Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Objective

The Qing’e Pill (QEP) is widely used to alleviate low back pain and sciatica caused by Intervertebral Disc Degeneration (IDD). However, its active components, key targets, and molecular mechanisms are not fully understood. The aim of this study is to elucidate the molecular mechanisms through which the QEP improves IDD using database mining techniques.

Methods

Active components and candidate targets of the QEP were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and the Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine. IDD-related targets were obtained from the GeneCards database, and liver- and kidney-specific genes were retrieved from the BioGPS database. The intersection of these candidate targets was analyzed to identify potential targets for the QEP in IDD. A protein-protein interaction network analysis was performed using STRING and Cytoscape 3.7.2 software. Core targets were further analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking was used to assess the binding affinity of active components to candidate targets, and animal experiments were conducted for validation.

Results

We identified 65 potentially active components of the QEP that corresponded to 1,093 candidate targets, 2,108 IDD-related targets, and 1,113 liver- and kidney-specific genes. Key components included quercetin, berberine, isorhamnetin, and emodin. The primary candidate targets were Wnt5A, CTNNB1, IL-1β, MAPK14, MMP9, and MMP3. The GO and KEGG analyses revealed the involvement of these targets in Wnt signaling, TNF signaling, Wnt receptor activation, Frizzled binding, and Wnt-protein interactions. Molecular docking showed strong binding between these components and their targets. Animal experiments demonstrated that the QEP treatment significantly reduced the expression of Wnt5A, CTNNB1, IL-1β, MAPK14, MMP9, and MMP3 at high, medium, and low doses compared with the model group.

Conclusion

The QEP alleviated IDD by modulating the Wnt/MAPK/MMP signaling pathways and reducing the release and activation of key factors.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099356426241119051916
2024-12-02
2025-06-17
The full text of this item is not currently available.

