Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

species have emerged as well-known opportunistic pathogens causing nosocomial infections with β-lactamase-mediated resistance as a prevalent antibiotic resistance mechanism. The discovery and emergence of metallo-β-lactamases, mainly new-Delhi metallo-β-lactamases (NDMs), have increased the threat and challenges in healthcare facilities.

Objectives

A computational screening was conducted using 570 natural compounds from Dr. Duke’s Phytochemical and Ethnobotanical data to discover promising inhibitors for NDM-6, NDM-9, and NDM-23 of the species.

Methods

Using homology modeling on the Raptor-X web server, the structures of the three NDM variants were predicted. The structures were validated using various computational tools and MD simulation for 50 ns. Lipinski - Vebers’ Filter and ADMET Screening were used to screen 570 compounds, followed by docking in Biovia Discovery Studio 2019 using the CDOCKER module. GROMACS was used to simulate the compounds with the highest scores with the proteins for 50 ns. Using the MM-PBSA method and tool, binding free energies were estimated and per-residue decomposition analysis was conducted.

Results

The three structures predicted were found stable after the 50 ns MD Simulation run. The compounds Budmunchiamine-A and Rhamnocitrin were found to have the best binding energy towards NDM-6, NDM-9, and NDM-23, respectively. From the results of MD Simulation, MM-PBSA binding free energy calculations, and per-residue decomposition analysis, the Protein-ligand complex of NDM-6 with Budmunchiamine A and NDM-9 with Rhamnocitrin was relatively more stable than the complex of NDM-23 and Rhamnocitrin.

Conclusion

The study suggests that Budmunchiamine-A and Rhamnocitrin are potential inhibitors of NDM-6 and NDM-9, respectively, and may pave a path for and studies in the future.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099294294240311061115
2024-03-18
2025-05-09
Loading full text...

Full text loading...

References

  1. PodschunR. UllmannU. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors.Clin. Microbiol. Rev.199811458960310.1128/CMR.11.4.5899767057
    [Google Scholar]
  2. De OliveiraD.M.P. FordeB.M. KiddT.J. HarrisP.N.A. SchembriM.A. BeatsonS.A. PatersonD.L. WalkerM.J. Antimicrobial resistance in ESKAPE pathogens.Clin. Microbiol. Rev.2020333e00181-1910.1128/CMR.00181‑1932404435
    [Google Scholar]
  3. RiceL.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE.J. Infect. Dis.200819781079108110.1086/53345218419525
    [Google Scholar]
  4. KalpanaS. LinW.Y. WangY.C. FuY. LakshmiA. WangH.Y. Antibiotic resistance diagnosis in ESKAPE pathogens—a review on proteomic perspective.Diagnostics2023136101410.3390/diagnostics1306101436980322
    [Google Scholar]
  5. NaylorN.R. AtunR. ZhuN. KulasabanathanK. SilvaS. ChatterjeeA. KnightG.M. RobothamJ.V. Estimating the burden of antimicrobial resistance: A systematic literature review.Antimicrob. Resist. Infect. Control2018715810.1186/s13756‑018‑0336‑y29713465
    [Google Scholar]
  6. ZamanS.B. HussainM.A. NyeR. MehtaV. MamunK.T. HossainN. A review on antibiotic resistance: Alarm bells are ringing.Cureus201796e140310.7759/cureus.140328852600
    [Google Scholar]
  7. IguchiS. MizutaniT. HiramatsuK. KikuchiK. Rapid acquisition of linezolid resistance in methicillin-resistant staphylococcus aureus: Role of hypermutation and homologous recombination.PLoS One2016115e015551210.1371/journal.pone.015551227182700
    [Google Scholar]
  8. HercE.S. KauffmanC.A. MariniB.L. PerissinottiA.J. MiceliM.H. Daptomycin nonsusceptible vancomycin resistant Enterococcus bloodstream infections in patients with hematological malignancies: Risk factors and outcomes.Leuk. Lymphoma201758122852285810.1080/10428194.2017.131266528402152
    [Google Scholar]
  9. WHO WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation.GenevaWHO2018
    [Google Scholar]
