Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Introduction

With a projected mortality toll of 1.4 million in 2019, tuberculosis (TB) continues to be a significant public health concern around the world. Studies of novel treatments are required due to decreased bioavailability, increased toxicity, increased side effects, and resistance of several first- and second-line TB therapies, including isoniazid and ethionamide.

Methods

This study reports the synthesis of oxindole-based hybrids as potent InhA inhibitors targeting . The synthesized compounds (- and -) were evaluated for their anti-mycobacterial activity against and nontuberculous mycobacteria (NTMs), (ATCC 19977), (ATCC 6841), and (ATCC 35752) using the Microplate Alamar Blue Assay (MABA). Molecular docking studies were performed using AutoDock Vina to explore the binding interactions of these compounds with the InhA enzyme (PDB: 2NSD). Additionally, biochemical and histopathological studies were conducted to assess the hepatotoxicity of the lead compounds. molecular properties and ADMET properties of the synthesized compounds were predicted using SwissADME and Deep-PK online tools to assess their drug-likeness.

Results

Among the tested compounds, exhibited significant anti-mycobacterial activity with a minimum inhibitory concentration (MIC = 1 μg/mL) comparable to the reference drug ethambutol. Further, the compound demonstrated a binding affinity and orientation similar to the reference inhibitor 4PI, indicating its potential as a potent InhA inhibitor, and was found to be stabilized within the binding pocket of InhA through H-bonding, hydrophobic and van der Waal’s interactions. Besides, the compounds hepatotoxicity assessment studies depicted that showed no significant liver dysfunction or damage to liver tissues. Additionally, adhered to Lipinski’s rule of five and Veber’s rule, displaying favourable pharmacokinetic and drug-like properties, including high human intestinal absorption, distribution, and acceptable metabolic stability and excretion.

Conclusion

Compound emerged as a promising candidate for further optimization and development as a therapeutic agent for tuberculosis, offering a new avenue for tackling tuberculosis.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099353857241022102426
2024-10-31
2025-06-21
Loading full text...

Full text loading...

