Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2405-4631
  • E-ISSN: 2405-464X

Abstract

As an important developing renewable and sustainable energy source, biodiesel has been consideredaround the world due to its excellent environmental impacts. This paper discussed the advantages and disadvantages of four different biodiesel production methods.

Compared with the homogeneous catalytic and supercritical methods, the heterogeneous catalytic and biocatalyst methods would be better choice in the future under the consideration of environmentalfriendlinessand ease of operation as well as high reaction activity for the catalytic conversion reaction.

This paper also reviewed the biodiesel upgrading technologies for promotingits commercial industrial applications. In addition to be directly used as additives for light fuels and solvents of chemical products, the free of oxygen biofuels, alkanes, and epoxy compounds could be further produced from biodiesel hydrotreating process, electrochemical synthesis and epoxidation technology, respectively.

All these upgrading and refining technologies not only could resolve the poor low-temperature properties of biodiesel, but also deeply promote the biodiesel commercial industrial application and its sustainable development.

Loading

Article metrics loading...

/content/journals/cae/10.2174/2405463101666161117143357
2017-06-01
2024-10-20
Loading full text...

Full text loading...

References

  1. AtabaniA.E. SilitongaA.S. BadruddinI.A. MahliaT.M. MasjukiH.H. MekhilefS. A comprehensive review on biodiesel as an alternative energy resource and its characteristicsRenew. Sustain. Energy Rev.20121620702093
    [Google Scholar]
  2. DemirbasA. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methodsProg. Energ. Combust.200531466487
    [Google Scholar]
  3. LiuG.R. YanB.B. ChenG.Y. Technical review on jet fuel productionRenew. Sust. Energ. Rev.2013255970
    [Google Scholar]
  4. AgarwalA.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion enginesProg. Energ. Combust.200733233271
    [Google Scholar]
  5. ConiglioL. BennadjiH. GlaudeP.A. HerbinetO. BillaudF. Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and modeling - Advances and future refinementsProg. Energ. Combust.201339340382
    [Google Scholar]
  6. NigamP.S. SinghA. Production of liquid biofuels from renewable resourcesProg. Energ. Combust.2011375268
    [Google Scholar]
  7. AtadashiI.M. ArouaM.K. AzizA.R. SulaimanN.M. Refining technologies for the purification of crude biodieselAppl. Energ.20118842394251
    [Google Scholar]
  8. ChenK.S. LinY.C. HsuK.H. WangH.K. Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating systemEnergy201238151156
    [Google Scholar]
  9. Kov’acsA.J. Capacity and efficiency in small- to medium-sized biodiesel production systems: increasing profitability through agro-industrial ecology principlesJ. Indust. Ecol.201216153162
    [Google Scholar]
  10. VicenteG. MartinezM. AracilJ. Integrated biodiesel production: a comparison of different homogeneous catalysts systemsBiores. Technol.200492297305
    [Google Scholar]
  11. ChungK.H. Transesterification of Camellia japonica and Vemicia fordii seed oils on alkali catalysts for biodiesel productionJ. Ind. Eng. Chem.201016506509
    [Google Scholar]
  12. FerellaF. Di CelsoG.M. De MichelisI. StanisciV. VeglioF. Optimization of the transesterification reaction in biodiesel productionFuel2010893642
    [Google Scholar]
  13. BehzadiS. FaridM.M. Production of biodiesel using a continuous gas-liquid reactorBiores. Technol.2009100683689
    [Google Scholar]
  14. FelizardoP. CorreiaM.J. RaposoI. MendesJ.F. BerkemeierR. BordadoJ.M. Production of biodiesel from waste frying oilWaste Manag.200626487494
    [Google Scholar]
  15. ChhetriA. WattsK. IslamM. Waste cooking oil as an alternate feedstock for biodiesel productionEnergies20081318
    [Google Scholar]