  10. NaasT. OueslatiS. BonninR.A. DabosM.L. ZavalaA. DortetL. RetailleauP. IorgaB.I. Beta-lactamase database (BLDB) – structure and function.J. Enzyme Inhib. Med. Chem.201732191791910.1080/14756366.2017.134423528719998
    [Google Scholar]
  11. BushK. BradfordP.A. β-lactams and β-lactamase inhibitors: An overview.Cold Spring Harb. Perspect. Med.201668a02524710.1101/cshperspect.a02524727329032
    [Google Scholar]
  12. Mora-OchomogoM. LohansC.T. β-lactam antibiotic targets and resistance mechanisms: From covalent inhibitors to substrates.RSC Medicinal Chemistry202112101623163910.1039/D1MD00200G34778765
    [Google Scholar]
  13. TammaP.D. AitkenS.L. BonomoR.A. MathersA.J. van DuinD. ClancyC.J. Infectious diseases society of america 2022 guidance on the treatment of extended-spectrum β-lactamase producing enterobacterales (ESBL-E), carbapenem-resistant enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR- P. aeruginosa ).Clin. Infect. Dis.202275218721210.1093/cid/ciac26835439291
    [Google Scholar]
  14. ShiC. ChenJ. XiaoB. KangX. LaoX. ZhengH. Discovery of NDM-1 inhibitors from natural products.J. Glob. Antimicrob. Resist.201918808710.1016/j.jgar.2019.02.00330763762
    [Google Scholar]
  15. González-BelloC. RodríguezD. PernasM. RodríguezÁ. ColchónE. β-lactamase inhibitors to restore the efficacy of antibiotics against superbugs.J. Med. Chem.20206351859188110.1021/acs.jmedchem.9b0127931663735
    [Google Scholar]
  16. BushK. Past and present perspectives on β-lactamases.Antimicrob. Agents Chemother.20186210e01076-1810.1128/AAC.01076‑1830061284
    [Google Scholar]
  17. DrawzS.M. Papp-WallaceK.M. BonomoR.A. New β-lactamase inhibitors: A therapeutic renaissance in an MDR world.Antimicrob. Agents Chemother.20145841835184610.1128/AAC.00826‑1324379206
    [Google Scholar]
  18. AmblerR.P. The structure of β-lactamases.Philos. Trans. R. Soc. Lond. B Biol. Sci.1980289103632133110.1098/rstb.1980.00496109327
    [Google Scholar]
  19. YongD. TolemanM.A. GiskeC.G. ChoH.S. SundmanK. LeeK. WalshT.R. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India.Antimicrob. Agents Chemother.200953125046505410.1128/AAC.00774‑0919770275
    [Google Scholar]
  20. KumarasamyK.K. TolemanM.A. WalshT.R. BagariaJ. ButtF. BalakrishnanR. ChaudharyU. DoumithM. GiskeC.G. IrfanS. KrishnanP. KumarA.V. MaharjanS. MushtaqS. NoorieT. PatersonD.L. PearsonA. PerryC. PikeR. RaoB. RayU. SarmaJ.B. SharmaM. SheridanE. ThirunarayanM.A. TurtonJ. UpadhyayS. WarnerM. WelfareW. LivermoreD.M. WoodfordN. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study.Lancet Infect. Dis.201010959760210.1016/S1473‑3099(10)70143‑220705517
    [Google Scholar]
  21. KaaseM. NordmannP. WichelhausT.A. GatermannS.G. BonninR.A. PoirelL. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt.J. Antimicrob. Chemother.20116661260126210.1093/jac/dkr13521427107
    [Google Scholar]
  22. GuoY. WangJ. NiuG. ShuiW. SunY. ZhouH. ZhangY. YangC. LouZ. RaoZ. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug.Protein Cell20112538439410.1007/s13238‑011‑1055‑921637961
    [Google Scholar]
  23. BathoornE. RossenJ.W. LokateM. FriedrichA.W. HammerumA.M. Isolation of an NDM-5-producing ST16 Klebsiella pneumoniae from a Dutch patient without travel history abroad, August 2015.Euro Surveill.2015204110.2807/1560‑7917.ES.2015.20.41.3004026537842
    [Google Scholar]
  24. KhalifaH.O. SolimanA.M. AhmedA.M. ShimamotoT. ShimamotoT. NDM-4- and NDM-5-producing klebsiella pneumoniae coinfection in a 6-month-old infant.Antimicrob. Agents Chemother.20166074416441710.1128/AAC.00479‑1627185797
    [Google Scholar]
  25. LiuY. ZhangH. ZhangX. JiangN. ZhangZ. ZhangJ. ZhuB. WangG. ZhaoK. ZhouY. Characterization of an NDM-19-producing Klebsiella pneumoniae strain harboring 2 resistance plasmids from China.Diagn. Microbiol. Infect. Dis.201993435536110.1016/j.diagmicrobio.2018.11.00730552032
    [Google Scholar]
  26. RojasL.J. HujerA.M. RudinS.D. WrightM.S. DomitrovicT.N. MarshallS.H. HujerK.M. RichterS.S. CoberE. PerezF. AdamsM.D. van DuinD. BonomoR.A. NDM-5 and OXA-181 beta-lactamases, a significant threat continues to spread in the Americas.Antimicrob. Agents Chemother.2017617e00454-1710.1128/AAC.00454‑1728461314
