Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2405-4631
  • E-ISSN: 2405-464X

Abstract

In response to the increasing concentration of anthropogenic CO in the atmosphere, large research efforts have been placed on the development of suitable carbon capture and utilization technology. The transformation of CO into value-added chemicals is one of the most promising routes for carbon utilization and can be accomplished by thermocatalytic, photocatalytic, electrochemical, and photoelectrochemical methods. The advancement of this technology towards a commercial solution requires a synergistic approach, wherein members of the research community are continuously evaluating the comparative performance of each method and adapting their research directions in response. As a result, the establishment of a universal metric for reporting the performance of thermocatalytic, photocatalytic, electrochemical, and photoelectrochemical CO reduction processes is critical. This work summarizes the advantages and disadvantages associated with each CO reduction method and identifies their most frequently used performance metrics. Subsequently, a new performance metric, which applies to all CO reduction technologies, is introduced and defined as the moles formed of the desired product per hour per accessible surface area of catalyst. Although limitations with ease of measurement exist, this work aims to demonstrate how the adoption of a universal performance metric could help to unite the research community towards a common goal and improve its efficiency in finding a solution to the global energy crisis.

Loading

Article metrics loading...

/content/journals/cae/10.2174/2405463105666220629115030
2022-09-06
2025-01-19
Loading full text...

Full text loading...

