Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2405-4631
  • E-ISSN: 2405-464X

Abstract

In this study, the author proposes an alternative concept of using electrostatic force of cation-exchange resin to attract metal ions and nanoscale conductors onto the polymer matrix to conduct the electrons for the plating/stripping of the metal species. Due to the even distribution of the positively-charged functional groups inside the cation-exchange resin, metal formation can also be well distributed and safety issue caused by metal dendrite can be eliminated. By applying this transformative concept, various hybrid flow batteries could be “upgraded” to dendrite-free full-flow batteries. Interestingly, this new concept could also be generalized for all metal-based aqueous and nonaqueous hybrid systems to upgrade them into next-generation full-flow battery systems. This work offers an alternative concept to deliver unprecedented battery systems and the proof-of-concept would be more easily implemented than anticipated.

Loading

Article metrics loading...

/content/journals/cae/10.2174/0124054631291796240308065141
2024-03-22
2025-01-19
Loading full text...

Full text loading...

References

  1. ZhangL. FengR. WangW. YuG. Emerging chemistries and molecular designs for flow batteries.Nat. Rev. Chem.20226852454310.1038/s41570‑022‑00394‑6 37118006
    [Google Scholar]
  2. XiaY. OuyangM. YufitV. TanR. RegoutzA. WangA. MaoW. ChakrabartiB. KaveiA. SongQ. KucernakA.R. BrandonN.P. A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture.Nat. Commun.2022131238810.1038/s41467‑022‑30044‑w 35501344
    [Google Scholar]
  3. GurieffN. KeoghD.F. BaldryM. TimchenkoV. GreenD. KoskinenI. MenictasC. Mass transport optimization for redox flow battery design.Appl. Sci. 2020108280110.3390/app10082801
    [Google Scholar]
  4. MohandassG. ChenW. KrishnanS. KimT. Asymmetric and symmetric redox flow batteries for energy-efficient, high-recovery water desalination.Environ. Sci. Technol.20225674477448810.1021/acs.est.1c08609 35297617
    [Google Scholar]
  5. WartanaI.M. AgustiniN.P. Application of voltage and lines stability index for optimal placement of wind energy with a system load increase scenario.Curr. Altern. Energy201931444910.2174/2405463103666190724105814
    [Google Scholar]
  6. HallD.M. BachmanR.M. RadovicL.R. Carbon materials in redox flow batteries: Challenges and opportunities.Carbon Reports2022139411210.7209/carbon.010306
    [Google Scholar]
  7. ZhaoZ. ZhangC. LiX. Opportunities and challenges of organic flow battery for electrochemical energy storage technology.J. Ener. Chem.20226762163910.1016/j.jechem.2021.10.037
    [Google Scholar]
  8. MacleanS.A. RazaS. WangH. IgbomezieC. LiuJ. MakowskiN. MaY. ShenY. RӧhrJ.A. WengG-M. TaylorA.D. Investigation of flow rate in symmetric four-channel redox flow desalination system.Cell Rep. Phy. Sci.20245110176110.1016/j.xcrp.2023.101761
    [Google Scholar]
  9. LehmannM.L. TylerL. SelfE.C. YangG. NandaJ. SaitoT. Membrane design for non-aqueous redox flow batteries: Current status and path forward.Chem2022861611163610.1016/j.chempr.2022.04.005
    [Google Scholar]
  10. ZengL. ZhaoT.S. WeiL. JiangH.R. WuM.C. Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges.Appl. Energy2019233-23462264310.1016/j.apenergy.2018.10.063