    [Google Scholar]
  27. WangX. LiH. ZhaoC. ChenH. LiuJ. WangZ. WangQ. ZhangY. HeW. ZhangF. WangH. Novel NDM-9 metallo-β-lactamase identified from a ST107 Klebsiella pneumoniae strain isolated in China.Int. J. Antimicrob. Agents2014441909110.1016/j.ijantimicag.2014.04.01024913967
    [Google Scholar]
  28. WuW. FengY. TangG. QiaoF. McNallyA. ZongZ. NDM Metallo-β-lactamases and their bacterial producers in health care settings.Clin. Microbiol. Rev.2019322e00115-1810.1128/CMR.00115‑1830700432
    [Google Scholar]
  29. ChenX. LiL. ChenS. XuY. XiaQ. GuoY. LiuX. TangY. ZhangT. ChenY. YangC. ShuiW. Identification of inhibitors of the antibiotic-resistance target New Delhi metallo-β-lactamase 1 by both nanoelectrospray ionization mass spectrometry and ultrafiltration liquid chromatography/mass spectrometry approaches.Anal. Chem.201385167957796510.1021/ac401732d23863032
    [Google Scholar]
  30. ChengZ. ThomasP.W. JuL. BergstromA. MasonK. ClaytonD. MillerC. BethelC.R. VanPeltJ. TierneyD.L. PageR.C. BonomoR.A. FastW. CrowderM.W. Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: Effects of NDM mutations on stability, zinc affinity, and mono-zinc activity.J. Biol. Chem.201829332126061261810.1074/jbc.RA118.00383529909397
    [Google Scholar]
  31. HassanM.I. ThakurP.K. KumarJ. RayD. AnjumF. Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds.J. Nat. Sci. Biol. Med.201341515610.4103/0976‑9668.10726023633835
    [Google Scholar]
  32. AliA. GuptaD. SrivastavaG. sharmaA. KhanA.U. Molecular and computational approaches to understand resistance of New Delhi metallo β-lactamase variants (NDM-1, NDM-4, NDM-5, NDM-6, NDM-7)-producing strains against carbapenems.J. Biomol. Struct. Dyn.20193782061207110.1080/07391102.2018.147526129749296
    [Google Scholar]
  33. LincianoP. CendronL. GianquintoE. SpyrakisF. TondiD. Ten years with New Delhi metallo-β-lactamase-1 (NDM-1): From structural insights to inhibitor design.ACS Infect. Dis.20195193410.1021/acsinfecdis.8b0024730421910
    [Google Scholar]
  34. RahmanM. KhanM.K.A. In silico based unraveling of New Delhi metallo-β-lactamase (NDM-1) inhibitors from natural compounds: A molecular docking and molecular dynamics simulation study.J. Biomol. Struct. Dyn.20203872093210310.1080/07391102.2019.162724831184285
    [Google Scholar]
  35. WangT. XuK. ZhaoL. TongR. XiongL. ShiJ. Recent research and development of NDM-1 inhibitors.Eur. J. Med. Chem.202122311366710.1016/j.ejmech.2021.11366734225181
    [Google Scholar]
  36. FrançaT.C.C. Homology modeling: An important tool for the drug discovery.J. Biomol. Struct. Dyn.20153381780179310.1080/07391102.2014.97142925266493
    [Google Scholar]
  37. GrantM. Protein structure prediction in structure-based ligand design and virtual screening.Comb. Chem. High Throughput Screen.2009121094096010.2174/13862070978982471820025561
    [Google Scholar]
  38. VyasV.K. UkawalaR.D. ChinthaC. GhateM. Homology modeling a fast tool for drug discovery: Current perspectives.Indian J. Pharm. Sci.201274111710.4103/0250‑474X.10253723204616
    [Google Scholar]
  39. HilbertM. BöhmG. JaenickeR. Structural relationships of homologous proteins as a fundamental principle in homology modeling.Proteins199317213815110.1002/prot.3401702048265562
    [Google Scholar]
  40. CavasottoC.N. PhatakS.S. Homology modeling in drug discovery: Current trends and applications.Drug Discov. Today20091413-1467668310.1016/j.drudis.2009.04.00619422931
    [Google Scholar]
  41. MuhammedM.T. Aki-YalcinE. Homology modeling in drug discovery: Overview, current applications, and future perspectives.Chem. Biol. Drug Des.2019931122010.1111/cbdd.1338830187647
    [Google Scholar]
  42. DukeJ.A. Dr. Duke’s phytochemical and ethnobotanical databases.Ag Data Commons. Dataset.201610.15482/USDA.ADC/1239279
    [Google Scholar]
  43. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  44. Dassault SystèmesDS BIOVIA Discovery Studio2019
    [Google Scholar]