References

  1. Nusrath UnissaA. HannaL.E. SwaminathanS. A note on derivatives of isoniazid, rifampicin, and pyrazinamide showing activity against resistant Mycobacterium tuberculosis.Chem. Biol. Drug Des.201687453755010.1111/cbdd.12684
    [Google Scholar]
  2. Global Tuberculosis report 2023.Available from:https://cdn.who.int/media/docs/default-source/hq-tuberculosis/global-tuberculosis-report-2023/global-tb-report-2023-factsheet.pdf?sfvrsn=f0dfc8a4_4&download=true(accessed on 8-10-2024)
  3. Global Tuberculosis Report Factsheet 2023.Available from:https://www.who.int/publications/m/item/global-tuberculosis-report-factsheet-2023(accessed on 8-10-2024)
  4. GrangeJ.M. ZumlaA. The global emergency of tuberculosis: what is the cause?J. R. Soc. Promot. Health20021222788110.1177/146642400212200206
    [Google Scholar]
  5. BhowmikD. ChiranjibR.M. JayakarB. KumarK.P.S. Recent trends of drug used treatment of tuberculosis.J. Chem. Pharm. Res.200911113133
    [Google Scholar]
  6. LallooU.G. AmbaramA. New antituberculous drugs in development.Curr. HIV/AIDS Rep.20107314315110.1007/s11904‑010‑0054‑4
    [Google Scholar]
  7. GreenblattD.J. Elimination half-life of drugs: Value and limitations.Annu. Rev. Med.198536142142710.1146/annurev.me.36.020185.002225
    [Google Scholar]
  8. SchraufnagelD. AbubakerJ. Global action against multidrug-resistant tuberculosis.JAMA20002831545510.1001/jama.283.1.54
    [Google Scholar]
  9. JonesD. Tuberculosis success.Nat. Rev. Drug Discov.201312317517610.1038/nrd3957
    [Google Scholar]
  10. HoaglandD.T. LiuJ. LeeR.B. LeeR.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis.Adv. Drug Deliv. Rev.2016102557210.1016/j.addr.2016.04.026
    [Google Scholar]
  11. ConinxR. MathieuC. DebackerM. MirzoevF. IsmaelovA. de HallerR. MeddingsD.R. First-line tuberculosis therapy and drug-resistant Mycobacterium tuberculosis in prisons.Lancet1999353915796997310.1016/S0140‑6736(98)08341‑X
    [Google Scholar]
  12. LangbangA. DekaN. RahmanH. KalitaD. A study on bacterial pathogens causing secondary infections in patients suffering from tuberculosis and their pattern of antibiotic sensitivity.Int. J. Curr. Microbiol. Appl. Sci.20165819720310.20546/ijcmas.2016.508.021
    [Google Scholar]
  13. CohenJ. Approval of novel TB drug celebrated—with restraint.Science2013339611613010.1126/science.339.6116.130
    [Google Scholar]
  14. RyanN.J. LoJ.H. Delamanid: First global approval.Drugs20147491041104510.1007/s40265‑014‑0241‑5
    [Google Scholar]
  15. MaZ. LienhardtC. McIlleronH. NunnA.J. WangX. Global tuberculosis drug development pipeline: the need and the reality.Lancet201037597312100210910.1016/S0140‑6736(10)60359‑9
    [Google Scholar]
  16. VillemagneB. CrausteC. FlipoM. BaulardA.R. DéprezB. WillandN. Tuberculosis: The drug development pipeline at a glance.Eur. J. Med. Chem.20125111610.1016/j.ejmech.2012.02.033
    [Google Scholar]
  17. Al-MudhafarM.M.J. OmarT.N-A. AbdulhadiS.L. J. Pharm. Sci.20222212348
    [Google Scholar]
  18. XuY. GuanJ. XuZ. ZhaoS. Design, synthesis and in vitro anti-mycobacterial activities of homonuclear and heteronuclear bis-isatin derivatives.Fitoterapia201812738338610.1016/j.fitote.2018.03.018
    [Google Scholar]
  19. AkhajaT.N. RavalJ.P. Design, synthesis, in vitro evaluation of tetrahydropyrimidine–isatin hybrids as potential antibacterial, antifungal and anti-tubercular agents.Chin. Chem. Lett.201223444644910.1016/j.cclet.2012.01.040
    [Google Scholar]
  20. Aboul-FadlT. MohammedF.A.H. HassanE.A.S. Synthesis, antitubercular activity and pharmacokinetic studies of some schiff bases derived from 1- alkylisatin and isonicotinic acid hydrazide (inh).Arch. Pharm. Res.2003261077878410.1007/BF02980020
    [Google Scholar]
  21. GaoF. YangH. LuT. ChenZ. MaL. XuZ. SchafferP. LuG. Design, synthesis and anti-mycobacterial activity evaluation of benzofuran-isatin hybrids.Eur. J. Med. Chem.201815927728110.1016/j.ejmech.2018.09.049
    [Google Scholar]