  16. RefaatA.A. AttiaN.K. SibakH.A. El SheltawyS.T. ElDiwaniG.I. Production optimization and quality assessment of biodiesel from waste vegetable oilInt. J. Environ. Sci. Technol.200857582
    [Google Scholar]
  17. PhanA.N. PhanT.M. Biodiesel production from waste cooking oilsFuel20088734903496
    [Google Scholar]
  18. NurfitriI. ManiamG.P. HindryawatiN. YusoffM.M. GanesanS. Potential of feedstock and catalysts from waste in biodiesel preparation: A reviewEner. Conv. Manag.201374395402
    [Google Scholar]
  19. ZhouW.Y. BoocockD.G. Phase distributions of alcohol, glycerol, and catalyst in the transesterification of soybean oilJ. Am. Oil Chem. Soc.20068310471052
    [Google Scholar]
  20. ZhouW.Y. BoocockD.G. Phase behavior of the base-catalyzed transesterification of soybean oilJ. Am. Oil Chem. Soc.20068310411045
    [Google Scholar]
  21. AtadashiI.M. ArouaM.K. AzizA.R. SulaimanN.M. The effects of catalysts in biodiesel production: A reviewJ. Ind. Eng. Chem.2013191426
    [Google Scholar]
  22. JitputtiJ. KitiyananB. RangsunvigitP. BunyakiatK. AttanathoL. JenvanitpanjakulP. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalystsChem. Eng. J.20061166166
    [Google Scholar]
  23. PengB.X. ShuQ. WangJ.F. WangG.R. WangD.Z. HanM.H. Biodiesel production from waste oil feedstocks by solid acid catalysisProcess. Saf. Environ.200886441447
    [Google Scholar]
  24. FurutaS. MatsuhashiH. ArataK. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressureCatal. Commun.20045721723
    [Google Scholar]
  25. LamM.K. LeeK.T. MohamedA.R. Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: An optimization studyAppl. Catal. B-Environ.200993134139
    [Google Scholar]
  26. RamachandranK. SivakumarP. SuganyaT. RenganathanS. Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalystBiores. Technol.201110272897293
    [Google Scholar]
  27. CannillaC. BonuraG. RombiE. ArenaF. FrusteriF. Highly effective MnCeOx catalysts for biodiesel production by transesterification of vegetable oils with methanolAppl. Catal. A Gen.2010382158166
    [Google Scholar]
  28. Di SerioM. CozzolinoM. TesserR. PatronoP. PinzariF. BonelliB. SantacesariaE. Vanadyl phosphate catalysts in biodiesel productionAppl. Catal. A Gen.200732017
    [Google Scholar]
  29. de AlmeidaR.M. NodaL.K. GoncalvesN.S. MeneghettiS.M. MeneghettiM.R. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalystsAppl. Catal. A Gen.2008347100105
    [Google Scholar]
  30. ZhaiD.W. NieY.Y. YueY.H. HeH.Y. HuaW.M. GaoZ. Esterification and transesterification on Fe2O3-doped sulfated tin oxide catalystsCatal. Commun.201112593596
    [Google Scholar]
  31. SunitaG. DevassyB.M. VinuA. SawantD.P. BalasubramanianV.V. HalligudiS.B. Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalystsCatal. Commun.20089696702
    [Google Scholar]
  32. JiangW. LuH.F. QiT. YanS.L. LiangB. Preparation, application, and optimization of Zn/Al complex oxides for biodiesel production under sub-critical conditionsBiotechnol. Adv.201028620627
    [Google Scholar]
  33. Jimenez-LopezA. Jimenez-MoralesI. Santamaria-GonzalezJ. Maireles-TorresP. Biodiesel production from sunflower oil by tungsten oxide supported on zirconium doped MCM-41 silicaJ. Mol. Catal. Chem.2011335205209
    [Google Scholar]
  34. KulkarniM.G. GopinathR. MeherL.C. DalaiA.K. Solid acid catalyzed biodiesel production by simultaneous esterification and transesterificationGreen Chem.2006810561062
    [Google Scholar]
  35. XuL.L. LiW. HuJ.L. YangX. GuoY.H. Biodiesel production from soybean oil catalyzed by multifunctionalized Ta2O5/SiO2-H3PW12O40/R (R=Me or Ph) hybrid catalystAppl. Catal. B-Environ.200990587594
    [Google Scholar]
  36. GombotzK. ParetteR. AusticG. KannanD. MatsonJ.V. MnO and TiO solid catalysts with low-grade feedstocks for biodiesel productionFuel201292915
    [Google Scholar]