  45. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  46. LipinskiC.A. Lead- and drug-like compounds: the rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  47. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n12036371
    [Google Scholar]
  48. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt Consortium UniProt: The universal protein knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac105236408920
    [Google Scholar]
  49. JohnsonM. ZaretskayaI. RaytselisY. MerezhukY. McGinnisS. MaddenT.L. NCBI BLAST: A better web interface.Nucleic Acids Res.200836Web ServerW5W910.1093/nar/gkn20118440982
    [Google Scholar]
  50. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  51. KällbergM. WangH. WangS. PengJ. WangZ. LuH. XuJ. Template-based protein structure modeling using the RaptorX web server.Nat. Protoc.2012781511152210.1038/nprot.2012.08522814390
    [Google Scholar]
  52. KingD.T. WorrallL.J. GruningerR. StrynadkaN.C.J. New Delhi metallo-β-lactamase: Structural insights into β-lactam recognition and inhibition.J. Am. Chem. Soc.201213428113621136510.1021/ja303579d22713171
    [Google Scholar]
  53. LaskowskiR.A. PDBsum: summaries and analyses of PDB structures.Nucleic Acids Res.200129122122210.1093/nar/29.1.22111125097
    [Google Scholar]
  54. ZhangY. SkolnickJ. TM-align: A protein structure alignment algorithm based on the TM-score.Nucleic Acids Res.20053372302230910.1093/nar/gki52415849316
    [Google Scholar]
  55. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  56. WiedersteinM. SipplM.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res.200735Web ServerW407W41010.1093/nar/gkm29017517781
    [Google Scholar]
  57. KleinP. Pressure and temperature control in molecular dynamics simulation: A unitary approach in discrete time.Model. Simul. Mater. Sci. Eng.19986440542110.1088/0965‑0393/6/4/009
    [Google Scholar]
  58. ZhuangX MakoverJR ImW KlaudaJB A systematic molecular dynamics simulation study of temperature dependent bilayer structural properties.Biochim Biophys Acta BBA - Biomembr.183818382520252910.1016/j.bbamem.2014.06.010
    [Google Scholar]
  59. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363W36710.1093/nar/gky47329860391
    [Google Scholar]
  60. WuG. RobertsonD.H. BrooksC.L.III ViethM. Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm.J. Comput. Chem.200324131549156210.1002/jcc.1030612925999
    [Google Scholar]
  61. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  62. BerendsenH.J.C. van der SpoelD. van DrunenR. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  63. HessB. KutznerC. van der SpoelD. LindahlE. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation.J. Chem. Theory Comput.20084343544710.1021/ct700301q26620784
    [Google Scholar]
  64. LindahlE. HessB. van der SpoelD. GROMACS 3.0: A package for molecular simulation and trajectory analysis.J. Mol. Model.20017830631710.1007/s008940100045
    [Google Scholar]
  65. PronkS. PállS. SchulzR. LarssonP. BjelkmarP. ApostolovR. ShirtsM.R. SmithJ.C. KassonP.M. van der SpoelD. HessB. LindahlE. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit.Bioinformatics201329784585410.1093/bioinformatics/btt05523407358
    [Google Scholar]
  66. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.2029116211538
    [Google Scholar]
  67. SchmidN. EichenbergerA.P. ChoutkoA. RinikerS. WingerM. MarkA.E. van GunsterenW.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7.Eur. Biophys. J.201140784385610.1007/s00249‑011‑0700‑921533652
    [Google Scholar]
  68. HuangW. LinZ. van GunsterenW.F. Validation of the GROMOS 54A7 force field with respect to β-peptide folding.J. Chem. Theory Comput.2011751237124310.1021/ct100747y26610119
    [Google Scholar]
  69. SchüttelkopfA.W. van AaltenD.M.F. PRODRG : A tool for high-throughput crystallography of protein–ligand complexes.Acta Crystallogr. D Biol. Crystallogr.20046081355136310.1107/S090744490401167915272157
    [Google Scholar]
  70. van AaltenD.M.F. BywaterR. FindlayJ.B.C. HendlichM. HooftR.W.W. VriendG. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules.J. Comput. Aided Mol. Des.199610325526210.1007/BF003550478808741
