Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2405-4631
  • E-ISSN: 2405-464X

Abstract

Presently, one of the biggest predicaments in developing countries is the ever-growing local demand for electrical energy in the face of limited availability of locally derived natural resources. The Middle Eastern country of Jordan provides for an apt example of this. Domestically, Jordan generates a very limited amount of its own electrical energy output. Contributing 2.4% of its total energy consumption, Jordan has been driven by the need to diversify its reliance on alternative energy sources. One such alternative is that of renewable energy with its potential to cater to local supply and demand for electricity. Off-grid energy generating technologies can provide a more reliable supply and extending its reach into remote and rural areas. These technologies provide the added benefits of being more environmentally sustainable, cost-efficient, and can operate independently, not reliant on multiple public utilities. Against this backdrop, this study evaluates the benefits of gasification technology, providing for a renewable energy source that can meet the needs for a reliable supply whilst simultaneously distributing power to remote rural areas. It does this by scrutinizing existing investigative works and experimentations premised on the gasification of carbonaceous material for the purpose of producing syngas that can then be used as an energy source. In this gasification process, the most common material typically used is biomass. However, such technologies and their accompanying processes are not without their challenges. These include, but are not limited to, low energy density, low heating value, higher tar content, and an unstable supply. In an attempt to overcome these associated issues, biomass and coal are often synergized in a singular process referred to as ‘co-gasification’. While the combination of biomass and coal vastly improved the process of co-gasification, various other factors aid this process. These include flow geometry, where the gasifier can be categorized into several forms: an entrained flow gasifier, a moving bed gasifier, and a fluidized bed gasifier. Further factors included a gasification agent, operating conditions ( temperature, pressure), heating rate, feedstock composition, fuel blending ratio, and particle size, influenced by the percentage of gases and ratio produced between CO, CO, CH, and H. This study therefore provides a comparative analysis between a co-gasification process and normal gasification to determine not only the elements that impact these processes, but also what can be improved for ultimately optimizing gasification.

Loading

Article metrics loading...

/content/journals/cae/10.2174/2405463104999200904115100
2020-09-04
2025-07-12
Loading full text...

Full text loading...

References

  1. JaberJ.O. AwadW. RahmehT.A. AlawinA.A. Al-LubaniS. DaluS.A. Renewable energy education in faculties of engineering in Jordan: relationship between demographics and level of knowledge of senior students.Renew. Sustain. Energy Rev.20177345245910.1016/j.rser.2017.01.141
    [Google Scholar]
  2. GomaaM.R. MustafaR.J. Al-DmourN. Solar thermochemical conversion of carbonaceous materials into syngas by co-gasification.J. Clean. Prod.201924811918510.1016/j.jclepro.2019.119185
    [Google Scholar]
  3. GomaaM.R. Al-DmourN. Al-RawashdehH.A. ShalbyM. Theoretical model of a fluidized bed solar reactor design with the aid of MCRT method and synthesis gas production.Renew. Energy20201489110210.1016/j.renene.2019.12.010
    [Google Scholar]