  37. Alba-RubioA.C. VilaF. AlonsoD.M. OjedaM. MariscalR. GranadosM.L. Deactivation of organosulfonic acid functionalized silica catalysts during biodiesel synthesisAppl. Catal. B-Environ.201095279287
    [Google Scholar]
  38. MeleroJ.A. BautistaL.F. MoralesG. IglesiasJ. Sanchez-VazquezR. Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalystsChem. Eng. J.2010161323331
    [Google Scholar]
  39. Garcia-SanchoC. Moreno-TostR. Merida-RoblesJ.M. Santamaria-GonzalezJ. Jimenez-LopezA. Maireles-TorresP. Niobium-containing MCM-41 silica catalysts for biodiesel productionAppl. Catal. B-Environ.2011108161167
    [Google Scholar]
  40. AbreuF.R. AlvesM.B. MacedoC.C. ZaraL.F. SuarezP.A. New multi-phase catalytic systems based on tin compounds active for vegetable oil transesterificaton reactionJ. Mol. Catal. Chem.2005227263267
    [Google Scholar]
  41. VicenteG. CoteronA. MartinezM. AracilJ. Application of the factorial design of experiments and response surface methodology to optimize biodiesel productionInd. Crop. Prod.199882935
    [Google Scholar]
  42. GarciaC.M. TeixeiraS. MarciniukL.L. SchuchardtU. Transesterfication of soybean oil catalyzed by sulfated ziconiaBiores. Technol.20089966086613
    [Google Scholar]
  43. XieW.L. WangT. Biodiesel production from soybean oil transesterification using tin oxide-supported WO3 catalystsFuel Process. Technol.2013109150155
    [Google Scholar]
  44. BritoA. BorgesM.E. OteroN. Zeolite Y as a heterogeneous catalyst in biodiesel fuel production from used vegetable oilEner. Fuel.20072132803283
    [Google Scholar]
  45. SantacesariaE. VicenteG.M. Di SerioM. TesserR. Main technologies in biodiesel production: State of the art and future challengesCatal. Today.2012195213
    [Google Scholar]
  46. JiangY.W. LuJ. SunK.A. MaL.L. DingJ.C. Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studiesEner. Convers. Manag.201376980985
    [Google Scholar]
  47. IslamA. Taufiq-YapY.H. ChuC.M. ChanE.S. RavindraP. Studies on design of heterogeneous catalysts for biodiesel productionProcess. Saf. Environ.201391131144
    [Google Scholar]
  48. LiuX. XiongX. LiuC. LiuD. WuA. HuQ. LiuC. Preparation of biodiesel by transesterification of rapeseed oil with methanol using solid base catalyst calcined K2CO3/gamma-Al2O3 J. Am. Oil. Chem. Soc.201087817823
    [Google Scholar]
  49. LiuX.J. HeH.Y. WangY.J. ZhuS.L. PiaoX.L. Transesterification of soybean oil to biodiesel using CaO as a solid base catalystFuel200887216221
    [Google Scholar]
  50. KawashimaA. MatsubaraK. HondaK. Acceleration of catalytic activity of calcium oxide for biodiesel productionBiores. Technol.2009100696700
    [Google Scholar]
  51. KawashimaA. MatsubaraK. HondaK. Development of heterogeneous base catalysts for biodiesel productionBiores. Technol.20089934393443
    [Google Scholar]
  52. WangL.Y. YangJ.C. Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanolFuel200786328333
    [Google Scholar]
  53. LiuX.J. HeH.Y. WangY.J. ZhuS.L. Transesterification of soybean oil to biodiesel using SrO as a solid base catalystCatal. Commun.2007811071111
    [Google Scholar]
  54. SuppesG.J. DasariM.A. DoskocilE.J. MankidyP.J. GoffM.J. Transesterification of soybean oil with zeolite and metal catalystsAppl. Catal. A Gen.2004257213223
    [Google Scholar]
  55. LiuY.J. LoteroE. GoodwinJ.G. LuC.Q. Transesterification of triacetin using solid Bronsted basesJ. Catal.2007246428433
    [Google Scholar]
  56. NgamcharussrivichaiC. TotaratP. BunyakiatK. Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oilAppl. Catal. A Gen.20083417785
    [Google Scholar]
  57. ThitsartarnW. KawiS. An active and stable CaO-CeO2 catalyst for transesterification of oil to biodieselGreen Chem.20111334233430
    [Google Scholar]
  58. AlbuquerqueM.C. Santamaria-GonzalezJ. Merida-RoblesJ.M. Moreno-TostR. Rodriguez-CastellonE. Jimenez-LopezA. AzevedoD.C. CavalcanteC.L. Maireles-TorresP. MgM (M = Al and Ca) oxides as basic catalysts in transesterification processesAppl. Catal. A. Gen.2008347162168
