Full text loading...
-
Nonlinear SVM Approaches to QSPR/QSAR Studies and Drug Design
- Source: Current Computer - Aided Drug Design, Volume 3, Issue 4, Dec 2007, p. 263 - 289
-
- 01 Dec 2007
Abstract
Recently, a new promising nonlinear method, the support vector machine (SVM), was proposed by Vapnik. It rapidly found numerous applications in chemistry, biochemistry and pharmacochemistry. Several attempts using SVM in drug design have been reported. It became an attractive nonlinear approach in this field. In this review, the theoretical basis of SVM in classification and regression is briefly described. Its applications in QSPR/QSAR studies, and particularly in drug design are discussed. Comparative studies with some linear and other nonlinear methods show SVM's high performance both in classification and correlation.
© Bentham Science Publishers