  4. Al-HamamreZ. SaidanM. HararahM. RawajfehK. AlkhasawnehH.E. Al-ShannagM. Wastes and biomass materials as sustainable-renewable energy resources for Jordan.Renew. Sustain. Energy Rev.20176729531410.1016/j.rser.2016.09.035
    [Google Scholar]
  5. Al-SalaymehA. Al-HamamreZ. SharafF. AbdelkaderM. Technical and economical assessment of the utilization of photovoltaic systems in residential buildings: the case of Jordan.Energy Convers. Manage.20105181719172610.1016/j.enconman.2009.11.026
    [Google Scholar]
  6. GomaaM.R. RezkH. MustafaR.J. Al-DhaifallahM. Evaluating the environmental impacts and energy performance of a wind farm system utilizing the life-cycle assessment method: a practical case study.Energies20191217326310.3390/en12173263
    [Google Scholar]
  7. GomaaM.R. Al-DhaifallahM. AlahmerA. RezkH. Design, modeling and experimental investigation of active water cooling concentrating photovoltaic system.Sustainability20201213539210.3390/su12135392
    [Google Scholar]
  8. GomaaM.R. MohamedM.A. RezkH. Al-DhaifallahM. Al ShammriM.J. Energy performance analysis of on-grid solar photovoltaic system- a practical case study.Int. J. Renew. Energy Res.20199312921301
    [Google Scholar]
  9. Al-HamamreZ. Al-MaterA. SweisF. RawajfehK. Assessment of the status and outlook of biomass energy in Jordan.Energy Convers. Manage.20147718319210.1016/j.enconman.2013.09.041
    [Google Scholar]
  10. Al-RawashdehH.A. GomaaM.R. MustafaR.J. HasanA.O. Efficiency and exergy enhancement of ORC powered by recovering flue gases-heat system in cement industrials: a case study.Int. Rev. Mech. Eng.2019133185
    [Google Scholar]
  11. WilhelmD. SimbeckD. KarpA. DickensonR. Syngas production for gas-to-liquids applications: technologies, issues and outlook.Fuel Process. Technol.2001711-313914810.1016/S0378‑3820(01)00140‑0
    [Google Scholar]
  12. AmmarM. MutalibM.A. YusupS. InayatA. ShahbazM. AliB. Influence of effective parameters on product gas ratios in sorption enhanced gasification.Procedia Engr.201614873574110.1016/j.proeng.2016.06.605
    [Google Scholar]
  13. DingL. DaiZ. GuoQ. YuG. Effects of in-situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry.Appl. Energy201718762763910.1016/j.apenergy.2016.11.086
    [Google Scholar]
  14. JeongH.J. ParkS.S. HwangJ. Co-gasification of coal-Biomass blended char with CO2 at temperatures of 900-1100° C.Fuel201411646547010.1016/j.fuel.2013.08.015
    [Google Scholar]
  15. ZhangY. ZhangX-M. FanD. SongY-C. A promising approach to co-processing calcium-rich coal and an aqueous condensate from biomass carbonization.Fuel2014133828810.1016/j.fuel.2014.05.007
    [Google Scholar]
  16. McKendryP. Energy production from biomass (Part 3): Gasification technologies.Bioresour. Technol.2002831556310.1016/S0960‑8524(01)00120‑112058831
    [Google Scholar]
  17. JanajrehI. Al-ShrahM. Numerical and experimental investigation of downdraft gasification of wood chips.Energy Convers. Manage.20136578379210.1016/j.enconman.2012.03.009
    [Google Scholar]
  18. BreaultR.W. Gasification processes old and new: A basic review of the major technologies.Energies20103221624010.3390/en3020216
    [Google Scholar]
  19. AhmedI. GuptaA. Syngas yield during pyrolysis and steam gasification of paper.Appl. Energy20098691813182110.1016/j.apenergy.2009.01.025
    [Google Scholar]
  20. FurimskyE. Gasification in petroleum refinery of 21st century.Oil Gas Sci. Technol.199954559761810.2516/ogst:1999051
    [Google Scholar]
  21. ValeroA. UsónS. Oxy-co-gasification of coal and Biomass in an integrated gasification combined cycle (IGCC) power plant.Energy20063110-111643165510.1016/j.energy.2006.01.005