  22. ChenR. ZhangH. MaT. XueH. MiaoZ. ChenL. ShiX. Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation.Bioorg. Med. Chem. Lett.201929182635263710.1016/j.bmcl.2019.07.041
    [Google Scholar]
  23. HanY.J. WangL. LiQ.B. XueL.W. Synthesis, crystal structure, and antibacterial activity of oxovanadium(V) complexes derived from N′-[1-(5-fluoro-2-hydroxyphenyl)methylidene]nicotinehydrazide and N′-(5-fluoro-2-hydroxybenzylidene)-2-hydroxynaphthylhydrazide.Russ. J. Coord. Chem.201743961261810.1134/S1070328417090020
    [Google Scholar]
  24. SolimanD.H. EldehnaW.M. GhabbourH.A. KabilM.M. Abdel-AzizM.M. Abdel-AzizH.A-K. Novel 6-phenylnicotinohydrazide derivatives: Design, synthesis and biological evaluation as a novel class of antitubercular and antimicrobial agents.Biol. Pharm. Bull.201740111883189310.1248/bpb.b17‑00361
    [Google Scholar]
  25. Castelo-BrancoF.S. de LimaE.C. DomingosJ.L.O. PintoA.C. LourençoM.C.S. GomesK.M. Costa-LimaM.M. Araujo-LimaC.F. AiubC.A.F. FelzenszwalbI. CostaT.E.M.M. PenidoC. HenriquesM.G. BoechatN. New hydrazides derivatives of isoniazid against Mycobacterium tuberculosis: Higher potency and lower hepatocytotoxicity.Eur. J. Med. Chem.201814652954010.1016/j.ejmech.2018.01.071
    [Google Scholar]
  26. Aboul-FadlT. Abdel-AzizH.A. KadiA. AhmadP. ElsamanT. AttwaM.W. DarwishI.A. Microwave-assisted solution-phase synthesis and DART-mass spectrometric monitoring of a combinatorial library of indolin-2,3-dione schiff bases with potential antimycobacterial activity.Molecules20111665194520610.3390/molecules16065194
    [Google Scholar]
  27. Aboul-FadlT. Bin-JubairF.A.S. Aboul-WafaO. Schiff bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building.Eur. J. Med. Chem.201045104578458610.1016/j.ejmech.2010.07.020
    [Google Scholar]
  28. Abo-AshourM.F. EldehnaW.M. GeorgeR.F. Abdel-AzizM.M. ElaasserM.M. Abdel GawadN.M. GuptaA. BhaktaS. Abou-SeriS.M. Novel indole-thiazolidinone conjugates: Design, synthesis and whole-cell phenotypic evaluation as a novel class of antimicrobial agents.Eur. J. Med. Chem.2018160496010.1016/j.ejmech.2018.10.008
    [Google Scholar]
  29. BanerjeeA. DubnauE. QuemardA. BalasubramanianV. UmK.S. WilsonT. CollinsD. de LisleG. JacobsW.R.Jr inhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium tuberculosis.Science1994263514422723010.1126/science.8284673
    [Google Scholar]
  30. ModiP. PatelS. ChhabriaM.T. Identification of some novel pyrazolo[1,5- a ]pyrimidine derivatives as InhA inhibitors through pharmacophore-based virtual screening and molecular docking.J. Biomol. Struct. Dyn.20193771736174910.1080/07391102.2018.1465852
    [Google Scholar]
  31. TakayamaK. WangC. BesraG.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis.Clin. Microbiol. Rev.20051818110110.1128/CMR.18.1.81‑101.2005
    [Google Scholar]
  32. ZhangY. HeymB. AllenB. YoungD. ColeS. The catalase—peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis.Nature1992358638759159310.1038/358591a0
    [Google Scholar]
  33. WangF. LangleyR. GultenG. DoverL.G. BesraG.S. JacobsW.R.Jr SacchettiniJ.C. Mechanism of thioamide drug action against tuberculosis and leprosy.J. Exp. Med.20072041737810.1084/jem.20062100
    [Google Scholar]
  34. HeX. AlianA. Ortiz de MontellanoP.R. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides.Bioorg. Med. Chem.200715216649665810.1016/j.bmc.2007.08.013
    [Google Scholar]
  35. Abdel-AalW.S. HassanH.Y. Aboul-FadlT. YoussefA.F. Pharmacophoric model building for antitubercular activity of the individual Schiff bases of small combinatorial library.Eur. J. Med. Chem.20104531098110610.1016/j.ejmech.2009.12.005
    [Google Scholar]
  36. Aboul-FadlT. Bin-JubairF.A.S. Int. J. Res. Pharm. Sci.20101113126
    [Google Scholar]
  37. FranzblauS.G. WitzigR.S. McLaughlinJ.C. TorresP. MadicoG. HernandezA. DegnanM.T. CookM.B. QuenzerV.K. FergusonR.M. GilmanR.H. Rapid, Low-Technology MIC Determination with Clinical Mycobacterium tuberculosis Isolates by Using the Microplate Alamar Blue Assay.J. Clin. Microbiol.199836236236610.1128/JCM.36.2.362‑366.1998