References

  1. ItoK. CreemersL. Mechanisms of intervertebral disk degeneration/injury and pain: A review.Global Spine J.20133314515110.1055/s‑0033‑134730024436865
    [Google Scholar]
  2. HartvigsenJ. HancockM.J. KongstedA. LouwQ. FerreiraM.L. GenevayS. HoyD. KarppinenJ. PranskyG. SieperJ. SmeetsR.J. UnderwoodM. BuchbinderR. HartvigsenJ. CherkinD. FosterN.E. MaherC.G. UnderwoodM. van TulderM. AnemaJ.R. ChouR. CohenS.P. Menezes CostaL. CroftP. FerreiraM. FerreiraP.H. FritzJ.M. GenevayS. GrossD.P. HancockM.J. HoyD. KarppinenJ. KoesB.W. KongstedA. LouwQ. ÖbergB. PeulW.C. PranskyG. SchoeneM. SieperJ. SmeetsR.J. TurnerJ.A. WoolfA. What low back pain is and why we need to pay attention.Lancet2018391101372356236710.1016/S0140‑6736(18)30480‑X29573870
    [Google Scholar]
  3. ChenN. FongD.Y.T. WongJ.Y.H. Health and economic burden of low back pain and rheumatoid arthritis attributable to smoking in 192 countries and territories in 2019.Addiction20231194add.1640410.1111/add.1640438105035
    [Google Scholar]
  4. TingxiZ. XiaojunS. YijunS. Discussion on the treatment of low back pain with buguyao pain relief decoction combined with abdominal acupuncture.Chinese Clinic. Res. Tradit. Chinese Med.202214136971
    [Google Scholar]
  5. HuibinC. Treatment of lumbar and knee coldness with Qing'e Pill.Benef. Read. Seek. Med. Advice.2023111
    [Google Scholar]
  6. LiX. LiuZ. LiaoJ. ChenQ. LuX. FanX. Network pharmacology approaches for research of Traditional Chinese Medicines.Chin. J. Nat. Med.202321532333210.1016/S1875‑5364(23)60429‑737245871
    [Google Scholar]
  7. GaoH. ChenZ. HalihamanB. HuangL. WangZ. DingX. Network pharmacology and in vitro experimental verification to explore the mechanism of chaiqin qingning capsule in the treatment of pain.Curr. Pharm. Des.202430427829410.2174/011381612828035124011204443038310568
    [Google Scholar]
  8. XieC. TangH. LiuG. LiC. Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking.Front. Aging Neurosci.20221494016610.3389/fnagi.2022.94016636051307
    [Google Scholar]
  9. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  10. KongX. LiuC. ZhangZ. ChengM. MeiZ. LiX. LiuP. DiaoL. MaY. JiangP. KongX. NieS. GuoY. WangZ. ZhangX. WangY. TangL. GuoS. LiuZ. LiD. BATMAN-TCM 2.0: an enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins.Nucleic Acids Res.202452D1D1110D112010.1093/nar/gkad92637904598
    [Google Scholar]
  11. ZhangY. LiuT. ZhaoY. ZhaoC. ZhaoM. Deciphering the enigma between low bioavailability and high anti-hepatic fibrosis efficacy of Yinchen Wuling powder based on drug metabolism and network pharmacology.J. Ethnopharmacol.202432111753810.1016/j.jep.2023.11753838056536
    [Google Scholar]
  12. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt: The universal protein knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac105236408920
    [Google Scholar]
  13. DonchevaN.T. MorrisJ.H. GorodkinJ. JensenL.J. Cytoscape StringApp: Network analysis and visualization of proteomics data.J. Proteome Res.201918262363210.1021/acs.jproteome.8b0070230450911
    [Google Scholar]
  14. StelzerG RosenN PlaschkesI The genecards suite: From gene data mining to disease genome sequence analyses.Curr. Protoc. Bioinformatics2016541.30.11.30.33
    [Google Scholar]
  15. WuC. JinX. TsuengG. AfrasiabiC. SuA.I. BioGPS: Building your own mash-up of gene annotations and expression profiles.Nucleic Acids Res.201644D1D313D31610.1093/nar/gkv110426578587
    [Google Scholar]
  16. SzklarczykD. FranceschiniA. KuhnM. SimonovicM. RothA. MinguezP. DoerksT. StarkM. MullerJ. BorkP. JensenL.J. MeringC. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored.Nucleic Acids Res.201139DatabaseD561D56810.1093/nar/gkq97321045058
    [Google Scholar]
  17. FanJ. ZhouJ. QuZ. PengH. MengS. PengY. LiuT. LuoQ. DaiL. Network pharmacology and molecular docking elucidate the pharmacological mechanism of the OSTEOWONDER capsule for treating osteoporosis.Front. Genet.20221383302710.3389/fgene.2022.83302735295951
    [Google Scholar]
  18. XiangQ. ZhaoY. LiW. Identification and validation of ferroptosis-related gene signature in intervertebral disc degeneration.Front. Endocrinol.202314108979610.3389/fendo.2023.108979636814575
    [Google Scholar]
  19. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  20. DennisG.Jr ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345P310.1186/gb‑2003‑4‑5‑p312734009
    [Google Scholar]
  21. GaoP. ChangK. YuanS. WangY. ZengK. JiangY. TuP. LuY. GuoX. Exploring the mechanism of hepatotoxicity induced by Dictamnus dasycarpus based on network pharmacology, molecular docking and experimental pharmacology.Molecules20232813504510.3390/molecules2813504537446707
