Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2405-4631
  • E-ISSN: 2405-464X

Abstract

Fossil fuels have fueled the world economy for decades. However, given their limited nature, fluctuating prices and the escalating environmental concerns, there is an urgent need to develop and valorize cheaper, cleaner and sustainable alternative energy sources to curb these challenges. Biomass represents a valid alternative to fossil fuels, especially for fuel and chemical production as it represents the only natural organic renewable resource with vast abundance. A vast array of conversion technologies is used to process biomass from one form to another, to release energy, high-value products or chemical intermediates. This paper extensively reviews the thermochemical processing of biomass to fuels and high-value chemicals, with an emphasis on the process performance, conditions, and weaknesses. Technologies with great future prospects as well as those with possible linkage to CO capture and sequestration are highlighted. The important chemical compositions of biomass feedstock, their conversion technologies and most importantly, the role of catalysis in their conversion to fuels, fuel additives, based chemicals, and added-value chemicals are also discussed. Special attention is given to biofuel production for transportation as this sector is responsible for the highest global greenhouse gas emissions, and has an emerging market with promising future prospects for sustainable large-scale biomass processing. The processes involved in the purification and upgrading of biomass-derived products into higher-value products are equally discussed and reviewed.

Loading

Article metrics loading...

/content/journals/cae/10.2174/2405463103666191022121648
2019-10-22
2025-04-11
Loading full text...

Full text loading...