    [Google Scholar]
  11. BockR. KleinsteinbergB. Selnes-VolsethB. Stokke BurheimO. A novel iron chloride red-ox concentration flow cell battery (ICFB) concept; power and electrode optimization.Energies2021144110910.3390/en14041109
    [Google Scholar]
  12. ZengY.K. ZhaoT.S. AnL. ZhouX.L. WeiL. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage.J. Power Sources201530043844310.1016/j.jpowsour.2015.09.100
    [Google Scholar]
  13. MaQ. MaoC. FuW. LiH. SuH. XuQ. Numerical study of deep eutectic solvent electrolyte‐based vanadium‐iron redox flow battery with three‐dimensional multi‐layer porous electrode.Int. J. Energy Res.2022469128201283610.1002/er.8055
    [Google Scholar]
  14. FaggianoL. LacarbonaraG. BadenhorstW.D. MurtomäkiL. SanzL. ArbizzaniC. Short thermal treatment of carbon felts for copper-based redox flow batteries.J. Power Sources202252023084610.1016/j.jpowsour.2021.230846
    [Google Scholar]
  15. BadenhorstW.D. Kuldeep Sanz L. C. Arbizzani Murtomäki L. Performance improvements for the all-copper redox flow battery: Membranes, electrodes, and electrolytes”.Energy Rep.202288690870010.1016/j.egyr.2022.06.075
    [Google Scholar]
  16. LloydD. VainikkaT. KontturiK. The development of an all copper hybrid redox flow battery using deep eutectic solvents.Electrochim. Acta2013100182310.1016/j.electacta.2013.03.130
    [Google Scholar]
  17. EvankoB. YooS.J. LiptonJ. ChunS-E. MoskovitsM. JiX. BoettcherS.W. StuckyG.D. Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage.Energy Environ. Sci.201811102865287510.1039/C8EE00546J
    [Google Scholar]
  18. XuZ. FanQ. LiY. WangJ. LundP.D. Review of zinc dendrite formation in zinc bromine redox flow battery.Renew. Sustain. Energy Rev.202012710983810.1016/j.rser.2020.109838
    [Google Scholar]
  19. Lao-atimanW. BumroongsriP. ArpornwichanopA. OlaruS. KheawhomS. Prediction of charge-discharge behavior and state of charge estimation for tri-electrode rechargeable zinc-air flow batteries.J. Energy Storage20225510578610.1016/j.est.2022.105786
    [Google Scholar]
  20. WinsbergJ. JanoschkaT. MorgensternS. HagemannT. MuenchS. HauffmanG. GohyJ.F. HagerM.D. SchubertU.S. Poly(TEMPO)/zinc hybrid‐flow battery: A novel, “green,” high voltage, and safe energy storage system.Adv. Mater.201628112238224310.1002/adma.201505000 26810789
    [Google Scholar]
  21. LiB. NieZ. VijayakumarM. LiG. LiuJ. SprenkleV. WangW. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.Nat. Commun.201561630310.1038/ncomms7303 25709083
    [Google Scholar]
  22. DudutaM. HoB. WoodV.C. LimthongkulP. BruniniV.E. CarterW.C. ChiangY-M. Semi‐solid lithium rechargeable flow battery.Adv. Energy Mater.20111451151610.1002/aenm.201100152
    [Google Scholar]
  23. HatzellK.B. BootaM. GogotsiY. Materials for suspension (semi-solid) electrodes for energy and water technologies.Chem. Soc. Rev.201544238664868710.1039/C5CS00279F 26412441
    [Google Scholar]
  24. ChuF. GuoL. WangS. ChengY. Semi-solid zinc slurry with abundant electron-ion transfer interfaces for aqueous zinc-based flow batteries.J. Power Sources202253523144210.1016/j.jpowsour.2022.231442
    [Google Scholar]
  25. LiuJ. WangY. Preliminary study of high energy density Zn/Ni flow batteries.J. Power Sources201529457457910.1016/j.jpowsour.2015.06.110
