Skip to content
2000
image of Xuebijing Exerts Protective Effects on Myocardial Cells by Upregulating TRIM16 and Inhibiting Oxidative Stress and Apoptosis

Abstract

Objective

This study utilized transcriptomic sequencing combined with cellular and animal models to explore the potential mechanisms of Xuebijing in treating sepsis-induced myocardial dysfunction also known as sepsis-induced myocardial injury.

Methods

We investigated potential targets and regulatory mechanisms of XBJ injection using network pharmacology and RNA sequencing. The effects of XBJ on oxidative stress and apoptosis levels in human cardiac myocytes (AC16) and C57BL/6 mice exposed to lipopolysaccharide (LPS) were evaluated by Enzyme-Linked Immunosorbent Assay (ELISA) fluorescent probe Fluorescent Quantitative Polymerase Chain Reaction (qPCR) Western Blot Transmission Electron Microscopy oxidative stress-related indicators detection kit flow cytometry and Immunohistochemistry (IHC).

Results

First it was verified that XBJ can reduce the deformation of AC16 cardiomyocytes induced by LPS and the production and secretion of ROS ( <0.01). The transcriptome sequencing results showed that the TRIM16 gene was significantly increased after XBJ treatment and the data of KEGG and GO analyses demonstrated that XBJ could inhibit the pathway expression of oxidative stress damage in AC16 cells and PCR verified that XBJ could indeed increase the expression level of TRIM16 gene in AC16 cells ( <0.01). Basic animal and cell experiments showed that LPS could inhibit the expression of TRIM16 and NRF2 in cardiomyocytes ( <0.05) and promote the expression of Keap1 ( <0.01) while XBJ could significantly up-regulate the expression levels of TRIM16 and NRF2 ( <0.01) and inhibit the expression of Keap1 ( <0.01) thereby affecting the expression levels of downstream proinflammatory cytokines and alleviating LPS-induced oxidative stress damage. In addition XBJ also inhibited the expression of the pro-apoptotic proteins Bax and c-caspase3 ( <0.01) promoted the expression of the anti-apoptotic protein Bcl2 ( <0.01) and reduced LPS-induced apoptosis by upregulating TRIM16.

Conclusion

Our comprehensive data demonstrated that is a key gene in the therapeutic action of Xuebijing in sepsis-induced myocardial dysfunction protecting myocardial cells from injury through antioxidative stress and anti-apoptotic mechanisms.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099318323241122184120
2024-12-02
2025-01-18
Loading full text...

Full text loading...

References

  1. Singer M. Deutschman C.S. Seymour C.W. Shankar-Hari M. Annane D. Bauer M. Bellomo R. Bernard G.R. Chiche J.D. Coopersmith C.M. Hotchkiss R.S. Levy M.M. Marshall J.C. Martin G.S. Opal S.M. Rubenfeld G.D. van der Poll T. Vincent J.L. Angus D.C. The third international consensus definitions for Sepsis and Septic shock (Sepsis-3). JAMA 2016 315 8 801 810 10.1001/jama.2016.0287 26903338
    [Google Scholar]
  2. Beesley S.J. Weber G. Sarge T. Nikravan S. Grissom C.K. Lanspa M.J. Shahul S. Brown S.M. Septic Cardio-myopathy. Crit. Care Med. 2018 46 4 625 634 10.1097/CCM.0000000000002851 29227368
    [Google Scholar]