    [Google Scholar]
  22. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein Data Bank (PDB): The single global macromolecular structure archive.Methods Mol. Biol.2017160762764110.1007/978‑1‑4939‑7000‑1_2628573592
    [Google Scholar]
  23. JiL. SongT. GeC. WuQ. MaL. ChenX. ChenT. ChenQ. ChenZ. ChenW. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation.Biomed. Pharmacother.202316511521010.1016/j.biopha.2023.11521037499457
    [Google Scholar]
  24. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  25. PatelR. PrajapatiJ. RaoP. RawalR.M. SarafM. GoswamiD. Repurposing the antibacterial drugs for inhibition of SARS-CoV2-PLpro using molecular docking, MD simulation and binding energy calculation.Mol. Divers.20222642189220910.1007/s11030‑021‑10325‑034591234
    [Google Scholar]
  26. FanC. DuJ. YuZ. WangJ. YaoL. JiZ. HeW. DengY. GengD. WuX. MaoH. Inhibition of MAGL attenuates intervertebral disc degeneration by delaying nucleus pulposus senescence through STING.Int. Immunopharmacol.202413111190410.1016/j.intimp.2024.11190438518595
    [Google Scholar]
  27. FanH. AnqiD. FanH. X-ray-guided establishment of rat intervertebral disc degeneration model.Chinese J. Tissue Engin. Res.2022263556525657[J].
    [Google Scholar]
  28. NiuB. XieX. XiongX. JiangJ. Network pharmacology-based analysis of the anti-hyperglycemic active ingredients of roselle and experimental validation.Comput. Biol. Med.202214110463610.1016/j.compbiomed.2021.10463634809966
    [Google Scholar]
  29. YuX. ShiK. WuB. Mechanism of Shenfu injection in treating ischemic stroke elucidated using network pharmacology and experimental validation.Curr. Comput. Aided Drug Des.2024Epub ahead of print.10.2174/0115734099292513240404091734
    [Google Scholar]
  30. KanehisaM. FurumichiM. SatoY. KawashimaM. Ishiguro-WatanabeM. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.202351D1D587D59210.1093/nar/gkac96336300620
    [Google Scholar]
  31. ChenL. ZhangY.H. WangS. ZhangY. HuangT. CaiY.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways.PLoS One2017129e018412910.1371/journal.pone.018412928873455
    [Google Scholar]
  32. ZhangD. QinH. ChenW. XiangJ. JiangM. ZhangL. ZhouK. HuY. Utilizing network pharmacology, molecular docking, and animal models to explore the therapeutic potential of the WenYang FuYuan recipe for cerebral ischemia-reperfusion injury through AGE-RAGE and NF-κB/p38MAPK signaling pathway modulation.Exp. Gerontol.202419111244810.1016/j.exger.2024.11244838697555
    [Google Scholar]
  33. HiyamaA. SakaiD. RisbudM.V. TanakaM. AraiF. AbeK. MochidaJ. Enhancement of intervertebral disc cell senescence by WNT/β-catenin signaling–induced matrix metalloproteinase expression.Arthritis Rheum.201062103036304710.1002/art.2759920533544
    [Google Scholar]
  34. ZhuD. WangZ. ZhangG. MaC. QiuX. WangY. LiuM. GuoX. ChenH. DengQ. KangX. Periostin promotes nucleus pulposus cells apoptosis by activating the Wnt/β-catenin signaling pathway.FASEB J.2022367e2236910.1096/fj.202200123R35747912
    [Google Scholar]
  35. Alipour NoghabiS. Ghamari kargarP. BagherzadeG. BeyzaeiH. Comparative study of antioxidant and antimicrobial activity of berberine-derived Schiff bases, nitro-berberine and amino-berberine.Heliyon2023912e2278310.1016/j.heliyon.2023.e2278338058428
    [Google Scholar]
  36. LiuW. DuL. CuiY. HeC. HeZ. WNT5A regulates the proliferation, apoptosis and stemness of human stem Leydig cells via the β-catenin signaling pathway.Cell. Mol. Life Sci.20248119310.1007/s00018‑023‑05077‑z38367191
    [Google Scholar]
  37. SmoldersL.A. MeijB.P. RiemersF.M. LichtR. WubboltsR. HeuvelD. GrinwisG.C.M. VernooijH.C.M. HazewinkelH.A.W. PenningL.C. TryfonidouM.A. Canonical Wnt signaling in the notochordal cell is upregulated in early intervertebral disk degeneration.J. Orthop. Res.201230695095710.1002/jor.2200022083942
    [Google Scholar]
  38. JohnsonZ.I. SchoepflinZ.R. ChoiH. ShapiroI.M. RisbudM.V. Disc in flames: Roles of TNF-α and IL-1β in intervertebral disc degeneration.Eur. Cell. Mater.20153010411710.22203/eCM.v030a0826388614
    [Google Scholar]
  39. ZhangX. ZhangZ. ZouX. WangY. QiJ. HanS. XinJ. ZhengZ. WeiL. ZhangT. ZhangS. Unraveling the mechanisms of intervertebral disc degeneration: An exploration of the p38 MAPK signaling pathway.Front. Cell Dev. Biol.202411132456110.3389/fcell.2023.132456138313000
    [Google Scholar]
  40. XuY. ZhangZ. ZhengY. FengS. Dysregulated miR-133a mediates loss of type II collagen by directly targeting Matrix Metalloproteinase 9 (MMP9) in human intervertebral disc degeneration.Spine20164112E717E72410.1097/BRS.000000000000137526656045