    [Google Scholar]
  59. AlbuquerqueM.C. Jimenez-UrbistondoI. Santamaria-GonzalezJ. Merida-RoblesJ.M. Moreno-TostR. Rodriguez-CastellonE. Jimenez-LopezA. AzevedoD.C. CavalcanteC.L. Maireles-TorresP. CaO supported on mesoporous silicas as basic catalysts for transesterification reactionsAppl. Catal. A Gen.20083343543
    [Google Scholar]
  60. BenjapornkulaphongS. NgamcharussrivichaiC. BunyakiatK. Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oilChem. Eng. J.2009145468474
    [Google Scholar]
  61. KimH.J. KangB.S. KimM.J. ParkY.M. KimD.K. LeeJ.S. LeeK.Y. Transesterification of vegetable oil to biodiesel using heterogeneous base catalystCatal. Today200493-95315320
    [Google Scholar]
  62. XieW.L. HuangX.M. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalystCatal. Lett.20061075359
    [Google Scholar]
  63. VyasA.P. SubrahmanyamN. PatelP.A. Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalystFuel200988625628
    [Google Scholar]
  64. GuoP.M. ZhengC. ZhengM.M. HuangF.H. LiW.L. HuangQ.D. Solid base catalysts for production of fatty acid methyl estersRenew. Ener.201353377383
    [Google Scholar]
  65. XieW.L. LiH.T. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oilJ. Mol. Catal. Chem.200625519
    [Google Scholar]
  66. MounguenguiR.W. BrunschwigC. BareaB. VilleneuveP. BlinJ. Are plant lipases a promising alternative to catalyze transesterification for biodiesel production?Prog. Ener. Combus. Sci.201339441456
    [Google Scholar]
  67. GogA. RomanM. TosaM. PaizsC. IrimieF.D. Biodiesel production using enzymatic transesterification - Current state and perspectivesRenew. Ener.2012391016
    [Google Scholar]
  68. BanK. HamaS. NishizukaK. KaiedaM. MatsumotoT. KondoA. NodaH. FukudaH. Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel productionJ. Mol. Catal., B Enzym.200217157165
    [Google Scholar]
  69. HamaS. YamajiH. KaiedaM. OdaM. KondoA. FukudaH. Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel productionBiochem. Eng. J.200421155160
    [Google Scholar]
  70. WatanabeY. ShimadaY. SugiharaA. TominagaY. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipaseJ. Mol. Catal., B Enzym.200217151155
    [Google Scholar]
  71. ShiehC.J. LiaoH.F. LeeC.C. Optimization of lipase-catalyzed biodiesel by response surface methodologyBiores. Technol.200388103106
    [Google Scholar]
  72. DuW. XuY.Y. LiuD.H. ZengJ. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptorsJ. Mol. Catal., B Enzym.200430125129
    [Google Scholar]
  73. NoureddiniH. GaoX. PhilkanaR.S. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oilBiores. Technol.200596769777
    [Google Scholar]
  74. KaiedaM. SamukawaT. MatsumotoT. BanK. KondoA. ShimadaY. NodaH. NomotoF. OhtsukaK. IzumotoE. FukudaH. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solventJ. Biosci. Bioeng.199988627631
    [Google Scholar]
  75. LuoY. ZhengY.T. JiangZ.B. MaY.S. WeiD.X. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterificationAppl. Microbiol. Biotechnol.200673349355
    [Google Scholar]
  76. SamukawaT. KaiedaM. MatsumotoT. BanK. KondoA. ShimadaY. NodaH. FukudaH. Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oilJ. Biosci. Bioeng.200090180183
    [Google Scholar]
  77. MittelbachM. Lipase catalyzed alcoholysis of sunflower oilJ. Am. Oil. Chem. Soc.199067168170
    [Google Scholar]
  78. SelmiB. ThomasD. Immobilized lipase-catalyzed ethanolysis of sunflower oil in a solvent-free mediumJ. Am. Oil. Chem. Soc.199875691695
    [Google Scholar]
  79. ModiM.K. ReddyJ.R. RaoB. PrasadR.B. Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptorBiotech. Lett.200628637640
    [Google Scholar]
  80. SoumanouM.M. BornscheuerU.T. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oilEnzyme. Microb. Tech.20033397103
    [Google Scholar]
  81. ModiM.K. ReddyJ.R. RaoB. PrasadR.B. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptorBiores. Technol.20079812601264
    [Google Scholar]