    [Google Scholar]
  71. JungJ. KobayashiC. SugitaY. Optimal temperature evaluation in molecular dynamics simulations with a large time step.J. Chem. Theory Comput.2019151849410.1021/acs.jctc.8b0087430468577
    [Google Scholar]
  72. ToxvaerdS. Molecular dynamics at constant temperature and pressure.Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics199347134335010.1103/PhysRevE.47.3439960009
    [Google Scholar]
  73. CuendetM.A. van GunsterenW.F. On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm.J. Chem. Phys.20071271818410210.1063/1.277987818020625
    [Google Scholar]
  74. MandalD. ShuklaA. GhoshA. GuptaA. DhabliyaD. Molecular dynamics simulation for serial and parallel computation using leaf frog algorithm.2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, Himachal Pradesh, India, 25-27 November 2022, pp. 552-557.10.1109/PDGC56933.2022.10053161
    [Google Scholar]
  75. TurnerP.J. XMGRACE, Version 5.1.9, Center for Coastal and Land-Margin Research.Beaverton, OROregon Graduate Institute of Science and Technology2005
    [Google Scholar]
  76. HataH. Phuoc TranD. Marzouk SobehM. KitaoA. Binding free energy of protein/ligand complexes calculated using dissociation parallel cascade selection molecular dynamics and markov state model.Biophys. Physicobiol.202118030531610.2142/biophysico.bppb‑v18.03735178333
    [Google Scholar]
  77. DuanH. LiuX. ZhuoW. MengJ. GuJ. SunX. ZuoK. LuoQ. LuoY. TangD. ShiH. CaoS. HuJ. 3D-QSAR and molecular recognition of Klebsiella pneumoniae NDM-1 inhibitors.Mol. Simul.201945969470510.1080/08927022.2019.1579327
    [Google Scholar]
  78. KollmanP.A. MassovaI. ReyesC. KuhnB. HuoS. ChongL. LeeM. LeeT. DuanY. WangW. DoniniO. CieplakP. SrinivasanJ. CaseD.A. CheathamT.E.III Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models.Acc. Chem. Res.2000331288989710.1021/ar000033j11123888
    [Google Scholar]
  79. GenhedenS. RydeU. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.Expert Opin. Drug Discov.201510544946110.1517/17460441.2015.103293625835573
    [Google Scholar]
  80. PoliG. GranchiC. RizzolioF. TuccinardiT. Application of MM-PBSA methods in virtual screening.Molecules2020258197110.3390/molecules2508197132340232
    [Google Scholar]
  81. ChaudharyN. AparoyP. Deciphering the mechanism behind the varied binding activities of COXIBs through molecular dynamic simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies.J. Biomol. Struct. Dyn.201735486888210.1080/07391102.2016.116573626982261
    [Google Scholar]
  82. KumariR. KumarR. LynnA. Open Source Drug Discovery Consortium g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m24850022
    [Google Scholar]
  83. ColovosC. YeatesT.O. Verification of protein structures: Patterns of nonbonded atomic interactions.Protein Sci.1993291511151910.1002/pro.55600209168401235
    [Google Scholar]
  84. BowieJ.U. LüthyR. EisenbergD. A method to identify protein sequences that fold into a known three-dimensional structure.Science1991253501616417010.1126/science.18532011853201
    [Google Scholar]
  85. LüthyR. BowieJ.U. EisenbergD. Assessment of protein models with three-dimensional profiles.Nature19923566364838510.1038/356083a01538787
    [Google Scholar]
  86. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  87. LaskowskiR.A. RullmannJ.A.C. MacArthurM.W. KapteinR. ThorntonJ.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR.J. Biomol. NMR19968447748610.1007/BF00228148
    [Google Scholar]
  88. DanaoK. NandurkarD. RokdeV. ShivhareR. MahajanU. Molecular docking: Metamorphosis in drug discovery.Biomed. Eng. Salih IstifliE. IntechOpen2023Vol. 1510.5772/intechopen.105972
    [Google Scholar]
  89. SnehaP. George Priya DossC. Molecular dynamics: New frontier in personalized medicine.Adv Protein Chem Struct Biol.201610218122410.1016/bs.apcsb.2015.09.004
    [Google Scholar]
  90. LobanovM.Y. BogatyrevaN.S. GalzitskayaO.V. Radius of gyration as an indicator of protein structure compactness.Mol. Biol.200842462362810.1134/S002689330804019518856071