    [Google Scholar]
  26. GhoshM. VijayakumarV. KurungotS. Dendrite growth suppression by Zn2+ ‐integrated nafion ionomer membranes: Beyond porous separators toward aqueous Zn/V 2 O 5 batteries with extended cycle life.Energy Technol. 201979190044210.1002/ente.201900442
    [Google Scholar]
  27. ZhaoX. ZhuM. TangC. QuanK. TongQ. CaoH. JiangJ. YangH. ZhangJ. ZIF-8@MXene-reinforced flame-retardant and highly conductive polymer composite electrolyte for dendrite-free lithium metal batteries.J. Colloid Interface Sci.202262047848510.1016/j.jcis.2022.04.018 35452945
    [Google Scholar]
  28. ZhouB. LongJ. HeM. ZhengR. DuD. YanY. RenL. ZengT. ShuC. A multifunctional protective layer with biomimetic ionic channel suppressing dendrite and side reactions on zinc metal anodes.J. Colloid Interface Sci.202261313614510.1016/j.jcis.2022.01.027 35033760
    [Google Scholar]
  29. HigashiS. LeeS.W. LeeJ.S. TakechiK. CuiY. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration.Nat. Commun.2016711180110.1038/ncomms11801 27263471
    [Google Scholar]
  30. DingF. XuW. GraffG.L. ZhangJ. SushkoM.L. ChenX. ShaoY. EngelhardM.H. NieZ. XiaoJ. LiuX. SushkoP.V. LiuJ. ZhangJ.G. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism.J. Am. Chem. Soc.2013135114450445610.1021/ja312241y 23448508
    [Google Scholar]
  31. ChengX.B. HouT.Z. ZhangR. PengH.J. ZhaoC.Z. HuangJ.Q. ZhangQ. Dendrite‐free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries.Adv. Mater.201628152888289510.1002/adma.201506124 26900679
    [Google Scholar]
  32. SalvatierraR.V. López-SilvaG.A. JalilovA.S. YoonJ. WuG. TsaiA.L. TourJ.M. Suppressing li metal dendrites through a solid li‐ion backup layer.Adv. Mater.20183050180386910.1002/adma.201803869 30368916
    [Google Scholar]
  33. NaguibM. BarsoumM.W. GogotsiY. Ten years of progress in the synthesis and development of mxenes.Adv. Mater.20213339210339310.1002/adma.202103393 34396592
    [Google Scholar]
  34. ZhangD. WangS. LiB. GongY. YangS. Horizontal growth of lithium on parallelly aligned mxene layers towards dendrite‐free metallic lithium anodes.Adv. Mater.20193133190182010.1002/adma.201901820
    [Google Scholar]
  35. ZhangH. ZhouZ. YinY. XuH. WangY. YangK. ZhangZ. WangJ. HeX. Efficient capture and separation of CO 2 ‐Boosted carbon neutralization enabled by tailorable metal‐organic frameworks: A review.EcoEnergy20231221724710.1002/ece2.15
    [Google Scholar]
  36. WangY. LiuY. WangH. DouS. GanW. CiL. HuangY. YuanQ. MOF-based ionic sieve interphase for regulated Zn2+ flux toward dendrite-free aqueous zinc-ion batteries.J. Mater. Chem. A Mater. Energy Sustain.20221084366437510.1039/D1TA10245A
    [Google Scholar]
  37. ZhangX. WangA. LiuX. LuoJ. Dendrites in lithium metal anodes: Suppression, regulation, and elimination.Acc. Chem. Res.201952113223323210.1021/acs.accounts.9b00437 31657541
    [Google Scholar]
  38. AslamM.K. NiuY. HussainT. TabassumH. TangW. XuM. AhujaR. How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression.Nano Energy20218610614210.1016/j.nanoen.2021.106142
    [Google Scholar]
  39. CaoD. SunX. LiQ. NatanA. XiangP. ZhuH. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations.Matter202031579410.1016/j.matt.2020.03.015