    [Google Scholar]
  22. MondalP. DangG. GargM. Syngas production through gasification and cleanup for downstream applications—Recent developments.Fuel Process Technol.20119281395141010.1016/j.fuproc.2011.03.021
    [Google Scholar]
  23. UmekiK. YamamotoK. NamiokaT. YoshikawaK. High temperature steam-only gasification of woody Biomass.Appl. Energy201087379179810.1016/j.apenergy.2009.09.035
    [Google Scholar]
  24. LiF. FanL-S. Clean coal conversion processes–progress and challenges.Energy Environ. Sci.20081210.1039/b809218b
    [Google Scholar]
  25. XiangW. ChenS. XueZ. SunX. Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process.Int. J. Hydrogen Energy20103568580859110.1016/j.ijhydene.2010.04.167
    [Google Scholar]
  26. UmemotoS. KajitaniS. HaraS. KawaseM. Proposal of a new soot quantification method and investigation of soot formation behavior in coal gasification.Fuel201616728028710.1016/j.fuel.2015.11.074
    [Google Scholar]
  27. KimY.T. SeoD.K. HwangJ. Study of the effect of coal type and particle size on char–CO2 gasification via gas analysis.Energy Fuels201125115044505410.1021/ef200745x
    [Google Scholar]
  28. KajitaniS. ZhangY. UmemotoS. AshizawaM. HaraS. Co-gasification reactivity of coal and woody biomass in high-temperature gasification.Energy Fuels200924114515110.1021/ef900526h
    [Google Scholar]
  29. MinchenerA.J. Coal gasification for advanced power generation.Fuel200584172222223510.1016/j.fuel.2005.08.035
    [Google Scholar]
  30. CollotA-G. Matching gasification technologies to coal properties.Int. J. Coal Geol.2006653-419121210.1016/j.coal.2005.05.003
    [Google Scholar]
  31. KatalambulaH. GuptaR. Low-grade coals: A review of some prospective upgrading technologies.Energy Fuels20092373392340510.1021/ef801140t
    [Google Scholar]
  32. JangamS.V. KarthikeyanM. MujumdarA. A critical assessment of industrial coal drying technologies: Role of energy, emissions, risk and sustainability.Dry. Technol.201129439540710.1080/07373937.2010.498070
    [Google Scholar]
  33. YuJ. TahmasebiA. HanY. YinF. LiX. A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization.Fuel Process. Technol.201310692010.1016/j.fuproc.2012.09.051
    [Google Scholar]
  34. SaidurR. AbdelazizE. DemirbasA. HossainM. MekhilefS. A review on Biomass as a fuel for boilers.Renew. Sustain. Energy Rev.20111552262228910.1016/j.rser.2011.02.015
    [Google Scholar]
  35. AsadullahM. Barriers of commercial power generation using biomass gasification gas: a review.Renew. Sustain. Energy Rev.20142920121510.1016/j.rser.2013.08.074
    [Google Scholar]
  36. TabaL.E. IrfanM.F. DaudW.A.M.W. ChakrabartiM.H. The effect of temperature on various parameters in coal, Biomass and CO-gasification: A review.Renew. Sustain. Energy Rev.20121685584559610.1016/j.rser.2012.06.015
    [Google Scholar]
  37. PiriouB. VaitilingomG. VeyssièreB. CuqB. RouauX. Potential direct use of solid biomass in internal combustion engines.Pror. Energy Combust. Sci.201339116918810.1016/j.pecs.2012.08.001
    [Google Scholar]
  38. SansaniwalS. PalK. RosenM. TyagiS. Recent advances in the development of biomass gasification technology: A comprehensive review.Renew. Sustain. Energy Rev.20177236338410.1016/j.rser.2017.01.038
    [Google Scholar]
  39. AbbasiT. AbbasiS. Biomass energy and the environmental impacts associated with its production and utilization.Renew. Sustain. Energy Rev.201014391993710.1016/j.rser.2009.11.006
    [Google Scholar]
  40. VassilevS.V. BaxterD. AndersenL.K. VassilevaC.G. An overview of the chemical composition of Biomass.Fuel201089591393310.1016/j.fuel.2009.10.022