  82. ShahS. GuptaM.N. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free systemProcess Biochem.200742409414
    [Google Scholar]
  83. RoyonD. DazM. EllenriederG. LocatelliS. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solventBiores. Technol.200798648653
    [Google Scholar]
  84. KoseO. TuterM. AksoyH.A. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free mediumBiores. Technol.200283125129
    [Google Scholar]
  85. AbigorR.D. UadiaP.O. FogliaT.A. HaasM.J. JonesK.C. OkpefaE. ObibuzorJ.U. BaforM.E. Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oilsBiochem. Soc. Trans.200028979981
    [Google Scholar]
  86. PizarroA.V. ParkE.Y. Lipase-catalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earthProcess. Biochem.20033810771082
    [Google Scholar]
  87. TongboriboonK. CheirsilpB. Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free systemJ. Mol. Catal., B Enzym.2010675259
    [Google Scholar]
  88. TalukderM.M. DasP. FangT.S. WuJ.C. Enhanced enzymatic transesterification of palm oil to biodieselBiochem. Eng. J.201155119122
    [Google Scholar]
  89. KaminiN.R. IefujiH. Lipase catalyzed methanolysis of vegetable oils in aqueous medium by Cryptococcus spp. S-2Process. Biochem.200137405410
    [Google Scholar]
  90. LaiC.C. ZullaikahS. ValiS.R. JuY.H. Lipase-catalyzed production of biodiesel from rice bran oilJ. Chem. Technol. Biotechnol.200580331337
    [Google Scholar]
  91. LinkoY.Y. LamsaM. WuX.Y. UosukainenE. SeppalaJ. LinkoP. Biodegradable products by lipase biocatalysisJ. Biotechnol.1998664150
    [Google Scholar]
  92. LiL.L. DuW. LiuD.H. WangL. LiZ.B. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction mediumJ. Mol. Catal., B Enzym.2006435862
    [Google Scholar]
  93. BreivikH. HaraldssonG.G. KristinssonB. Preparation of highly purified concentrates of eicosapentaenoic acid and docosahexaenoic acidJ. Am. Oil. Chem. Soc.19977414251429
    [Google Scholar]
  94. KumariV. ShahS. GuptaM.N. Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica Ener. Fuel.200721368372
    [Google Scholar]
  95. LiX.F. XuH. WuQ.Y. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotropic Cultivation in bioreactorsBiotechnol. Bioeng.200798764771
    [Google Scholar]
  96. NelsonL.A. FogliaT.A. MarmerW.N. Lipase-catalyzed production of biodieselJ. Am. Oil. Chem. Soc.19967311911195
    [Google Scholar]
  97. HsuA.F. JonesK. MarmerW.N. FogliaT.A. Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol-gelJ. Am. Oil. Chem. Soc.200178585588
    [Google Scholar]
  98. WuW.H. FogliaT.A. MarmerW.N. PhillipsJ.G. Optimizing production of ethyl esters of grease using 95% ethanol by response surface methodologyJ. Am. Oil. Chem. Soc.199976517521
    [Google Scholar]
  99. NieK.L. XieF. WangF. TanT.W. Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel productionJ. Mol. Catal., B Enzym.200643142147
    [Google Scholar]
  100. BernalJ.M. LozanoP. Garcia-VerdugoE. BurgueteM.I. Sanchez-GomezG. Lopez-LopezG. PucheaultM. VaultierM. LuisS.V. Supercritical synthesis of biodieselMolecules20121786968719
    [Google Scholar]
  101. MaddikeriG.L. PanditA.B. GogateP.R. Intensification approaches for biodiesel synthesis from waste cooking oil: A reviewInd. Eng. Chem. Res.2012511461014628
    [Google Scholar]
  102. AnikeevV.I. YakovlevaE.Y. Transesterification of rapeseed oil in supercritical methanol in a flow reactorRuss. J. Phys. Chem. A.20128616461653
    [Google Scholar]
  103. DonaG. CardozoL. SilvaC. CastilhosF. Biodiesel production using supercritical methyl acetate in a tubular packed bed reactorFuel. Process. Technol.2013106605610
    [Google Scholar]
  104. GhoreishiS.M. MoeinP. Biodiesel synthesis from waste vegetable oil via transesterification reaction in supercritical methanolJ. Supercrit. Fluids.2013762431
    [Google Scholar]
  105. GobikrishnanS. ParkJ.H. ParkS.H. IndrawanN. RahmanS.F. ParkD.H. Sonication-assisted production of biodiesel using soybean oil and supercritical methanolBiopro. Biosyst. Eng.201336705712