    [Google Scholar]
  40. GongK. MaX. ConfortiK.M. KuttlerK.J. GrunewaldJ.B. YeagerK.L. BazantM.Z. GuS. YanY. A zinc–iron redox-flow battery under $100 per kW h of system capital cost.Energy Environ. Sci.20158102941294510.1039/C5EE02315G
    [Google Scholar]
  41. WengG.M. LiC.Y.V. ChanK.Y. High voltage vanadium-metal hydride rechargeable semi-flow battery.J. Electrochem. Soc.20131609A1384A138910.1149/2.035309jes
    [Google Scholar]
  42. WengG.M. LiC.Y.V. ChanK.Y. LeeC.W. ZhongJ. Investigations of high voltage vanadium-metal hydride flow battery toward kwh scale storage with 100 cm2 electrodes.J. Electrochem. Soc.20161631A5180A518710.1149/2.0271601jes
    [Google Scholar]
  43. WeberA.Z. MenchM.M. MeyersJ.P. RossP.N. GostickJ.T. LiuQ. Redox flow batteries: A review.J. Appl. Electrochem.201141101137116410.1007/s10800‑011‑0348‑2
    [Google Scholar]
  44. DempseyJ.L. JacksonM.N. PeroffA.G. Meeting the need: Formal electrochemistry training through workshops.J. Chem. Educ.2024101248348910.1021/acs.jchemed.3c00875
    [Google Scholar]
  45. dos SantosW.R. Spalenza CaserE. SoaresE.J. SiqueiraR.N. Drag reduction in turbulent flows by diutan gum: A very stable natural drag reducer.J. Non-Newt. Fluid Mech.202027610422310.1016/j.jnnfm.2019.104223
    [Google Scholar]
  46. GuY. YuS. MouJ. Research progress on the collaborative drag reduction effect of polymers and surfactants.Ind. Organ. Psychol.202013444 31963432
    [Google Scholar]
  47. LiX. HuiB. JinQ. ShiH. LuX. JingL. JingD. Control of both ionic properties and micellar structure for enhanced turbulent drag reduction performance of surfactant solutions.Ind. Eng. Chem. Res.20236240164811649410.1021/acs.iecr.3c02708
    [Google Scholar]
  48. RivasB.L. PereiraE.D. Viscosity properties of aqueous solution of poly(allylamine)-metal complexes.Polym. Bull.2000451697610.1007/s002890070058
    [Google Scholar]
  49. MaburyS.A. MathersD. EllisD.A. LeeP. MarsellaA.M. DouglasM. An undergraduate experiment for the measurement of trace metals in core sediments by ICP-AES and GFAAS.J. Chem. Educ.20007712161110.1021/ed077p1611
    [Google Scholar]
  50. YuanJ. HuangH. ChenY. YangW. TianH. ZhangD. ZhangH. Automatic bulk composition analysis of lunar basalts: Novel big-data algorithm for energy-dispersive x-ray spectroscopy.ACS Earth Space Chem.20237237037810.1021/acsearthspacechem.2c00260
    [Google Scholar]
  51. MolauG.E. Heterogeneous ion-exchange membranes.J. Membr. Sci.19818330933010.1016/S0376‑7388(00)82318‑2
    [Google Scholar]
  52. Ramírez-MontoyaL.A. Hernández-MontoyaV. Montes-MoránM.A. Jáuregui-RincónJ. CervantesF.J. Decolorization of dyes with different molecular properties using free and immobilized laccases from Trametes versicolor.J. Mol. Liq.2015212303710.1016/j.molliq.2015.08.040
    [Google Scholar]
  53. KumarS. VandreE. CarvalhoM. Characteristics of air entrainment during dynamic wetting failure along a planar substrate67th Annual Meeting of the APS Division of Fluid Dynamics. vol. 747 Cambridge University Press2014119140
    [Google Scholar]
  54. RosencranzR. BogenS.A. Clinical laboratory measurement of serum, plasma, and blood viscosity.Am. J. Clin. Pathol.2006125S78S86 16830959
    [Google Scholar]