  3. Martin L. The septic heart: Current understanding of molecu-lar mechanisms and clinical implications. Chest 2019 155 2 427 437
    [Google Scholar]
  4. Ehrman R.R. Sullivan A.N. Favot M.J. Sherwin R.L. Reynolds C.A. Abidov A. Levy P.D. Pathophysiology, echocardiographic evaluation, biomarker findings, and prog-nostic implications of septic cardiomyopathy: A review of the literature. Crit. Care 2018 22 1 112 10.1186/s13054‑018‑2043‑8 29724231
    [Google Scholar]
  5. Hanumanthu B.K.J. Nair A.S. Katamreddy A. Gilbert J.S. You J.Y. Offor O.L. Kushwaha A. Krishnan A. Napoli-tano M. Palaidimos L. Morante J. Tekwani S.S. Mehta S. Gupta A. Goraya H. Sun M. Faillace R.T. Gulani P. Sepsis-induced cardiomyopathy is associated with higher mortality rates in patients with sepsis. Acute Crit. Care 2021 36 3 215 222 10.4266/acc.2021.00234 34311515
    [Google Scholar]
  6. Chinese guidelines for management of severe sepsis and septic shock 2014. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2015 27 6 401 426 10.3760/j.issn.2095‑4352.2015.06.001
    [Google Scholar]
  7. Antonucci E. Fiaccadori E. Donadello K. Taccone F.S. Franchi F. Scolletta S. Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J. Crit. Care 2014 29 4 500 511 10.1016/j.jcrc.2014.03.028 24794044
    [Google Scholar]
  8. Flynn A. Chokkalingam Mani B. Mather P.J. Sepsis-induced cardiomyopathy: A review of pathophysiologic mechanisms. Heart Fail. Rev. 2010 15 6 605 611 10.1007/s10741‑010‑9176‑4 20571889
    [Google Scholar]
  9. Lv X. Wang H. Pathophysiology of sepsis-induced myocar-dial dysfunction. Mil. Med. Res. 2016 3 30 10.1186/s40779‑016‑0099‑9
    [Google Scholar]
  10. Paulus W.J. Unfolding discoveries in heart failure. N. Engl. J. Med. 2020 382 7 679 682 10.1056/NEJMcibr1913825 32053308
    [Google Scholar]
  11. Lima M.R. Silva D. Septic cardiomyopathy: A narrative review. Rev. Port. Cardiol. 2023 42 5 471 481 10.1016/j.repc.2021.05.020 36893835
    [Google Scholar]
  12. Martin L. Derwall M. Thiemermann C. Schürholz T. Heart in sepsis. Anaesthesist 2017 66 7 479 490 10.1007/s00101‑017‑0329‑x 28677016
    [Google Scholar]
  13. L’Heureux M. Sternberg M. Brath L. Turlington J. Kashiouris M.G. Sepsis-induced cardiomyopathy: A com-prehensive review. Curr. Cardiol. Rep. 2020 22 5 35 10.1007/s11886‑020‑01277‑2 32377972
    [Google Scholar]
  14. Fleischmann-Struzek C. Mellhammar L. Rose N. Cassini A. Rudd K.E. Schlattmann P. Allegranzi B. Reinhart K. Incidence and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020 46 8 1552 1562 10.1007/s00134‑020‑06151‑x 32572531
    [Google Scholar]
  15. Evans L. Rhodes A. Alhazzani W. Antonelli M. Cooper-smith C.M. French C. Machado F.R. Mcintyre L. Oster-mann M. Prescott H.C. Schorr C. Simpson S. Wiersinga W.J. Alshamsi F. Angus D.C. Arabi Y. Azevedo L. Beale R. Beilman G. Belley-Cote E. Burry L. Cecconi M. Centofanti J. Coz Yataco A. De Waele J. Dellinger R.P. Doi K. Du B. Estenssoro E. Ferrer R. Gomersall C. Hodgson C. Møller M.H. Iwashyna T. Jacob S. Kleinpell R. Klompas M. Koh Y. Kumar A. Kwizera A. Lobo S. Masur H. McGloughlin S. Mehta S. Mehta Y. Mer M. Nunnally M. Oczkowski S. Osborn T. Pa-pathanassoglou E. Perner A. Puskarich M. Roberts J. Schweickert W. Seckel M. Sevransky J. Sprung C.L. Welte T. Zimmerman J. Levy M. Surviving sepsis cam-paign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021 47 11 1181 1247 10.1007/s00134‑021‑06506‑y 34599691
