV.V. VenkatakrishnanK. Model-based meta-analysis: Optimizing research, development, and utilization of therapeutics using the totality of evidence.Clin. Pharmacol. Ther.2019106598199210.1002/cpt.146230993679
    [Google Scholar]
  131. LavecchiaA. Machine-learning approaches in drug discovery: Methods and applications.Drug Discov. Today201520331833110.1016/j.drudis.2014.10.01225448759
    [Google Scholar]
  132. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑9431363513
    [Google Scholar]
  133. SchwalbeN. WahlB. Artificial intelligence and the future of global health.Lancet2020395102361579158610.1016/S0140‑6736(20)30226‑932416782
    [Google Scholar]
  134. TripathiN. GoshishtM.K. SahuS.K. AroraC. Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review.Mol. Divers.20212531643166410.1007/s11030‑021‑10237‑z34110579
    [Google Scholar]
  135. Artificial intelligence in global health: A brave new world.Lancet201939310180147810.1016/S0140‑6736(19)30814‑1
    [Google Scholar]
/content/journals/cai/10.2174/0129503752250813231124092946
Loading
/content/journals/cai/10.2174/0129503752250813231124092946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test