References

  1. Climate change: Atmospheric carbon dioxide.2021Available from: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide
  2. AppelA.M. BercawJ.E. BocarslyA.B. DobbekH. DuBoisD.L. DupuisM. FerryJ.G. FujitaE. HilleR. KenisP.J.A. KerfeldC.A. MorrisR.H. PedenC.H. PortisA.R. RagsdaleS.W. RauchfussT.B. ReekJ.N. SeefeldtL.C. ThauerR.K. WaldropG.L. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation.Chem. Rev.201311386621665810.1021/cr300463y 23767781
    [Google Scholar]
  3. KattelS. LiuP. ChenJ.G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface.J. Am. Chem. Soc.2017139299739975410.1021/jacs.7b05362 28650651
    [Google Scholar]
  4. PorosoffM.D. YanB. ChenJ.G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities.Energy Environ. Sci.201691627310.1039/C5EE02657A
    [Google Scholar]
  5. DazaY.A. KuhnJ.N. CO2 Conversion by reverse water gas shift catalysis: Comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels.RSC Advances2016655496754969110.1039/C6RA05414E
    [Google Scholar]
  6. ChenC-S. ChengW-H. LinS-S. Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst.Appl. Catal. A Gen.20032381556710.1016/S0926‑860X(02)00221‑1
    [Google Scholar]
  7. WangX. ShiH. KwakJ.H. SzanyiJ. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: Kinetics and transient DRIFTS-MS studies.ACS Catal.20155116337634910.1021/acscatal.5b01464
    [Google Scholar]
  8. ChenC. ChengW. LinS. Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al2O3 catalyst.Catal. Lett.2000681/2454810.1023/A:1019071117449
    [Google Scholar]
  9. HabisreutingerS.N. Schmidt-MendeL. StolarczykJ.K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors.Angew. Chem. Int. Ed. Engl.201352297372740810.1002/anie.201207199 23765842
    [Google Scholar]
  10. WindleC.D. PerutzR.N. Advances in molecular photocatalytic and electrocatalytic CO2 reduction.Coord. Chem. Rev.201225621-222562257010.1016/j.ccr.2012.03.010
    [Google Scholar]
  11. NitopiS. BertheussenE. ScottS.B. LiuX. EngstfeldA.K. HorchS. SegerB. StephensI.E.L. ChanK. HahnC. NørskovJ.K. JaramilloT.F. ChorkendorffI. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte.Chem. Rev.2019119127610767210.1021/acs.chemrev.8b00705 31117420
    [Google Scholar]
  12. LeeM-Y. ParkK.T. LeeW. LimH. KwonY. KangS. Current achievements and the future direction of electrochemical CO2 reduction: A short review.Crit. Rev. Environ. Sci. Technol.202050876981510.1080/10643389.2019.1631991
    [Google Scholar]
  13. ChangX. WangT. GongJ. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts.Energy Environ. Sci.2016972177219610.1039/C6EE00383D
    [Google Scholar]
  14. HoriY. Modern Aspects of Electrochemistry: Electrochemical CO2 Reduction on Metal ElectrodesSpringer: Berlin, Heidelberg20084289189
    [Google Scholar]
  15. GattrellM. GuptaN. CoA. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper.J. Electroanal. Chem. (Lausanne)2006594111910.1016/j.jelechem.2006.05.013
    [Google Scholar]
  16. GamlerJ.T.L. AshberryH.M. SkrabalakS.E. KoczkurK.M. Random alloyed versus intermetallic nanoparticles: A comparison of electrocatalytic performance.Adv. Mater.20183040e180156310.1002/adma.201801563 29984851
    [Google Scholar]
  17. RacitiD. WangC. Recent advances in CO2 reduction electrocatalysis on copper.ACS Energy Lett.2018371545155610.1021/acsenergylett.8b00553
    [Google Scholar]
  18. JhongH.R.M. MaS. KenisP.J.A. Electrochemical conversion of CO2 to useful chemicals: Current status, remaining challenges, and future opportunities.Curr. Opin. Chem. Eng.20132219119910.1016/j.coche.2013.03.005
    [Google Scholar]
  19. QiaoJ. LiuY. HongF. ZhangJ. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.Chem. Soc. Rev.201443263167510.1039/C3CS60323G 24186433
    [Google Scholar]
  20. KortleverR. ShenJ. SchoutenK.J.P. Calle-VallejoF. KoperM.T.M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide.J. Phys. Chem. Lett.20156204073408210.1021/acs.jpclett.5b01559 26722779
    [Google Scholar]
  21. ZhaoG. ZouJ. ChenX. YuJ. JiaoF. Layered double hydroxides materials for Photo(electro-) catalytic applications.Chem. Eng. J.202039712540710.1016/j.cej.2020.125407
    [Google Scholar]
  22. GuJ. ZhaoX. SunY. ZhouJ. SunC. WangX. KangZ. SuZ. A photo-activated process cascaded electrocatalysis for the highly efficient CO2 reduction over a core shell ZIF-8@Co/C.J. Mater. Chem. A Mater. Energy Sustain.2020832166161662310.1039/D0TA04595K
    [Google Scholar]
  23. ShenH. PeppelT. StrunkJ. SunZ. Photocatalytic reduction of CO2 by Metal free based materials: Recent advances and future perspective.Sol. RRL202048190054610.1002/solr.201900546
    [Google Scholar]
  24. SultanaS. Chandra SahooP. MarthaS. ParidaK. A review of harvesting clean fuels from enzymatic CO2 reduction.RSC Advances2016650441704419410.1039/C6RA05472B
    [Google Scholar]
  25. de MoraisM.G. de MoraisE.G. DuarteJ.H. DeamiciK.M. MitchellB.G. CostaJ.A.V. Biological CO2 mitigation by microalgae: Technological trends, future prospects and challenges.World J. Microbiol. Biotechnol.20193557810.1007/s11274‑019‑2650‑9 31087167
    [Google Scholar]
  26. ZengX.H. DanquahM.K. ChenX.D. LuY.H. Microalgae bioengineering: from CO2 fixation to biofuel production.Renew. Sustain. Energy Rev.20111563252326010.1016/j.rser.2011.04.014
    [Google Scholar]
  27. ShiR. WaterhouseG. ZhangT. Recent progress in photocatalytic CO2 reduction over perovskite oxides.Sol. RRL20171111700126
    [Google Scholar]
  28. AgrafiotisC. RoebM. SattlerC. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles.Renew. Sustain. Energy Rev.20154225428510.1016/j.rser.2014.09.039
    [Google Scholar]
  29. ChuS. CuiY. LiuN. The path towards sustainable energy.Nat. Mater.2016161162210.1038/nmat4834 27994253
    [Google Scholar]
  30. ChangX. WangT. YangP. ZhangG. GongJ. The development of cocatalysts for photoelectrochemical CO2 reduction.Adv. Mater.20193131e180471010.1002/adma.201804710 30537099
    [Google Scholar]
  31. OlaO. Maroto-ValerM. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction.J. Photochem. Photobiol. Photochem. Rev.201524164210.1016/j.jphotochemrev.2015.06.001
    [Google Scholar]
  32. RossM.B. De LunaP. LiY. DinhC-T. KimD. YangP. SargentE.H. Designing materials for electrochemical carbon dioxide recycling.Nat. Catal.20192864865810.1038/s41929‑019‑0306‑7
    [Google Scholar]
  33. LongC. LiX. GuoJ. ShiY. LiuS. TangZ. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: Recent progress and perspectives.Small Methods201833180036910.1002/smtd.201800369
    [Google Scholar]
  34. KimB. MaS. Molly JhongH-R. KenisP.J.A. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer.Electrochim. Acta201516627127610.1016/j.electacta.2015.03.064
    [Google Scholar]
  35. PawarA.U. KimC.W. Nguyen-LeM. KangY.S. General review on the components and parameters of photoelectrochemical system for CO2 reduction with in situ analysis.ACS Sustain. Chem.& Eng.2019787431745510.1021/acssuschemeng.8b06303
    [Google Scholar]
  36. XieS. ZhangQ. LiuG. WangY. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures.Chem. Commun. (Camb.)2016521355910.1039/C5CC07613G 26540265
    [Google Scholar]
  37. CentiG. PerthonerS. SalladiniA. IaquanielloG. Economics of CO2 utilization: A critical review.Front. Energy Res.2020856798610.3389/fenrg.2020.567986
    [Google Scholar]
  38. BET TheoryANTON Paar.Available from: https://wiki.anton-paar.com/en/bet-theory/
    [Google Scholar]
  39. ZhuP. ZhaoY. Cyclic voltammetry measurements of electroactive surface areas of porous nickel: Peak current and peak charge methods and diffusion layer effect.Mater. Chem. Phys.2019233606710.1016/j.matchemphys.2019.05.034
    [Google Scholar]
  40. MojetB.L. EbbesenS.D. LeffertsL. Light at the interface: The potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water.Chem. Soc. Rev.201039124643465510.1039/c0cs00014k 20949193
    [Google Scholar]
  41. KabeelA.E. AbdelgaiedM. SathyamurthyR. KabeelA. A comprehensive review of technologies used to improve the performance of PV systems in a view of cooling mediums, reflectors design, spectrum splitting, and economic analysis.Environ. Sci. Pollut. Res. Int.20212877955798010.1007/s11356‑020‑11008‑3 33047264
    [Google Scholar]
/content/journals/cae/10.2174/2405463105666220629115030
Loading
/content/journals/cae/10.2174/2405463105666220629115030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test