    [Google Scholar]
  106. GoembiraF. SakaS. Optimization of biodiesel production by supercritical methyl acetateBiores. Technol.20131314752
    [Google Scholar]
  107. LimS. LeeK.T. Optimization of supercritical methanol reactive extraction by Response Surface Methodology and product characterization from Jatropha curcas L. seedsBiores. Technol.2013142121130
    [Google Scholar]
  108. MuppaneniT. ReddyH.K. PonnusamyS. PatilP.D. SunY.Q. DaileyP. DengS.G. Optimization of biodiesel production from palm oil under supercritical ethanol conditions using hexane as co-solvent: A response surface methodology approachFuel2013107633640
    [Google Scholar]
  109. OngL.K. EffendiC. KurniawanA. LinC.X. ZhaoX.S. IsmadjiS. Optimization of catalyst-free production of biodiesel from Ceiba pentandra (kapok) oil with high free fatty acid contentsEnergy201357615623
    [Google Scholar]
  110. ReddyH.K. MuppaneniT. PatilP.D. PonnusamyS. CookeP. SchaubT. DengS.G. Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditionsFuel2014115720726
    [Google Scholar]
  111. TsaiY.T. LinH.M. LeeM.J. Biodiesel production with continuous supercritical process: Non-catalytic transesterification and esterification with or without carbon dioxideBiores. Technol.2013145362369
    [Google Scholar]
  112. VelezA. SotoG. HegelP. MabeG. PeredaS. Continuous production of fatty acid ethyl esters from sunflower oil using supercritical ethanolFuel201297703709
    [Google Scholar]
  113. KorbitzW. Biodiesel production in Europe and North America, an encouraging prospectRenew. Ener.19991610781083
    [Google Scholar]
  114. KellowayA. MarvinW.A. SchmidtL.D. DaoutidisP. Process design and supply chain optimization of supercritical biodiesel synthesis from waste cooking oilsChem. Eng. Res. Des.20139114561466
    [Google Scholar]
  115. KimM. LeeH.S. YooS.J. YounY.S. ShinY.H. LeeY.W. Simultaneous synthesis of biodiesel and zinc oxide nanoparticles using supercritical methanolFuel2013109279284
    [Google Scholar]
  116. AbbaszaadehA. GhobadianB. Omidkhah MR,Najafi G. Current biodiesel production technologies: A comparative reviewEner. Conv. Manag.201263138148
    [Google Scholar]
  117. GraboskiM.S. McCormickR.L. Combustion of fat and vegetable oil derived fuels in diesel enginesProg. Ener. Combus.199824125164
    [Google Scholar]
  118. OngH.C. MahliaT.M. MasjukiH.H. HonneryD. Life cycle cost and sensitivity analysis of palm biodiesel productionFuel201298131139
    [Google Scholar]
  119. DundichV.O. KhromovaS.A. ErmakovD.Y. LebedevM.Y. NovopashinaV.M. SisterV.G. YakimchukA.I. YakovlevV.A. Nickel Catalysts for the Hydrodeoxygenation of BiodieselKinet. Catal.201051704709
    [Google Scholar]
  120. Ochoa-HernandezC. YangY.X. PizarroP. O’SheaV.A. CoronadoJ.M. SerranoD.P. Hydrocarbons production through hydrotreating of methyl esters over Ni and Co supported on SBA-15 and Al-SBA-15Catal. Today20132108188
    [Google Scholar]
  121. SchäferH.J. Electrochemical conversion of fatty acidsEur. J. Lipid Sci. Technol.201211429
    [Google Scholar]
  122. KongyaiC. ChalermsinsuwanB. HunsomM. Epoxidation of waste used-oil biodiesel: Effect of reaction factors and its impact on the oxidative stabilityKorean J. Chem. Eng.201330327336
    [Google Scholar]
  123. WadumesthrigeK. SalleyS.O. NgK.Y. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl estersFuel Process. Technol.20099012921299
    [Google Scholar]
  124. NicolauA. SamiosD. PiatnickC.M. ReiznauttQ.B. MartiniD.D. ChagasA.L. On the polymerisation of the epoxidised biodiesel: The importance of the epoxy rings position, the process and the productsEur. Polym. J.20124812661278
    [Google Scholar]
/content/journals/cae/10.2174/2405463101666161117143357
Loading
/content/journals/cae/10.2174/2405463101666161117143357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test