    [Google Scholar]
  16. Vincent J.L. Marshall J.C. Ñamendys-Silva S.A. François B. Martin-Loeches I. Lipman J. Reinhart K. Antonelli M. Pickkers P. Njimi H. Jimenez E. Sakr Y. Assessment of the worldwide burden of critical illness: The intensive care over nations (ICON) audit. Lancet Respir. Med. 2014 2 5 380 386 10.1016/S2213‑2600(14)70061‑X 24740011
    [Google Scholar]
  17. Buchman T.G. Simpson S.Q. Sciarretta K.L. Finne K.P. Sowers N. Collier M. Chavan S. Oke I. Pennini M.E. Santhosh A. Wax M. Woodbury R. Chu S. Merkeley T.G. Disbrow G.L. Bright R.A. MaCurdy, T.E.; Kelman, J.A. Sepsis among Medicare beneficiaries: The methods, models, and forecasts of sepsis, 2012–2018. Crit. Care Med. 2020 48 3 302 318 10.1097/CCM.0000000000004225 32058368
    [Google Scholar]
  18. Rudd K.E. Johnson S.C. Agesa K.M. Shackelford K.A. Tsoi D. Kievlan D.R. Colombara D.V. Ikuta K.S. Kis-soon N. Finfer S. Fleischmann-Struzek C. Machado F.R. Reinhart K.K. Rowan K. Seymour C.W. Watson R.S. West T.E. Marinho F. Hay S.I. Lozano R. Lopez A.D. Angus D.C. Murray C.J.L. Naghavi M. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the global burden of disease study. Lancet 2020 395 10219 200 211 10.1016/S0140‑6736(19)32989‑7 31954465
    [Google Scholar]
  19. Dai Y.J. Wan S.Y. Gong S.S. Liu J.C. Li F. Kou J.P. Recent advances of traditional Chinese medicine on the pre-vention and treatment of COVID-19. Chin. J. Nat. Med. 2020 18 12 881 889 10.1016/S1875‑5364(20)60031‑0 33357718
    [Google Scholar]
  20. Zhang B. Qi F. Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19. Biosci. Trends 2023 17 1 14 20 10.5582/bst.2022.01534 36596560
    [Google Scholar]
  21. Ye L. Fan S. Zhao P. Wu C. Liu M. Hu S. Wang P. Wang H. Bi H. Potential herb–drug interactions between an-ti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm. Sin. B 2023 13 9 3598 3637 10.1016/j.apsb.2023.06.001 37360014
    [Google Scholar]
  22. Fang B. Hong S. Zhao R. Expert consensus on the preven-tion and treatment of novel coronavirus infection caused by Omicron mutant. China Emergency Medicine 2022 42 04 277 280 [J]
    [Google Scholar]
  23. Hongjie T. Chinese Guidelines for Management of Severe Sepsis/Septic Shock: How to see early goal-directed therapy Chin. J. Crit. Care Intensive Care Med. (Electronic Ed.) 2016
    [Google Scholar]
  24. Zhao G.Z. Chen R.B. Li B. Guo Y.H. Xie Y.M. Liao X. Yang Y.F. Chen T.F. Di H.R. Shao F. Lv X.Q. Hu J. Feng S. Liu Q.Q. Zhang B.L. Clinical practice guideline on traditional Chinese medicine therapy alone or combined with antibiotics for sepsis. Ann. Transl. Med. 2019 7 6 122 10.21037/atm.2018.12.23 31032277
    [Google Scholar]
  25. Wang J. Targets and mechanisms of Xuebijing in the treat-ment of acute kidney injury associated with Sepsis: A net-work pharmacology-based study Curr. Comput. Aided Drug Des. 2024 20 6 752 763
    [Google Scholar]
  26. Unger E.F. Clissold D.B. Xuebijing injection for the treat-ment of Sepsis. JAMA Intern. Med. 2023 183 7 655 657 10.1001/jamainternmed.2023.0788 37126325
    [Google Scholar]