    [Google Scholar]
  38. ChoS. LeeH.S. FranzblauS. Mycobacteria Protocols, Methods in Molecular Biology. ParishT. RobertsS. New York, NYHumana Press20151285
    [Google Scholar]
  39. SiddiquiN. RanaA. KhanS.A. BhatM.A. HaqueS.E. Synthesis of benzothiazole semicarbazones as novel anticonvulsants—The role of hydrophobic domain.Bioorg. Med. Chem. Lett.200717154178418210.1016/j.bmcl.2007.05.048
    [Google Scholar]
  40. LunaL.G. Manual of Histological Staining Methods of the Armed Forces Institute of Pathology.New YorkMcGraw-Hill1968567568
    [Google Scholar]
  41. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256
    [Google Scholar]
  42. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334
    [Google Scholar]
  43. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203
    [Google Scholar]
  44. PatelV.P. TripathiR.K.P. DharamsiA. Computational exploration of isatin derivatives for inha inhibition in tuberculosis: molecular docking, MD simulations and ADMET insightsCurr. Comput. Aided. Drug Des.2024Online ahead of Print10.2174/0115734099333313240909103833
    [Google Scholar]
  45. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus : structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.1936179
    [Google Scholar]
  46. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  47. TripathiR.K.P. DeyR. DasN. Identification of natural lead molecules as potential Trypanosoma cruzi cruzipain inhibitors and decoding the interaction mechanism for the treatment of Chagas disease: A computational biology analysis.Nat. Prod. Res.202438203676368010.1080/14786419.2023.2256018
    [Google Scholar]
  48. TianS. WangJ. LiY. LiD. XuL. HouT. The application of in silico drug-likeness predictions in pharmaceutical research.Adv. Drug Deliv. Rev.20158621010.1016/j.addr.2015.01.009
    [Google Scholar]
  49. KhanT. LawrenceA.J. AzadI. RazaS. JoshiS. KhanA.R. AbdulR. Computational drug designing and prediction of important parameters using in silico methods- a review.Curr. Computeraided Drug Des.201915538439710.2174/1573399815666190326120006
    [Google Scholar]
  50. ChandrasekaranB. AbedS.N. Al-AttraqchiO. KucheK. TekadeR.K. Advances in pharmaceutical product development and research.Dosage Form Design ParametersAcademic Press2018
    [Google Scholar]
  51. PanchalI. TripathiR.K.P. YadavM.R. ValeraM. ParmarK. Design, synthesis, and biological and in silico evaluation of novel indazole-pyridine hybrids for the treatment of breast cancer.Curr. Comput. Aided. Drug Des.2024Online ahead of Print10.2174/0115734099308839240724100224
    [Google Scholar]
  52. SWISSadme.Available from:http://www.swissadme.ch/(accessed on 8-10-2024)
  53. Myung, Y.; de Sá, A.G.C.; Ascher, D.B.; Deep learning for small molecule pharmacokinetic and toxicity prediction.Available from:https://biosig.lab.uq.edu.au/deeppk/(accessed on 8-10-2024)
  54. BoströmJ. GreenwoodJ.R. GottfriesJ. Assessing the performance of OMEGA with respect to retrieving bioactive conformations.J. Mol. Graph. Model.200321544946210.1016/S1093‑3263(02)00204‑8
    [Google Scholar]
  55. Dassault systèmes virtual worlds help you improve real life.2019Available from: https://www.3ds.com/(accessed on 8-10-2024)
  56. LipinskiC.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.Adv. Drug Deliv. Rev.2016101344110.1016/j.addr.2016.04.029
    [Google Scholar]
  57. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n
    [Google Scholar]
  58. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717
    [Google Scholar]
  59. OlasupoS.B. UzairuA. AdamuG.S. UbaS. Computational modeling and pharmacokinetics/admet study of some arylpiperazine derivatives as novel antipsychotic agents targeting depression.Chem. Africa20203497998810.1007/s42250‑020‑00161‑4
    [Google Scholar]
/content/journals/cad/10.2174/0115734099353857241022102426
Loading
/content/journals/cad/10.2174/0115734099353857241022102426
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test