    [Google Scholar]
  41. SongQ. ZhangF. WangK. ChenZ. LiQ. LiuZ. ShenH. MiR-874-3p plays a protective role in intervertebral disc degeneration by suppressing MMP2 and MMP3.Eur. J. Pharmacol.202189517389110.1016/j.ejphar.2021.17389133482178
    [Google Scholar]
  42. WangX. HeX. ZhangC.F. GuoC.R. WangC.Z. YuanC.S. Anti-arthritic effect of berberine on adjuvant-induced rheumatoid arthritis in rats.Biomed. Pharmacother.20178988789310.1016/j.biopha.2017.02.09928282791
    [Google Scholar]
  43. ShiH. HeJ. LiX. HanJ. WuR. WangD. YangF. SunE. Isorhamnetin, the active constituent of a Chinese herb Hippophae rhamnoides L, is a potent suppressor of dendritic-cell maturation and trafficking.Int. Immunopharmacol.20185521622210.1016/j.intimp.2017.12.01429272818
    [Google Scholar]
  44. SeoK. YangJ.H. KimS.C. KuS.K. KiS.H. ShinS.M. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: A potential role of HO-1.Inflammation201437371272210.1007/s10753‑013‑9789‑624337631
    [Google Scholar]
  45. AlbringK.F. WeidemüllerJ. MittagS. WeiskeJ. FriedrichK. GeroniM.C. LombardiP. HuberO. Berberine acts as a natural inhibitor of Wnt/β-catenin signaling—Identification of more active 13-arylalkyl derivatives.Biofactors201339665266210.1002/biof.113323982892
    [Google Scholar]
  46. LeeS.H. KimB. OhM.J. YoonJ. KimH.Y. LeeK.J. LeeJ.D. ChoiK.Y. Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/β-catenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells.Phytother. Res.201125111629163510.1002/ptr.346921413092
    [Google Scholar]
  47. LiZ. ZhangK. LiX. PanH. LiS. ChenF. ZhangJ. ZhengZ. WangJ. LiuH. Wnt5a suppresses inflammation-driven intervertebral disc degeneration via a TNF-α/NF-κB–Wnt5a negative-feedback loop.Osteoarthritis Cartilage201826796697710.1016/j.joca.2018.04.00229656141
    [Google Scholar]
  48. RenX. BaoY. ZhuY. LiuS. PengZ. ZhangY. ZhouG. Isorhamnetin, hispidulin, and cirsimaritin identified in tamarix ramosissima barks from southern xinjiang and their antioxidant and antimicrobial activities.Molecules201924339010.3390/molecules2403039030678248
    [Google Scholar]
  49. AnN. ZhangG. LiY. YuanC. YangF. ZhangL. GaoY. XingY. Promising antioxidative effect of berberine in cardiovascular diseases.Front. Pharmacol.20221386535310.3389/fphar.2022.86535335321323
    [Google Scholar]
  50. TvrdáE. KováčJ. FerenczyováK. KaločayováB. ĎuračkaM. BenkoF. AlmášiováV. BartekováM. Quercetin ameliorates testicular damage in zucker diabetic fatty rats through its antioxidant, anti-inflammatory and anti-apoptotic properties.Int. J. Mol. Sci.202223241605610.3390/ijms23241605636555696
    [Google Scholar]
  51. TianS.L. YangY. LiuX.L. XuQ.B. Emodin attenuates bleomycin-induced pulmonary fibrosis via anti-inflammatory and anti-oxidative activities in rats.Med. Sci. Monit.20182411010.12659/MSM.90549629290631
    [Google Scholar]
  52. HaoY. RenZ. YuL. ZhuG. ZhangP. ZhuJ. CaoS. p300 arrests intervertebral disc degeneration by regulating the FOXO3/Sirt1/Wnt/β-catenin axis.Aging Cell2022218e1367710.1111/acel.1367735907249
    [Google Scholar]
  53. ZhangH.J. LiaoH.Y. BaiD.Y. WangZ.Q. XieX.W. MAPK /ERK signaling pathway: A potential target for the treatment of intervertebral disc degeneration.Biomed. Pharmacother.202114311217010.1016/j.biopha.2021.11217034536759
    [Google Scholar]
  54. LiuS. YangS.D. HuoX.W. 17β-Estradiol inhibits intervertebral disc degeneration by down-regulating MMP-3 and MMP-13 and up-regulating type II collagen in a rat model.Artif. Cells Nanomed. Biotechnol.201846S2182191
    [Google Scholar]
  55. YurubeT. NishidaK. SuzukiT. KaneyamaS. ZhangZ. KakutaniK. MaenoK. TakadaT. FujiiM. KurosakaM. DoitaM. Matrix metalloproteinase (MMP)-3 gene up-regulation in a rat tail compression loading-induced disc degeneration model.J. Orthop. Res.20102881026103210.1002/jor.2111620162718
    [Google Scholar]
  56. Le MaitreC.L. FreemontA.J. HoylandJ.A. The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration.Arthritis Res. Ther.200574R732R74510.1186/ar173215987475
    [Google Scholar]
  57. KusakabeT. SawajiY. EndoK. SuzukiH. KonishiT. MaekawaA. MurataK. YamamotoK. DUSP-1 induced by PGE2 and PGE1 attenuates il-1β-activated MAPK signaling, leading to suppression of NGF expression in human intervertebral disc cells.Int. J. Mol. Sci.202123137110.3390/ijms2301037135008797
    [Google Scholar]
/content/journals/cad/10.2174/0115734099356426241119051916
Loading
/content/journals/cad/10.2174/0115734099356426241119051916
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test