  27. Huang H. Ji L. Song S. Wang J. Wei N. Jiang M. Bai G. Luo G. Identification of the major constituents in Xuebi-jing injection by HPLC‐ESI‐MS. Phytochem. Anal. 2011 22 4 330 338 10.1002/pca.1284 21500296
    [Google Scholar]
  28. Shang T. Yu Q. Ren T. Wang X.T. Zhu H. Gao J.M. Pan G. Gao X. Zhu Y. Feng Y. Li M.C. Xuebijing injec-tion maintains GRP78 expression to prevent Candida albi-cans-induced epithelial death in the kidney. Front. Pharmacol. 2020 10 1416 10.3389/fphar.2019.01416 31969817
    [Google Scholar]
  29. Sun Z. Zuo L. Sun T. Tang J. Ding D. Zhou L. Kang J. Zhang X. Chemical profiling and quantification of XueBi-Jing injection, a systematic quality control strategy using UHPLC-Q Exactive hybrid quadrupole-orbitrap high-resolution mass spectrometry. Sci. Rep. 2017 7 1 16921 10.1038/s41598‑017‑17170‑y 29208914
    [Google Scholar]
  30. Feng Y.Y. Molecular mechanism of Xuebijing injection in treatment of sepsis according to drugtargetpathway network. Yao Xue Xue Bao 2017 12 556 562
    [Google Scholar]
  31. Li C. Wang P. Li M. Zheng R. Chen S. Liu S. Feng Z. Yao Y. Shang H. The current evidence for the treatment of sepsis with Xuebijing injection: Bioactive constituents, find-ings of clinical studies and potential mechanisms. J. Ethnopharmacol. 2021 265 113301 10.1016/j.jep.2020.113301 32860891
    [Google Scholar]
  32. Dai L. Chen M. Chen Q. Zhuang Y. Jiang H. Xu Y. Effi-cacy of Xuebijing injection for the treatment of acute lung in-jury: A meta-analysis of randomized controlled trials. Heliyon 2024 10 13 e33313 10.1016/j.heliyon.2024.e33313
    [Google Scholar]
  33. Zou F. Zou J. Du Q. Liu L. Li D. Zhao L. Tang M. Zuo L. Sun Z. XueBiJing injection improves the symptoms of sepsis-induced acute lung injury by mitigating oxidative stress and ferroptosis. J. Ethnopharmacol. 2025 337 Pt 1 118732 10.1016/j.jep.2024.118732 39181287
    [Google Scholar]
  34. Tang A. Li Y. Sun L. Liu X. Gao N. Yan S. Zhang G. Xuebijing improves intestinal microcirculation dysfunction in septic rats by regulating the VEGF-A/PI3K/Akt signaling pathway. World J. Emerg. Med. 2024 15 3 206 213 10.5847/wjem.j.1920‑8642.2024.035 38855370
    [Google Scholar]
  35. Zhang C. He H. Chen X. Wei T. Yang C. Bi J. Tang X. Liu J. Zhang D. Chen C. Song Y. Miao C. The pre-diction of lymphocyte count and neutrophil count on the effi-cacy of Xuebijing adjuvant treatment for severe community-acquired pneumonia: A post hoc analysis of a randomized controlled trial. Phytomedicine 2023 110 154614 10.1016/j.phymed.2022.154614 36587417
    [Google Scholar]
  36. Liu S. Yao C. Xie J. Liu H. Wang H. Lin Z. Qin B. Wang D. Lu W. Ma X. Liu Y. Liu L. Zhang C. Xu L. Zheng R. Zhou F. Liu Z. Zhang G. Zhou L. Liu J. Fei A. Zhang G. Zhu Y. Qian K. Wang R. Liang Y. Duan M. Wu D. Sun R. Wang Y. Zhang X. Cao Q. Yang M. Jin M. Song Y. Huang L. Zhou F. Chen D. Liang Q. Qian C. Tang Z. Zhang Z. Feng Q. Peng Z. Sun R. Song Z. Sun Y. Chai Y. Zhou L. Cheng C. Li L. Yan X. Zhang J. Huang Y. Guo F. Li C. Yang Y. Shang H. Qiu H. Liu W. Shang M. Han J. Li M. Ma L. Li Y. Liu Y. Yu T. Li X. Lu X. Chen Q. Yang Y. Li Y. Guo W. Dou Z. Gao C. Li D. Han X. Shao Q. Xie Y. Li X. Lin J. Li Z. Gao M. Song Y. Su B. Liu Y. Peng Y. Cui Q. Yu H. Fu B. Lin S. Huang Y. Cao X. Wang X. Fang Q. Huang R. Yang K. Feng Y. Gong F. Yin J. Cai S. Li S. Wang J. Zheng W. Effect of an herbal-based injection on 28-day mortality in patients with sepsis. JAMA Intern. Med. 2023 183 7 647 655 10.1001/jamainternmed.2023.0780 37126332