    [Google Scholar]
  41. SriramN. ShahidehpourM. Renewable biomass energy.Power Engineering Society General Meeting2005
    [Google Scholar]
  42. MurthyB.N. SawarkarA.N. DeshmukhN.A. MathewT. JoshiJ.B. Petroleum coke gasification: A review.Can. J. Chem. Eng.201492344146810.1002/cjce.21908
    [Google Scholar]
  43. YuzbasiN.S. SelçukN. Air and oxy-fuel combustion behaviour of petcoke/lignite blends.Fuel201292113714410.1016/j.fuel.2011.08.026
    [Google Scholar]
  44. YoonS.J. ChoiY-C. LeeS-H. LeeJ-G. Thermogravimetric study of coal and petroleum coke for co-gasification.Korean J. Chem. Eng.200724351251710.1007/s11814‑007‑0090‑y
    [Google Scholar]
  45. FermosoJ. AriasB. GilM.V. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H(2)-rich gas production.Bioresour. Technol.201010193230323510.1016/j.biortech.2009.12.03520061144
    [Google Scholar]
  46. BasuP. KaushalP. Modeling of pyrolysis and gasification of biomass in fluidized beds: a review Chemical Prod. Process Model.200941[Epub ahead of print]10.2202/1934‑2659.1338
    [Google Scholar]
  47. SchusterG. LöfflerG. WeiglK. HofbauerH. Biomass steam gasification--an extensive parametric modeling study.Bioresour. Technol.2001771717910.1016/S0960‑8524(00)00115‑211211078
    [Google Scholar]
  48. CzernikS. ScahillJ. DieboldJ. The production of liquid fuel by fast pyrolysis of biomass.J. Sol. Energy Eng.199511712610.1115/1.2847714
    [Google Scholar]
  49. RatnadhariyaJ. ChanniwalaS. Three zone equilibrium and kinetic free modeling of biomass gasifier-a novel approach.Renew. Energy20093441050105810.1016/j.renene.2008.08.001
    [Google Scholar]
  50. HigmanC. TamS. Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels.Chem. Rev.201411431673170810.1021/cr400202m24144161
    [Google Scholar]
  51. SikarwarV.S. ZhaoM. CloughP. YaoJ. ZhongX. MemonM.Z. An overview of advances in biomass gasification.Energy Environ. Sci.20169102939297710.1039/C6EE00935B
    [Google Scholar]
  52. LaurendeauN.M. Heterogeneous kinetics of coal char gasification and combustion.Pror. Energy Combust. Sci.19784522127010.1016/0360‑1285(78)90008‑4
    [Google Scholar]
  53. SusastriawanA. SaptoadiH. Small-scale downdraft gasifiers for biomass gasification: a review.Renew. Sustain. Energy Rev.201776989100310.1016/j.rser.2017.03.112
    [Google Scholar]
  54. BouillonA. LancelotJ.C. CollotV. BovyP.R. RaultS. Synthesis of novel halopyridinylboronic acids and esters. Part 3: 2, or 3-Halopyridin-4-yl-boronic acids and esters.Tetrahedron200258224369437310.1016/S0040‑4020(02)00416‑7
    [Google Scholar]
  55. LohaC. KarmakarM.K. DeS. ChatterjeeP.K. Gasifiers: types, operational principles, and commercial forms coal and biomass gasification.Springer20186391
    [Google Scholar]
  56. CheremisinoffN.P. RezaiyanJ. Gasification technologies: a primer for engineers and scientists.CRC press200585
    [Google Scholar]
  57. HernándezJ.J. Aranda-AlmansaG. SerranoC. Co-gasification of biomass wastes and coal-coke blends in an entrained flow gasifier: an experimental study.Energy Fuels20102442479248810.1021/ef901585f
    [Google Scholar]
  58. LongH.A. WangT. Case studies for biomass/coal co-gasification in IGCC applications.Turbine Technical Conf. Exposit201254756110.1115/GT2011‑45512
    [Google Scholar]
  59. TremelA. SpliethoffH. Gasification kinetics during entrained flow gasification-Part II: intrinsic char reaction rate and surface area development.Fuel201310765366110.1016/j.fuel.2012.10.053
    [Google Scholar]
  60. BriesemeisterL. KremlingM. FendtS. SpliethoffH. Air-blown entrained-flow gasification of biomass: influence of operating conditions on tar generation.Energy Fuels20173110109241103210.1021/acs.energyfuels.7b01801