References

  1. HayesD.J.M. “Biomass composition and its relevance to biorefining,” in The role of catalysis for the sustainable production of bio-fuels and bio-chemicals.Elsevier B.V.20132765
    [Google Scholar]
  2. Serrano-RuizJ.C. LuqueR. ClarkJ.H. The Role of heterogeneous catalysis in the biorefinery of the future. In:The role of catalysis for the sustainable production of bio-fuels and bio-chemicals.Elsevier B.V.2013557576
    [Google Scholar]
  3. PandeM. BhaskarwarA.N. “Biomass conversion to energy”, inBiomass ConversionBerlin, HeidelbergC. Baskar, S. Baskar, R. S. Dhillon, Eds., Yongin, Korea, Springer:2012190
    [Google Scholar]
  4. HeidenreichS. UgoP. New concepts in biomass gasification.Pror. Energy Combust. Sci.201546729510.1016/j.pecs.2014.06.002
    [Google Scholar]
  5. HrncicM.K. KravanjaG. KnezZ. Hydrothermal treatment of biomass for energy and chemicals.Energy201611613121322
    [Google Scholar]
  6. BaruahD. BaruahD.C. Modeling of biomass gasification: a review.Renew. Sustain. Energy Rev.20143980681510.1016/j.rser.2014.07.129
    [Google Scholar]
  7. De CaprariisB. De FilippisP. PetrulloA. ScarsellaM. Hydrothermal liquefaction of biomass : influence of temperature and biomass composition on the bio-oil production.Fuel201720861862510.1016/j.fuel.2017.07.054
    [Google Scholar]
  8. HuL. LinL. WuZ. ZhouS. LiuS. Recent advances in catalytic transformation of biomass-derived 5-hydroxymethyl-furfural into the innovative fuels and chemicals.Renew. Sustain. Energy Rev.20177423025710.1016/j.rser.2017.02.042
    [Google Scholar]
  9. BalatM. BalatM. KırtayE. BalatH. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems.Energy Convers. Manage.200950123147315710.1016/j.enconman.2009.08.014
    [Google Scholar]
  10. SharmaA. PareekV. ZhangD. Biomass pyrolysis - A review of modelling, process parameters and catalytic studies.Renew. Sustain. Energy Rev.2015501081109610.1016/j.rser.2015.04.193
    [Google Scholar]
  11. MuhE. TabetF. Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons.Renew. Energy2019135415410.1016/j.renene.2018.11.105
    [Google Scholar]
  12. MuhE. TabetF. AmaraS. The Future of biogas production in Cameroon: prospects, challenges, and opportunities.Curr. Altern. Energy201828210110.2174/2405463102666180925141102
    [Google Scholar]
  13. AdamsP. BridgwaterT. Lea-LangtonA. RossA. WatsonI. Biomass conversion technologies.Greenhouse gas balance of bioenergy systems. P. Thornley, P. AdamsEd. Elsevier Inc.201810713910.1016/B978‑0‑08‑101036‑5.00008‑2
    [Google Scholar]
  14. PanwarN.L. KothariR. TyagiV.V. Thermo chemical conversion of biomass – Eco-friendly energy routes.Renew. Sustain. Energy Rev.20121641801181610.1016/j.rser.2012.01.024
    [Google Scholar]
  15. DeneyerA. RendersT. Van AelstJ. Van den BoschS. GabriëlsD. SelsB.F. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.Curr. Opin. Chem. Biol.201529404810.1016/j.cbpa.2015.08.01026360875
    [Google Scholar]
  16. MarshallA.L. AlaimoP.J. Useful products from complex starting materials: common chemicals from biomass feedstocks.Chemistry201016174970498010.1002/chem.20090302820394084
    [Google Scholar]
  17. Serrano-RuizJ.C. LuqueR. Sepúlveda-EscribanoA. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing.Chem. Soc. Rev.201140115266528110.1039/c1cs15131b21713268
    [Google Scholar]
  18. BondJ.Q. DumesicJ.A. RomaY. Role of acid catalysis in the conversion of lignocellulosic biomass to fuels and chemicals”in The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals2013261288
    [Google Scholar]
  19. SikarwarV.S. ZhaoM. FennellP.S. ShabN. AnthonyE.J. Progress in biofuel production from gasification.Pror. Energy Combust. Sci.20176118924810.1016/j.pecs.2017.04.001
    [Google Scholar]
  20. ChenH. WangL. Technologies for biochemical conversion of biomass.Elsevier Inc.2017284
    [Google Scholar]
  21. DemirbasA. Biomass resource facilities and biomass conversion processing for fuels and chemicals.Energy Convers. Manage.2001421357137810.1016/S0196‑8904(00)00137‑0
    [Google Scholar]
  22. SharmaS. MeenaR. SharmaA. GoyalP. Biomass conversion technologies for renewable energy and fuels: a review note.IOSR J. Mech. Civ. Eng.2014112283510.9790/1684‑11232835
    [Google Scholar]
  23. LaksmonoN. ParaschivM. LoubarK. TazeroutM. Biodiesel production from biomass gasification tar via thermal/catalytic cracking.Fuel Process. Technol.201310677678310.1016/j.fuproc.2012.10.016
    [Google Scholar]
  24. MolinoA. ChianeseS. MusmarraD. Biomass gasification technology: the state of the art overview.J. Energy Chem.2016251102510.1016/j.jechem.2015.11.005
    [Google Scholar]
  25. ZhangL. CharlesC. ChampagneP. Overview of recent advances in thermo-chemical conversion of biomass.Energy Convers. Manage.201051596998210.1016/j.enconman.2009.11.038
    [Google Scholar]
  26. O’ConnorP. “A general introduction to biomass utilization possibilities,” in The role of catalysis for the sustainable production of bio-fuels and bio-chemicals.Elsevier2013125