    [Google Scholar]
  91. ZhaoH. CaflischA. Molecular dynamics in drug design.Eur. J. Med. Chem.20159141410.1016/j.ejmech.2014.08.00425108504
    [Google Scholar]
  92. ŚledźP. CaflischA. Protein structure-based drug design: From docking to molecular dynamics.Curr. Opin. Struct. Biol.2018489310210.1016/j.sbi.2017.10.01029149726
    [Google Scholar]
  93. GanesanA. CooteM.L. BarakatK. Molecular dynamics-driven drug discovery: Leaping forward with confidence.Drug Discov. Today201722224926910.1016/j.drudis.2016.11.00127890821
    [Google Scholar]
  94. FarmerJ. KanwalF. NikulsinN. TsilimigrasM. JacobsD. Statistical measures to quantify similarity between molecular dynamics simulation trajectories.Entropy2017191264610.3390/e1912064630498328
    [Google Scholar]
  95. KumarA. SrivastavaG. NegiA.S. SharmaA. Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β.J. Biomol. Struct. Dyn.201937227529010.1080/07391102.2018.142604329310523
    [Google Scholar]
  96. VarugheseJ.K. Joseph LibinK.L. SindhuK.S. RosilyA.V. AbiT.G. Investigation of the inhibitory activity of some dietary bioactive flavonoids against SARS-CoV-2 using molecular dynamics simulations and MM-PBSA calculations.J. Biomol. Struct. Dyn.202240156755677010.1080/07391102.2021.189113933618628
    [Google Scholar]
  97. ZoeteV. IrvingM.B. MichielinO. MM–GBSA binding free energy decomposition and T cell receptor engineering.J. Mol. Recognit.201023214215210.1002/jmr.100520151417
    [Google Scholar]
  98. ZerbeB.S. HallD.R. VajdaS. WhittyA. KozakovD. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.J. Chem. Inf. Model.20125282236224410.1021/ci300175u22770357
    [Google Scholar]
  99. ThippeswamyS. MohanaD.C. AbhishekR.U. ManjunathK. Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara.Braz. J. Microbiol.201546113914310.1590/S1517‑83824612013113726221099
    [Google Scholar]
  100. KareruP.G. GachanjaA.N. KerikoJ.M. KenjiG.M. Antimicrobial activity of some medicinal plants used by herbalists in Eastern province, Kenya.Afr. J. Tradit. Complement. Altern. Med.200851515510.4314/ajtcam.v5i1.3125620162055
    [Google Scholar]
  101. DoukaniK. SellesA.S.M. BouhenniH. Melissa officinalis (lemon balm).Nat. Occur. Chem. Alzheimers Dis.202122524110.1016/B978‑0‑12‑819212‑2.00047‑5
    [Google Scholar]
  102. LiY. WangC. LiH. YuT. TanL. Simultaneous determination of formononetin, calycosin and rhamnocitrin from astragalus complanatus by UHPLC–MS-MS in rat plasma: Application to a pharmacokinetic study.J. Chromatogr. Sci.20165491605161210.1093/chromsci/bmw11027325683
    [Google Scholar]
  103. PolimatiH. PragadaR.R. ThuanN.H. TatipamulaV.B. Hepatoprotective potential of bioflavonoids.Stud. Nat. Prod. Chem.20227225928510.1016/B978‑0‑12‑823944‑5.00014‑4
    [Google Scholar]
  104. TuY.C. LianT.W. YenJ.H. ChenZ.T. WuM.J. Antiatherogenic effects of kaempferol and rhamnocitrin.J. Agric. Food Chem.200755249969997610.1021/jf071778817973448
    [Google Scholar]
  105. MahapatraS.R. DeyJ. RajT.K. KumarV. GhoshM. VermaK.K. KaurT. KesawatM.S. MisraN. SuarM. The potential of plant-derived secondary metabolites as novel drug candidates against Klebsiella pneumoniae: Molecular docking and simulation investigation.S. Afr. J. Bot.202214978979710.1016/j.sajb.2022.04.043
    [Google Scholar]
  106. MehtaJ. UtkarshK. FuloriaS. SinghT. SekarM. SalariaD. RoltaR. BegumM.Y. GanS.H. RaniN.N.I.M. ChidambaramK. SubramaniyanV. SathasivamK.V. LumP.T. UthirapathyS. FadareO.A. AwofisayoO. FuloriaN.K. Antibacterial potential of bacopa monnieri (l.) wettst. and its bioactive molecules against uropathogens—an in silico study to identify potential lead molecule(s) for the development of new drugs to treat urinary tract infections.Molecules20222715497110.3390/molecules2715497135956923
    [Google Scholar]
  107. de Oliveira JúniorN.G. FrancoO.L. Promising strategies for future treatment of Klebsiella pneumoniae biofilms.Future Microbiol.2020151637910.2217/fmb‑2019‑018032048525
    [Google Scholar]