    [Google Scholar]
  37. Li C. Wang P. Zhang L. Efficacy and safety of Xuebijing injection (a Chinese patent) for sepsis: A meta-analysis of randomized controlled trials J. Ethnopharmacol 2018 224 512 521
    [Google Scholar]
  38. Shi H. Hong Y. Qian J. Cai X. Chen S. Xuebijing in the treatment of patients with sepsis. Am. J. Emerg. Med. 2017 35 2 285 291 10.1016/j.ajem.2016.11.007 27852528
    [Google Scholar]
  39. Li J. Olaleye O.E. Yu X. Jia W. Yang J. Lu C. Liu S. Yu J. Duan X. Wang Y. Dong K. He R. Cheng C. Li C. High degree of pharmacokinetic compatibility exists be-tween the five-herb medicine XueBiJing and antibiotics co-medicated in sepsis care. Acta Pharm. Sin. B 2019 9 5 1035 1049 10.1016/j.apsb.2019.06.003 31649852
    [Google Scholar]
  40. Yin Q. Li C. Treatment effects of xuebijing injection in severe septic patients with disseminated intravascular coagu-lation. Evid. Based Complement. Alternat. Med. 2014 2014 1 949254 10.1155/2014/949254 24778706
    [Google Scholar]
  41. Jia K. Li Y. Liu T. Gu X. Li X. New insights for infection mechanism and potential targets of COVID-19: Three Chinese patent medicines and three Chinese medicine formulas as promising therapeutic approaches Chin. Herb Med. 2023 15 2 157 168 10.1016/j.chmed.2022.06.014
    [Google Scholar]
  42. Innocenti F. Palmieri V. Stefanone V.T. Donnini C. D’Argenzio F. Cigana M. Tassinari I. Pini R. Epidemiolo-gy of right ventricular systolic dysfunction in patients with sepsis and septic shock in the emergency department. Intern. Emerg. Med. 2020 15 7 1281 1289 10.1007/s11739‑020‑02325‑z 32279167
    [Google Scholar]
  43. Wang L. Wang Z. Liu X. Zhang Y. Wang M. Liang X. Li G. Effects of extracellular histones on left ventricular di-astolic function and potential mechanisms in mice with sep-sis. Am. J. Transl. Res. 2022 14 1 150 165 35173835
    [Google Scholar]
  44. Favory R. Neviere R. Significance and interpretation of elevated troponin in septic patients. Crit. Care 2006 10 4 224 10.1186/cc4991 16895589
    [Google Scholar]
  45. Li Y. Sun G. Wang L. MiR-21 participates in LPS-induced myocardial injury by targeting Bcl-2 and CDK6. Inflamm. Res. 2022 71 2 205 214 10.1007/s00011‑021‑01535‑1 35064305
    [Google Scholar]
  46. Bi C.F. Liu; Hao, S.W.; Xu, Z.X.; Ma, X.; Kang, X.F.; Yang, L.S.; Zhang, J.F. Xuebijing injection protects against sepsis-induced myocardial injury by regulating apoptosis and autophagy via mediation of PI3K/AKT/mTOR signaling path-way in rats. Aging (Albany NY) 2023 15 10 4374 4390 10.18632/aging.204740 37219401
    [Google Scholar]
  47. Luo S. Huang X. Liu S. Zhang L. Cai X. Chen B. Long non-coding RNA small Nucleolar RNA host Gene 1 Alleviates Sepsis-associated Myocardial injury by modulating the miR-181a-5p/XIAP axis in vitro. Ann. Clin. Lab. Sci. 2021 51 2 231 240 33941563
    [Google Scholar]