    [Google Scholar]
  27. DemirbasA. Biorefineries, for biomass upgrading facilities.in Green Energy and Technology.Springer2010124010.1007/978‑1‑84882‑721‑9
    [Google Scholar]
  28. TekinK. KaragözS. BektaS. A review of hydrothermal biomass processing.Renew. Sustain. Energy Rev.20144067368710.1016/j.rser.2014.07.216
    [Google Scholar]
  29. TongX. MaY. LiY. Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes.Appl. Catal. A Gen.20103851-211310.1016/j.apcata.2010.06.049
    [Google Scholar]
  30. KumarM. OyedunA.O. KumarA. A review on the current status of various hydrothermal technologies on biomass feedstock.Renew. Sustain. Energy Rev.201717421770
    [Google Scholar]
  31. LiuH. MaM. XieX. New materials from solid residues for investigation the mechanism of biomass hydrothermal liquefaction.Ind. Crops Prod.2017108637110.1016/j.indcrop.2017.06.026
    [Google Scholar]
  32. TaarningE. OsmundsenC.M. YangX. VossB. AndersenI. ChristensenC.H. Zeolite-catalyzed biomass conversion to fuels and chemicals.Energy Environ. Sci.2011479380410.1039/C004518G
    [Google Scholar]
  33. ChouhanA.P.S. SarmaA.K. Modern heterogeneous catalysts for biodiesel production: a comprehensive review.Renew. Sustain. Energy Rev.20111594378439910.1016/j.rser.2011.07.112
    [Google Scholar]
  34. BalatM. BalatM. KırtayE. BalatH. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: gasification systems.Energy Convers. Manage.200950123158316810.1016/j.enconman.2009.08.013
    [Google Scholar]
  35. DamartzisT. ZabaniotouA. Thermochemical conversion of biomass to second-generation biofuels through integrated process design - A review.Renew. Sustain. Energy Rev.201115136637810.1016/j.rser.2010.08.003
    [Google Scholar]
  36. PatelM. ZhangX. KumarA. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review.Renew. Sustain. Energy Rev.2016531486149910.1016/j.rser.2015.09.070
    [Google Scholar]
  37. BrownT.R. A techno-economic review of thermochemical cellulosic biofuel pathways.Bioresour. Technol.201517816617625266684
    [Google Scholar]
  38. GollakotaA.R.K. KishoreN. GuS. A review on hydrothermal liquefaction of biomass.Renew. Sustain. Energy Rev.20188113781392
    [Google Scholar]
  39. WangT. ZhaiY. ZhuY. LiC. ZengG. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties.Renew. Sustain. Energy Rev.20189022324710.1016/j.rser.2018.03.071
    [Google Scholar]
  40. AkhtarJ. AishahN. AminS. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass.Renew. Sustain. Energy Rev.20111531615162410.1016/j.rser.2010.11.054
    [Google Scholar]
  41. KaragözS. BhaskarT. MutoA. SakataY. Catalytic hydrothermal treatment of pine wood biomass: effect of RbOH and CsOH on product distribution.J. Chem. Technol. Biotechnol.2005801097110210.1002/jctb.1287
    [Google Scholar]
  42. KaragözS. BhaskarT. MutoA. SakataY. OshikiT. KishimotoT. Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products.Chem. Eng. J.200510812713710.1016/j.cej.2005.01.007
    [Google Scholar]
  43. YanX. MaJ. WangW. ZhaoY. ZhouJ. The effect of different catalysts and process parameters on the chemical content of bio-oils from hydrothermal liquefaction of sugarcane bagasse.BioResources20181319971018
    [Google Scholar]
  44. HammerschmidtA. BoukisN. HauerE. GallaU. DinjusE. HitzmannB. LarsenT. NygaardS.D. Catalytic conversion of waste biomass by hydrothermal treatment.Fuel201190255556210.1016/j.fuel.2010.10.007
    [Google Scholar]
  45. MaagA.R. PaulsenA.D. AmundsenT.J. YelvingtonP.E. TompsettG.A. TimkoM.T. Catalytic hydrothermal liquefaction of food waste using CeZrOx.Energies20181111410.3390/en11030564
    [Google Scholar]
  46. YehT.M. DickinsonJ.G. FranckA. LinicS. ThompsonL.T.Jr SavageP.E. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass.J. Chem. Technol. Biotechnol.201388132410.1002/jctb.3933
    [Google Scholar]
  47. XuD. LinG. GuoS. WangS. GuoY. JingZ. Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: a critical review.Renew. Sustain. Energy Rev.20189710311810.1016/j.rser.2018.08.042
    [Google Scholar]
  48. ZhuZ. ToorS.S. RosendahlL. YuD. ChenG. Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw.Energy20158028429210.1016/j.energy.2014.11.071
    [Google Scholar]
  49. ChengS. WeiL. AlsowijM. CorbinF. BoakyeE. GuZ. RaynieD. Catalytic Hydrothermal Liquefaction (HTL) of biomass for bio-crude production using Ni/HZSM-5 catalysts.AIMS Environ. Sci.2017441743010.3934/environsci.2017.3.417
    [Google Scholar]
  50. HardiF. FurusjöE. KirtaniaK. ImaiA. UmekiK. YoshikawaK. Catalytic hydrothermal liquefaction of biomass with K2CO3 for production of gasification feedstock.Biofuels20181211210.1080/17597269.2018.1461521
    [Google Scholar]
/content/journals/cae/10.2174/2405463103666191022121648
Loading
/content/journals/cae/10.2174/2405463103666191022121648
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Biofuel; biomass; biomass processing; biorefinery; green chemistry; thermochemical routes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test