  108. QianW. SunZ. WangT. YangM. LiuM. ZhangJ. LiY. Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms.Microb. Pathog.202013910392410.1016/j.micpath.2019.10392431837416
    [Google Scholar]
  109. MalathiK. AnbarasuA. RamaiahS. Identification of potential inhibitors for Klebsiella pneumoniae carbapenemase-3: A molecular docking and dynamics study.J. Biomol. Struct. Dyn.201937174601461310.1080/07391102.2018.155673730632921
    [Google Scholar]
  110. CordeiroL. Diniz-NetoH. FigueiredoP. SouzaH. SousaA. Andrade-JúniorF. MeloT. FerreiraE. OliveiraR. Athayde-FilhoP. Barbosa-FilhoJ. Oliveira-FilhoA. LimaE. Potential of 2-Chloro-N-(4-fluoro-3-nitrophenyl)acetamide against klebsiella pneumoniae and in vitro toxicity analysis.Molecules20202517395910.3390/molecules2517395932877986
    [Google Scholar]
  111. AliS. AlamM. HasanG.M. HassanM.I. Potential therapeutic targets of Klebsiella pneumoniae : A multi-omics review perspective.Brief. Funct. Genomics2022212637710.1093/bfgp/elab03834448478
    [Google Scholar]
  112. KhanS. MadhiS.A. OlwagenC. In-silico identification of potential inhibitors against FabI protein in Klebsiella pneumoniae. J. Biomol. Struct. Dyn.202311210.1080/07391102.2023.220057137105229
    [Google Scholar]
  113. MohammadiT. KarczmarekA. CrouvoisierM. BouhssA. Mengin-LecreulxD. Den BlaauwenT. The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli.Mol. Microbiol.20076541106112110.1111/j.1365‑2958.2007.05851.x17640276
    [Google Scholar]
  114. JinJ. HsiehY.H. ChaudharyA.S. CuiJ. HoughtonJ.E. SuiS. WangB. TaiP.C. SecA inhibitors as potential antimicrobial agents: Differential actions on SecA-only and SecA-SecYEG protein-conducting channels.FEMS Microbiol. Lett.201836515fny14510.1093/femsle/fny14530007321
    [Google Scholar]
  115. AzamM.A. JupudiS. Insight into the structural requirements of thiophene-3-carbonitriles-based MurF inhibitors by 3D-QSAR, molecular docking and molecular dynamics study.J. Recept. Signal Transduct. Res.201737552253410.1080/10799893.2017.136035428768454
    [Google Scholar]
  116. SantosM.R. CosmeA.M. BeckerJ.D. MedeirosJ.M.C. MataM.F. MoreiraL.M. Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti.BMC Microbiol.201010118010.1186/1471‑2180‑10‑18020573193
    [Google Scholar]
  117. SinghA. AzamM.A. MurF. MurF ligase inhibitors: An overview of antibacterial activity.Lett. Drug Des. Discov.202320111675168710.2174/1570180819666220615092036
    [Google Scholar]
  118. KumarD. SarkarN. RoyK.K. BishtD. KumarD. MandalB. RajagopalM. DeyY.N. The potential of mur enzymes as targets for antimicrobial drug discovery.Curr. Drug Targets202324862764710.2174/138945012466623060815075937291783
    [Google Scholar]
  119. RezaA. SuttonJ.M. RahmanK.M. Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria.Antibiotics20198422910.3390/antibiotics804022931752382
    [Google Scholar]
  120. HasdemirU.O. ChevalierJ. NordmannP. PagèsJ.M. Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey.J. Clin. Microbiol.20044262701270610.1128/JCM.42.6.2701‑2706.200415184455
    [Google Scholar]
  121. ChevalierJ. BredinJ. MahamoudA. MalléaM. BarbeJ. PagèsJ.M. Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains.Antimicrob. Agents Chemother.20044831043104610.1128/AAC.48.3.1043‑1046.200414982806
    [Google Scholar]
  122. VermaD. GuptaS. SaxenaR. KaurP. RR. SrivastavaS. GuptaV. Allosteric inhibition and kinetic characterization of Klebsiella pneumoniae CysE: An emerging drug target.Int. J. Biol. Macromol.20201511240124910.1016/j.ijbiomac.2019.10.17031751684
    [Google Scholar]
  123. GalaniI. KaraiskosI. GiamarellouH. Multidrug-resistant Klebsiella pneumoniae : Mechanisms of resistance including updated data for novel β-lactam-β-lactamase inhibitor combinations.Expert Rev. Anti Infect. Ther.202119111457146810.1080/14787210.2021.192467433945387
    [Google Scholar]
  124. RehmanM. AlAjmiM. HussainA. RatherG. KhanM. High-throughput virtual screening, molecular dynamics simulation, and enzyme kinetics identified ZINC84525623 as a potential inhibitor of NDM-1.Int. J. Mol. Sci.201920481910.3390/ijms2004081930769822