    [Google Scholar]
  61. MorfP.O. Secondary reactions of tar during thermochemical biomass conversion.ETH Zurich2001
    [Google Scholar]
  62. SrivastavaT. Renewable energy (gasification).Adv. Electron Electr. Eng.2013312431250
    [Google Scholar]
  63. RajvanshiA.K. Biomass gasification alternative energy in agriculture19862482102
    [Google Scholar]
  64. CoutoN. RouboaA. SilvaV. MonteiroE. BouzianeK. Influence of the biomass gasification processes on the final composition of syngas.Energy Procedia20133659660610.1016/j.egypro.2013.07.068
    [Google Scholar]
  65. CifernoJ.P. MaranoJ.J. Benchmarking biomass gasification technologies for fuels, chemicals and hydrogen production US Department of Energy.Nat. Energy Technol. Lab2002
    [Google Scholar]
  66. IsmailT.M. El-SalamM.A. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification.Appl. Therm. Eng.20171121460147310.1016/j.applthermaleng.2016.10.026
    [Google Scholar]
  67. DahlquistE. Technologies for converting biomass to useful energy: combustion, gasification, pyrolysis, torrefaction and fermentation.CRC Press201310.1201/b14561
    [Google Scholar]
  68. Gómez-BareaA. LecknerB. Modeling of biomass gasification in fluidized bed.Pror. Energy Combust. Sci.201036444450910.1016/j.pecs.2009.12.002
    [Google Scholar]
  69. IngleN.A. LakadeS.S. Design and development of downdraft gasifier to generate producer gas.Energy Procedia20169042343110.1016/j.egypro.2016.11.209
    [Google Scholar]
  70. BunchanS. PoowadinT. TrairatanasirichaiK. A study of throat size effect on downdraft biomass gasifier efficiency.Energy Procedia201713874575010.1016/j.egypro.2017.10.213
    [Google Scholar]
  71. FrydaL. PanopoulosK. KakarasE. Agglomeration in fluidised bed gasification of Biomass.Powder Technol.2008181330732010.1016/j.powtec.2007.05.022
    [Google Scholar]
  72. DzomboD. KiplimoR. KiplagatJ. Use of Biomass Gas in Running Internal Combustion Engine to Generate Electricity-A Review.Proceedings of Sustainable Research and Innovation Conference
    [Google Scholar]
  73. WazeerA ChaturvediB MohrilS KumarM S S D R Gasification-Contributing to the Energy Production Demands International Journal Of Engineering And Computer Science201651210.18535/ijecs/v5i12.30
    [Google Scholar]
  74. LahijaniP. ZainalZ.A. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.Bioresour. Technol.201110222068207610.1016/j.biortech.2010.09.10120980143
    [Google Scholar]
  75. LuY. ZhaoL. GuoL. Technical and economic evaluation of solar hydrogen production by supercritical water gasification of Biomass in China.Int. J. Hydrogen Energy20113622143491435910.1016/j.ijhydene.2011.07.138
    [Google Scholar]
  76. XuG. MurakamiT. SudaT. MatsuzawY. TaniH. Two-stage dual fluidized bed gasification: its conception and application to Biomass.Fuel Process. Technol.200990113714410.1016/j.fuproc.2008.08.007
    [Google Scholar]
  77. RamosA. MonteiroE. SilvaV. RouboaA. Co-gasification and recent developments on waste-to-energy conversion: A review.Renew. Sustain. Energy Rev.20188138039810.1016/j.rser.2017.07.025
    [Google Scholar]
  78. DeviL. PtasinskiK.J. JanssenF.J. Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar.Fuel Process. Technol.200586670773010.1016/j.fuproc.2004.07.001
    [Google Scholar]
  79. CampoyM. Gómez-BareaA. VidalF.B. OlleroP. Air–steam gasification of Biomass in a fluidised bed: process optimisation by enriched air.Fuel Process. Technol.200990567768510.1016/j.fuproc.2008.12.007
    [Google Scholar]