  55. NegishiM. SetoH. HaseM. YoshikawaK. How does the mobility of phospholipid molecules at a water/oil interface reflect the viscosity of the surrounding oil?Langmuir200824168431843410.1021/la8015172 18646878
    [Google Scholar]
  56. ChaoT.C. TrybalaA. StarovV. DasD.B. Influence of haematocrit level on the kinetics of blood spreading on thin porous medium during dried blood spot sampling.Colloids Surf. A Physicochem. Eng. Asp.2014451384710.1016/j.colsurfa.2014.03.033
    [Google Scholar]
  57. SongY. TurtonR. Study of the effect of liquid bridges on the dynamic behavior of two colliding tablets using DEM.Powder Technol.200717829910810.1016/j.powtec.2007.04.010
    [Google Scholar]
  58. Skyllas-KazacosM. Novel vanadium chloride/polyhalide redox flow battery.J. Power Sources2003124129930210.1016/S0378‑7753(03)00621‑9
    [Google Scholar]
  59. WuM. LiuM. LongG. WanK. LiangZ. ZhaoT.S. A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries.Appl. Energy201413657658110.1016/j.apenergy.2014.09.076
    [Google Scholar]
  60. Mensah-DarkwaK. TabiR.N. OwusuM. IngselT. KaholP.K. GuptaR.K. Recent advancement in MoS2 for hydrogen evolution reactions.Curr. Graphene Sci.202031112510.2174/2452273204666200303124226
    [Google Scholar]
  61. ShaoY. XiaoX. ZhuY.P. MaT.Y. Single‐crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes.Angew. Chem. Int. Ed.20195841145991460410.1002/anie.201909326 31456313
    [Google Scholar]
  62. SunD. SunZ. YangD. JiangX. TangJ. WangX. Advances in boron nitride‐based materials for electrochemical energy storage and conversion.EcoEnergy20231237540410.1002/ece2.22
    [Google Scholar]
  63. NarayananT.M. ZhuY.G. GençerE. McKinleyG. Shao-HornY. Low-cost manganese dioxide semi-solid electrode for flow batteries.Joule20215112934295410.1016/j.joule.2021.07.010
    [Google Scholar]
  64. ZhuY.G. NarayananT.M. TulodzieckiM. Sanchez-CasalongueH. HornQ.C. MedaL. YuY. SunJ. RegierT. McKinleyG.H. Shao-HornY. High-energy and high-power Zn–Ni flow batteries with semi-solid electrodes.Sustain. Energy Fuels2020484076408510.1039/D0SE00675K
    [Google Scholar]
  65. HanifM. ZuoL. YanQ. HuX. ShiM. ChenH. A novel electrochemically and thermally stable polythiophene for photovoltaic application.J. Appl. Polym. Sci.2013127116116810.1002/app.37852
    [Google Scholar]
  66. ZhangS. LuoJ. DuM. HuiH. SunZ. Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers.Eur. Polym. J.202217111122210.1016/j.eurpolymj.2022.111222
    [Google Scholar]
  67. MirF.A. MirO.I. ZargarR.A. Structural, morphological, vibrational, thermal and optical properties of zns quantum dots in the polymer matrix.Curr. Altern. Energy201931505810.2174/2405463103666190704160914
    [Google Scholar]
  68. ChenX. HopkinsB.J. HelalA. FanF.Y. SmithK.C. LiZ. SlocumA.H. McKinleyG.H. CarterW.C. ChiangY-M. A low-dissipation, pumpless, gravity-induced flow battery.Energy Environ. Sci.2016951760177010.1039/C6EE00874G
    [Google Scholar]
  69. ChoiN. del OlmoD. FischerP. PinkwartK. TübkeJ. Development of flow fields for zinc slurry air flow batteries.Batteries2020611510.3390/batteries6010015
    [Google Scholar]
/content/journals/cae/10.2174/0124054631291796240308065141
Loading
/content/journals/cae/10.2174/0124054631291796240308065141
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test