    [Google Scholar]
  125. LiN. XuY. XiaQ. BaiC. WangT. WangL. HeD. XieN. LiL. WangJ. ZhouH.G. XuF. YangC. ZhangQ. YinZ. GuoY. ChenY. Simplified captopril analogues as NDM-1 inhibitors.Bioorg. Med. Chem. Lett.201424138638910.1016/j.bmcl.2013.10.06824269122
    [Google Scholar]
  126. CahillS.T. CainR. WangD.Y. LohansC.T. WarehamD.W. OswinH.P. MohammedJ. SpencerJ. FishwickC.W.G. McDonoughM.A. SchofieldC.J. BremJ. Cyclic boronates inhibit all classes of β-lactamases.Antimicrob. Agents Chemother.2017614e02260-1610.1128/AAC.02260‑1628115348
    [Google Scholar]
  127. LangP.A. ParkovaA. LeissingT.M. CalvopiñaK. CainR. KrajncA. PanduwawalaT.D. PhilippeJ. FishwickC.W.G. TrapencierisP. PageM.G.P. SchofieldC.J. BremJ. Bicyclic boronates as potent inhibitors of AmpC, the class C β-lactamase from Escherichia coli. Biomolecules202010689910.3390/biom1006089932545682
    [Google Scholar]
  128. HamrickJ.C. DocquierJ.D. UeharaT. MyersC.L. SixD.A. ChatwinC.L. JohnK.J. VernacchioS.F. CusickS.M. TroutR.E.L. PozziC. De LucaF. BenvenutiM. ManganiS. LiuB. JacksonR.W. MoeckG. XerriL. BurnsC.J. PevearD.C. DaigleD.M. VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- and metallo-β-lactamases, restores activity of cefepime in enterobacterales and pseudomonas aeruginosa.Antimicrob. Agents Chemother.2020643e01963-1910.1128/AAC.01963‑1931871094
    [Google Scholar]
  129. KaushikM. KaushikA. JainA. ChaudharyJ. GuptaV. AmpC. AmpC inhibition: An explicit approach against multi-drug resistance (MDR).Curr. Top. Med. Chem.202323201919192710.2174/156802662366623050409500537150991
    [Google Scholar]
  130. LyuJ. WangS. BaliusT.E. SinghI. LevitA. MorozY.S. O’MearaM.J. CheT. AlgaaE. TolmachovaK. TolmachevA.A. ShoichetB.K. RothB.L. IrwinJ.J. Ultra-large library docking for discovering new chemotypes.Nature2019566774322422910.1038/s41586‑019‑0917‑930728502
    [Google Scholar]
  131. WernerJ.P. MitchellJ.M. TaracilaM.A. BonomoR.A. PowersR.A. Exploring the potential of boronic acids as inhibitors of OXA‐24/40 β‐lactamase.Protein Sci.201726351552610.1002/pro.310027997706
    [Google Scholar]
  132. SomboroA.M. AmoakoD.G. Osei SekyereJ. KumaloH.M. KhanR. BesterL.A. EssackS.Y. 1,4,7-Triazacyclononane restores the activity of β-lactam antibiotics against metallo-β-lactamase-producing Enterobacteriaceae : Exploration of potential metallo-β-lactamase inhibitors.Appl. Environ. Microbiol.2019853e02077-1810.1128/AEM.02077‑1830478231
    [Google Scholar]
  133. KingA.M. Reid-YuS.A. WangW. KingD.T. De PascaleG. StrynadkaN.C. WalshT.R. CoombesB.K. WrightG.D. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance.Nature2014510750650350610.1038/nature1344524965651
    [Google Scholar]
  134. Papp-WallaceK.M. NguyenN.Q. JacobsM.R. BethelC.R. BarnesM.D. KumarV. BajaksouzianS. RudinS.D. RatherP.N. BhavsarS. RavikumarT. DeshpandeP.K. PatilV. YeoleR. BhagwatS.S. PatelM.V. van den AkkerF. BonomoR.A. Strategic approaches to overcome resistance against gram-negative pathogens using β-lactamase inhibitors and β-lactam enhancers: Activity of three novel diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234.J. Med. Chem.20186194067408610.1021/acs.jmedchem.8b0009129627985
    [Google Scholar]
  135. TookeC.L. HinchliffeP. BraggintonE.C. ColensoC.K. HirvonenV.H.A. TakebayashiY. SpencerJ. β-lactamases and β-lactamase inhibitors in the 21st century.J. Mol. Biol.2019431183472350010.1016/j.jmb.2019.04.00230959050
    [Google Scholar]
  136. PerbandtM. WernerN. PresterA. RohdeH. AepfelbacherM. HinrichsW. BetzelC. Structural basis to repurpose boron-based proteasome inhibitors Bortezomib and Ixazomib as β-lactamase inhibitors.Sci. Rep.2022121551010.1038/s41598‑022‑09392‑635365689
    [Google Scholar]
/content/journals/cad/10.2174/0115734099294294240311061115
Loading
/content/journals/cad/10.2174/0115734099294294240311061115
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CDOCKER; Klebsiella; MD simulation; MM-PBSA; NDM variants; potential inhibitors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test