  80. MaciejewskaA. VeringaH. SandersJ. PetevesS. Co-firing of Biomass with coal: constraints and role of biomass pretreatment.Office for Official Publications of the European Communities2006
    [Google Scholar]
  81. KaewluanS. PipatmanomaiS. Gasification of high moisture rubber woodchip with rubber waste in a bubbling fluidized bed.Fuel Process. Technol.201192367167710.1016/j.fuproc.2010.11.026
    [Google Scholar]
  82. AlauddinZ.A.B.Z. LahijaniP. MohammadiM. MohamedA.R. Gasification of lignocellulosic Biomass in fluidized beds for renewable energy development: A review.Renew. Sustain. Energy Rev.20101492852286210.1016/j.rser.2010.07.026
    [Google Scholar]
  83. RamadanJ. Enhancement of a Hydrogen Engine Cavitation Utilizing Mixed Fuel: a Review and Experimental Case Study International Review of Mechanical Engineering (IREME)20201413342
  84. LimM.T. AlimuddinZ. Bubbling fluidized bed biomass gasification—Performance, process findings and energy analysis.Renew. Energy200833102339234310.1016/j.renene.2008.01.014
    [Google Scholar]
  85. MazumderA. Steam Gasification of Biomass Surrogates: Catalyst Development and Kinetic Modelling2014
  86. HowaniecN. SmolińskiA. Steam co-gasification of coal and Biomass–Synergy in reactivity of fuel blends chars.Int. J. Hydrogen Energy20133836161521616010.1016/j.ijhydene.2013.10.019
    [Google Scholar]
  87. FarzadS. MandegariM.A. GörgensJ.F. A critical review on biomass gasification, co-gasification, and their environmental assessments.Biofuel Research Journal20163448349510.18331/BRJ2016.3.4.3
    [Google Scholar]
  88. TursunY. XuS. WangC. XiaoY. WangG. Steam co-gasification of Biomass and coal in decoupled reactors.Fuel Process. Technol.2016141616710.1016/j.fuproc.2015.06.046
    [Google Scholar]
  89. WuZ. MengH. LuoZ. ChenL. ZhaoJ. WangS. Performance evaluation on co-gasification of bituminous coal and wheat straw in entrained flow gasification system.Int. J. Hydrogen Energy20174230188841889310.1016/j.ijhydene.2017.05.144
    [Google Scholar]
  90. AgborE. ZhangX. KumarA. A review of Biomass co-firing in North America.Renew. Sustain. Energy Rev.20144093094310.1016/j.rser.2014.07.195
    [Google Scholar]
  91. SavolainenK. Co-firing of Biomass in coal-fired utility boilers.Appl. Energy2003743-436938110.1016/S0306‑2619(02)00193‑9
    [Google Scholar]
  92. Al-MansourF. ZuwalaJ. An evaluation of Biomass co-firing in Europe.Biomass Bioenergy201034562062910.1016/j.biombioe.2010.01.004
    [Google Scholar]
  93. BaxterL. Biomass-coal co-combustion: opportunity for affordable renewable energy.Fuel200584101295130210.1016/j.fuel.2004.09.023
    [Google Scholar]
  94. MallickD. MahantaP. MoholkarV.S. Co-gasification of coal and biomass blends: chemistry and engineering.Fuel201720410612810.1016/j.fuel.2017.05.006
    [Google Scholar]
  95. AignerI. PfeiferC. HofbauerH. Co-gasification of coal and wood in a dual fluidized bed gasifier.Fuel20119072404241210.1016/j.fuel.2011.03.024
    [Google Scholar]
  96. AznarM.P. CaballeroM.A. SanchoJ.A. FrancésE. Plastic waste elimination by co-gasification with coal and Biomass in fluidized bed with air in pilot plant.Fuel Process. Technol.200687540942010.1016/j.fuproc.2005.09.006
    [Google Scholar]
  97. PanY. VeloE. RocaX. ManyaJ. PuigjanerL. Fluidized-bed co-gasification of residual biomass/poor coal blends for fuel gas production.Fuel200079111317132610.1016/S0016‑2361(99)00258‑6
    [Google Scholar]
  98. LapuertaM. HernándezJ.J. PazoA. LópezJ. Gasification and co-gasification of biomass wastes: effect of the biomass origin and the gasifier operating conditions.Fuel Process. Technol.200889982883710.1016/j.fuproc.2008.02.001