  48. Xiao Y. Yu Y. Hu L. Yang Y. Yuan Y. Zhang W. Luo J. Yu L. Matrine alleviates Sepsis-induced Myocardial injury by inhibiting Ferroptosis and Apoptosis. Inflammation 2023 46 5 1684 1696 10.1007/s10753‑023‑01833‑2 37219694
    [Google Scholar]
  49. Chen Y. Tong H. Pan Z. Jiang D. Zhang X. Qiu J. Su L. Zhang M. Xuebijing injection attenuates pulmonary injury by reducing oxidative stress and proinflammatory damage in rats with heat stroke. Exp. Ther. Med. 2017 13 6 3408 3416 10.3892/etm.2017.4444 28588676
    [Google Scholar]
  50. Slim M.A. Turgman O. van Vught L.A. van der Poll T. Wiersinga W.J. Non-conventional immunomodulation in the management of sepsis. Eur. J. Intern. Med. 2024 121 9 16 10.1016/j.ejim.2023.10.032 37919123
    [Google Scholar]
  51. Zhao Y. Liu H. Xi X. Chen S. Liu D. TRIM16 protects human periodontal ligament stem cells from oxidative stress-induced damage via activation of PICOT. Exp. Cell Res. 2020 397 1 112336 10.1016/j.yexcr.2020.112336 33091421
    [Google Scholar]
  52. Li Y. Wu H. Wu W. Zhuo W. Liu W. Zhang Y. Cheng M. Chen Y.G. Gao N. Yu H. Wang L. Li W. Yang M. Structural insights into the TRIM family of ubiquitin E3 ligas-es. Cell Res. 2014 24 6 762 765 10.1038/cr.2014.46 24722452
    [Google Scholar]
  53. Watanabe M. Hatakeyama S. TRIM proteins and diseases. J. Biochem. 2017 161 2 135 144 28069866
    [Google Scholar]
  54. Nexø B.A. Christensen T. Frederiksen J. Møller-Larsen A. Oturai A.B. Villesen P. Hansen B. Nissen K.K. Las-ka M.J. Petersen T.S. Bonnesen S. Hedemand A. Wu T. Wang X. Zhang X. Brudek T. Maric R. Søndergaard H.B. Sellebjerg F. Brusgaard K. Kjeldbjerg A.L. Rasmus-sen H.B. Nielsen A.L. Nyegaard M. Petersen T. Bør-glum A.D. Pedersen F.S. The etiology of multiple sclerosis: Genetic evidence for the involvement of the human endoge-nous retrovirus HERV-Fc1. PLoS One 2011 6 2 e16652 10.1371/journal.pone.0016652 21311761
    [Google Scholar]
  55. Martins-de-Souza D. Gattaz W.F. Schmitt A. Rewerts C. Maccarrone G. Dias-Neto E. Turck C.W. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeosta-sis and immune system imbalance in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2009 259 3 151 163 10.1007/s00406‑008‑0847‑2 19165527
    [Google Scholar]
  56. Arra M. Emanuele E. Martinelli V. Minoretti P. Bertona M. Geroldi D. The M694V variant of the familial Mediterra-nean fever gene is associated with sporadic early-onset alz-heimer’s disease in an Italian population sample. Dement. Geriatr. Cogn. Disord. 2007 23 1 55 59 10.1159/000096743 17090974
    [Google Scholar]
  57. Quaderi, Opitz G/BBB syndrome, a defect of midline devel-opment, is due to mutations in a new RING finger gene on Xp22. Nat. Genet. 1997 17 3 285 291
    [Google Scholar]
  58. Masuda Y. Takahashi H. Sato S. Tomomori-Sato C. Saraf A. Washburn M.P. Florens L. Conaway R.C. Con-away J.W. Hatakeyama S. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin. Nat. Commun. 2015 6 1 7299 10.1038/ncomms8299 26095369
    [Google Scholar]
  59. Hatakeyama S. TRIM proteins and cancer. Nat. Rev. Cancer 2011 11 11 792 804 10.1038/nrc3139 21979307
    [Google Scholar]
  60. Giraldo M.I. Hage A. van Tol S. Rajsbaum R. TRIM proteins in host defense and viral Pathogenesis. Curr. Clin. Microbiol. Rep. 2020 7 4 101 114 10.1007/s40588‑020‑00150‑8 32837832