    [Google Scholar]
  99. PintoF. LopesH. AndréR.N. GulyurtluI. CabritaI. Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coal and wastes. 1. Tars and nitrogen compounds abatement.Fuel200786142052206310.1016/j.fuel.2007.01.019
    [Google Scholar]
  100. GarciaL. BenedictoA. RomeoE. SalvadorM. ArauzoJ. BilbaoR. Hydrogen production by steam gasification of Biomass using Ni− Al coprecipitated catalysts promoted with magnesium.Energy Fuels20021651222123010.1021/ef020035f
    [Google Scholar]
  101. WangT. ChangJ. WuC. FuY. ChenY. The steam reforming of naphthalene over a nickel–dolomite cracking catalyst.Biomass Bioenergy200528550851410.1016/j.biombioe.2004.11.006
    [Google Scholar]
  102. WangC. WangT. MaL. GaoY. WuC. Steam reforming of biomass raw fuel gas over NiO–MgO solid solution cordierite monolith catalyst.Energy Convers. Manage.201051344645110.1016/j.enconman.2009.10.006
    [Google Scholar]
  103. SawW.L. PangS. Co-gasification of blended lignite and wood pellets in a 100 kW dual fluidised bed steam gasifier: The influence of lignite ratio on producer gas composition and tar content.Fuel201311211712410.1016/j.fuel.2013.05.019
    [Google Scholar]
  104. AndréR.N. PintoF. FrancoC. Fluidised bed co-gasification of coal and olive oil industry wastes.Fuel20058412-131635164410.1016/j.fuel.2005.02.018
    [Google Scholar]
  105. MasnadiM.S. GraceJ.R. BiX.T. From coal towards renewables: catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed.Renew. Energy20158391893010.1016/j.renene.2015.05.044
    [Google Scholar]
  106. FlorinN.H. HarrisA.T. Enhanced hydrogen production from Biomass within situ carbon dioxide capture using calcium oxide sorbents.Chem. Eng. Sci.200863228731610.1016/j.ces.2007.09.011
    [Google Scholar]
  107. KumabeK. HanaokaT. FujimotoS. MinowaT. SakanishiK. Co-gasification of woody Biomass and coal with air and steam.Fuel2007865-668468910.1016/j.fuel.2006.08.026
    [Google Scholar]
  108. Qin Y h, Han Q q, Zhao Z b, Du Z y, Feng J, Li W. Impact of biomass addition on organic structure and mineral matter of char during coal-biomass co-gasification under CO2 atmosphere.Fuel201720255656210.1016/j.fuel.2017.04.072
    [Google Scholar]
  109. LiS. ChenX. LiuA. WangL. YuG. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.Bioresour. Technol.201415525225710.1016/j.biortech.2013.12.11924457309
    [Google Scholar]
  110. HowaniecN. SmolińskiA. Biowaste utilization in the process of co-gasification with bituminous coal and lignite.Energy2017118182310.1016/j.energy.2016.12.021
    [Google Scholar]
  111. PatelV.R. PatelD. VariaN. PatelR.N. Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier.Energy201711983484410.1016/j.energy.2016.11.057
    [Google Scholar]
  112. ZhangZ. PangS. LeviT. Influence of AAEM species in coal and Biomass on steam co-gasification of chars of blended coal and Biomass.Renew. Energy201710135636310.1016/j.renene.2016.08.070
    [Google Scholar]
  113. FengP. LinW. JensenP.A. Entrained flow gasification of coal/bio-oil slurries.Energy201611179380210.1016/j.energy.2016.05.115
    [Google Scholar]
  114. ChenW.H. ChenC.J. HungC.I. Taguchi approach for co-gasification optimization of torrefied biomass and coal.Bioresour. Technol.201314461562210.1016/j.biortech.2013.07.01623907063
    [Google Scholar]
/content/journals/cae/10.2174/2405463104999200904115100
Loading
/content/journals/cae/10.2174/2405463104999200904115100
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): co-gasification; Energy; environment; gasification process; solar energy; synthesis gas
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test