    [Google Scholar]
  61. Jin Z. Zhu Z. The role of TRIM proteins in PRR signaling pathways and immune-related diseases. Int. Immunopharmacol. 2021 98 107813 10.1016/j.intimp.2021.107813 34126340
    [Google Scholar]
  62. Yap M.W. Stoye J.P. TRIM proteins and the innate immune response to viruses. Adv. Exp. Med. Biol. 2012 770 93 104 10.1007/978‑1‑4614‑5398‑7_7 23631002
    [Google Scholar]
  63. Yang L. Xia H. TRIM proteins in inflammation: From ex-pression to emerging regulatory mechanisms. Inflammation 2021 44 3 811 820 10.1007/s10753‑020‑01394‑8 33415537
    [Google Scholar]
  64. Koepke L. Gack M.U. Sparrer K.M.J. The antiviral activi-ties of TRIM proteins. Curr. Opin. Microbiol. 2021 59 50 57 10.1016/j.mib.2020.07.005 32829025
    [Google Scholar]
  65. Grimaldi M.P. Candore G. Vasto S. Caruso M. Caimi G. Hoffmann E. Colonna-Romano G. Lio D. Shinar Y. Franceschi C. Caruso C. Role of the pyrin M694V (A2080G) allele in acute myocardial infarction and longevity: A study in the Sicilian population. J. Leukoc. Biol. 2005 79 3 611 615 10.1189/jlb.0705416 16387839
    [Google Scholar]
  66. Chen S.N. Czernuszewicz G. Tan Y. Lombardi R. Jin J. Willerson J.T. Marian A.J. Human molecular genetic and functional studies identify TRIM63, encoding muscle RING finger Protein 1, as a novel gene for human hypertrophic car-diomyopathy. Circ. Res. 2012 111 7 907 919 10.1161/CIRCRESAHA.112.270207 22821932
    [Google Scholar]
  67. Liu J. Li W. Deng K.Q. Tian S. Liu H. Shi H. Fang Q. Liu Z. Chen Z. Tian T. Gan S. Hu F. Hu M. Cheng X. Ji Y.X. Zhang P. She Z.G. Zhang X.J. Chen S. Cai J. Li H. The E3 ligase TRIM16 is a key suppressor of patho-logical cardiac hypertrophy. Circ. Res. 2022 130 10 1586 1600 10.1161/CIRCRESAHA.121.318866 35437018
    [Google Scholar]
  68. Guo X. Liu M. Han B. Zheng Y. Zhang K. Bao G. Gao C. Shi H. Sun Q. Zhao Z. Upregulation of TRIM16 mitigates doxorubicin-induced cardiotoxicity by modulating TAK1 and YAP/Nrf2 pathways in mice. Biochem. Pharmacol. 2024 220 116009 10.1016/j.bcp.2023.116009 38154547
    [Google Scholar]
  69. Shi M. Su F. Dong Z. Shi Y. Tian X. Cui Z. Li J. TRIM16 exerts protective function on myocardial ische-mia/reperfusion injury through reducing pyroptosis and in-flammation via NLRP3 signaling. Biochem. Biophys. Res. Commun. 2022 632 122 128 10.1016/j.bbrc.2022.09.057 36208489
    [Google Scholar]
  70. Kakihana Y. Ito T. Nakahara M. Yamaguchi K. Yasuda T. Sepsis-induced myocardial dysfunction: Pathophysiology and management. J. Intensive Care 2016 4 1 22 10.1186/s40560‑016‑0148‑1 27011791
    [Google Scholar]
  71. R, Habimana Sepsis-induced cardiac dysfunction: A review of pathophysiology. Acute Crit. Care 2020 35 2 57 66
    [Google Scholar]
  72. Yang D. Dai X. Xing Y. Tang X. Yang G. Harrison A.G. Cahoon J. Li H. Lv X. Yu X. Wang P. Wang H. Intrinsic cardiac adrenergic cells contribute to LPS-induced myocardial dysfunction. Commun. Biol. 2022 5 1 96 10.1038/s42003‑022‑03007‑6 35079095
    [Google Scholar]
  73. Yücel G. Zhao Z. El-Battrawy I. Lan H. Lang S. Li X. Buljubasic F. Zimmermann W.H. Cyganek L. Utikal J. Ravens U. Wieland T. Borggrefe M. Zhou X.B. Akin I. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripo-tent stem cell derived cardiomyocytes. Sci. Rep. 2017 7 1 2935 10.1038/s41598‑017‑03147‑4 28592841
    [Google Scholar]
  74. Lu F. The mechanism study of Sinomenine Alleviates Sep-sis-induced Myocardial dysfunction by regulating SOCS3 2023
    [Google Scholar]
  75. Jin H. Chen Y. Ding C. Lin Y. Chen Y. Jiang D. Su L. Microcirculatory disorders and protective role of Xuebijing in severe heat stroke. Sci. Rep. 2018 8 1 4553 10.1038/s41598‑018‑22812‑w 29540802
    [Google Scholar]
  76. Wang L. Liu Z. Dong Z. Pan J. Ma X. Effects of Xuebi-jing injection on microcirculation in septic shock. J. Surg. Res. 2016 202 1 147 154 10.1016/j.jss.2015.12.041 27083961
    [Google Scholar]
  77. Wang X.T. Peng Z. An Y.Y. Shang T. Xiao G. He S. Chen X. Zhang H. Wang Y. Wang T. Zhang J.H. Gao X. Zhu Y. Feng Y. Paeoniflorin and Hydroxysafflor yellow A in Xuebijing injection Attenuate Sepsis-induced cardiac dysfunction and inhibit proinflammatory cytokine produc-tion. Front. Pharmacol. 2021 11 614024 10.3389/fphar.2020.614024 33986658
    [Google Scholar]
  78. Jena K.K. Kolapalli S.P. Mehto S. Nath P. Das B. Sa-hoo P.K. Ahad A. Syed G.H. Raghav S.K. Senapati S. Chauhan S. Chauhan S. TRIM16 controls assembly and degradation of protein aggregates by modulating the p62‐NRF2 axis and autophagy. EMBO J. 2018 37 18 e98358 10.15252/embj.201798358 30143514
    [Google Scholar]
  79. Xing H. Xu P. Ma Y. Li T. Zhang Y. Ding X. Liu L. Keerman M. Niu Q. TFEB ameliorates DEHP ‐induced neu-rotoxicity by activating GAL3/TRIM16 axis dependent lysophagy and alleviating lysosomal dysfunction. Environ. Toxicol. 2024 39 7 3779 3789 10.1002/tox.24221 38488668
    [Google Scholar]
  80. Cho J.Y. Kim J. Kim, JW Characterization of TRIM16, a member of the fish-specific finTRIM family, in olive floun-der Paralichthys olivaceus. Fish Shellfish Immunol. 2022 127 666 671 10.1016/j.fsi.2022.07.003
    [Google Scholar]
  81. Blasiak J. Kaarniranta K. Secretory autophagy: A turn key for understanding AMD pathology and developing new thera-peutic targets? Expert Opin. Ther. Targets 2022 26 10 883 895 10.1080/14728222.2022.2157260 36529978
    [Google Scholar]
  82. Hu W. Zou L. Yu N. Wu Z. Yang W. Wu T. Liu Y. Pu Y. Jiang Y. Zhang J. Zhu H. Cheng F. Feng S. Ca-talpol rescues LPS-induced cognitive impairment via inhibi-tion of NF-Kb-regulated neuroinflammation and up-regulation of TrkB-mediated BDNF secretion in mice. J. Ethnopharmacol. 2024 319 Pt 3 117345 10.1016/j.jep.2023.117345 37926114
    [Google Scholar]
  83. Yuan S. Cao Y. Jiang J. Chen J. Huang X. Li X. Zhou J. Zhou Y. Zhou J. Xuebijing injection and its bioactive components alleviate nephrotic syndrome by inhibiting podo-cyte inflammatory injury. Eur. J. Pharm. Sci. 2024 196 106759 10.1016/j.ejps.2024.106759 38570053
    [Google Scholar]
  84. Wang L. Ye B. Liu, Y Xuebijing injection attenuates heat stroke-induced brain injury through oxidative stress blockage and Parthanatos modulation via PARP-1/AIF signaling. ACS Omega 2023 8 37 33392 33402 10.1021/acsomega.3c03084
    [Google Scholar]
/content/journals/cad/10.2174/0115734099318323241122184120
Loading
/content/journals/cad/10.2174/0115734099318323241122184120
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test