Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Sepsis-related acute respiratory distress syndrome (ARDS) is a fatal disease without effective therapy. Kaempferol is a flavonoid compound extracted from natural plant products; it exerts numerous pharmacological effects. Kaempferol attenuates sepsis-related ARDS; however, the underlying protective mechanism has not been elucidated completely.

Objectives

This study aimed to use network pharmacology and experimental verification to investigate the mechanisms by which kaempferol attenuates sepsis-related ARDS.

Methods

We screened the targets of kaempferol by PharMapper, Swiss Target Prediction, and CTD database. We identified the targets of sepsis-related ARDS by GeneCards, DisGeNet, OMIM, and TTD. The Weishengxin platform was used to map the targets of both kaempferol and sepsis-related ARDS. We created a Venn diagram to identify the intersection targets. We constructed the “component-intersection targets-disease” network diagram using Cytoscape 3.9.1 software. The intersection targets were imported into the STRING database for developing the protein-protein interaction network. Metascape was used for the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. We selected the leading 20 KEGG pathways to establish the KEGG relationship network. Finally, we performed experimental verification to confirm our prediction results.

Results

Through database screening, we obtained 502, 360, and 78 kaempferol targets, disease targets of sepsis-related ARDS, and intersection targets, respectively. The core targets consisted of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, albumin (ALB), IL-1β, and AKT serine/threonine kinase (AKT)1. GO enrichment analysis identified 426 items, which were principally involved in response to lipopolysaccharide, regulation of inflammatory response, inflammatory response, positive regulation of cell migration, positive regulation of cell adhesion, positive regulation of protein phosphorylation, response to hormone, regulation of reactive oxygen species (ROS) metabolic process, negative regulation of apoptotic signaling pathway, and response to decreased oxygen levels. KEGG enrichment analysis identified 151 pathways. After eliminating the disease and generalized pathways, we obtained the hypoxia-inducible factor 1 (HIF-1), nuclear factor κB (NF-κB), and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways. Our experimental verification confirmed that kaempferol blocked the HIF-1, NF-κB, and PI3K-Akt signaling pathways, diminished TNF-α, IL-1β, and IL-6 expressions, suppressed ROS production, and inhibited apoptosis in lipopolysaccharide (LPS)-induced murine alveolar macrophage (MH-S) cells.

Conclusion

Kaempferol can reduce inflammatory response, ROS production, and cell apoptosis by acting on the HIF-1, NF-κB, and PI3K-Akt signaling pathways, thereby alleviating sepsis-related ARDS.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099295805240126043059
2024-02-06
2025-04-04
Loading full text...

Full text loading...

References

  1. EvansL. RhodesA. AlhazzaniW. AntonelliM. CoopersmithC.M. FrenchC. MachadoF.R. McintyreL. OstermannM. PrescottH.C. SchorrC. SimpsonS. WiersingaW.J. AlshamsiF. AngusD.C. ArabiY. AzevedoL. BealeR. BeilmanG. Belley-CoteE. BurryL. CecconiM. CentofantiJ. Coz YatacoA. De WaeleJ. DellingerR.P. DoiK. DuB. EstenssoroE. FerrerR. GomersallC. HodgsonC. MøllerM.H. IwashynaT. JacobS. KleinpellR. KlompasM. KohY. KumarA. KwizeraA. LoboS. MasurH. McGloughlinS. MehtaS. MehtaY. MerM. NunnallyM. OczkowskiS. OsbornT. PapathanassoglouE. PernerA. PuskarichM. RobertsJ. SchweickertW. SeckelM. SevranskyJ. SprungC.L. WelteT. ZimmermanJ. LevyM. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021.Intens. Care Med.202147111181124710.1007/s00134‑021‑06506‑y34599691
    [Google Scholar]
  2. PrescottH.C. AngusD.C. Enhancing recovery from sepsis.JAMA20183191627510.1001/jama.2017.1768729297082
    [Google Scholar]
  3. RuddK.E. JohnsonS.C. AgesaK.M. ShackelfordK.A. TsoiD. KievlanD.R. ColombaraD.V. IkutaK.S. KissoonN. FinferS. Fleischmann-StruzekC. MachadoF.R. ReinhartK.K. RowanK. SeymourC.W. WatsonR.S. WestT.E. MarinhoF. HayS.I. LozanoR. LopezA.D. AngusD.C. MurrayC.J.L. NaghaviM. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study.Lancet20203951021920021110.1016/S0140‑6736(19)32989‑731954465
    [Google Scholar]
  4. SheuC.C. GongM.N. ZhaiR. ChenF. BajwaE.K. ClardyP.F. GallagherD.C. ThompsonB.T. ChristianiD.C. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS.Chest2010138355956710.1378/chest.09‑293320507948
    [Google Scholar]
  5. DingW.C. ChenJ. LiaoH.Y. FengJ. WangJ. ZhangY.H. JiX.H. ChenQ. WuX.Y. SunZ.R. NieS.N. [Mechanism of Xuebijing Injection in treatment of sepsis-associated ARDS based on network pharmacology and in vitro experiment].Zhongguo Zhongyao Zazhi202348123345335937382018
    [Google Scholar]
  6. HeY.Q. ZhouC.C. YuL.Y. WangL. DengJ. TaoY.L. ZhangF. ChenW.S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms.Pharmacol. Res.202116310522410.1016/j.phrs.2020.10522433007416
    [Google Scholar]
  7. BangarS.P. ChaudharyV. SharmaN. BansalV. OzogulF. LorenzoJ.M. Kaempferol: A flavonoid with wider biological activities and its applications.Crit. Rev. Food Sci. Nutr.202363289580960410.1080/10408398.2022.206712135468008
    [Google Scholar]
  8. MishraS. GandhiD. TiwariR.R. RajasekaranS. Beneficial role of kaempferol and its derivatives from different plant sources on respiratory diseases in experimental models.Inflammopharmacology20233152311233610.1007/s10787‑023‑01282‑137410224
    [Google Scholar]
  9. AlkandahriM.Y. PamungkasB.T. OktobaZ. ShafiranyM.Z. SulastriL. ArfaniaM. AnggraenyE.N. PratiwiA. AstutiF.D. Indriyani DewiS.Y. HamidahS.Z. Hepatoprotective effect of kaempferol: A review of the dietary sources, bioavailability, mechanisms of action, and safety.Adv. Pharmacol. Pharm. Sci.2023202311610.1155/2023/138766536891541
    [Google Scholar]
  10. KamisahY. JalilJ. YunosN.M. ZainalabidinS. Cardioprotective properties of kaempferol: A review.Plants20231211209610.3390/plants1211209637299076
    [Google Scholar]
  11. Silva dos SantosJ. Gonçalves CirinoJ.P. de Oliveira CarvalhoP. OrtegaM.M. The pharmacological action of kaempferol in central nervous system diseases: A review.Front. Pharmacol.20211156570010.3389/fphar.2020.56570033519431
    [Google Scholar]
  12. AmjadE. SokoutiB. AsnaashariS. A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound.Cancer Cell Int.202222126010.1186/s12935‑022‑02673‑035986346
    [Google Scholar]
  13. YangY. ChenZ. ZhaoX. XieH. DuL. GaoH. XieC. Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review.Front. Endocrinol.20221399029910.3389/fendo.2022.99029936157449
    [Google Scholar]
  14. RenJ. LuY. QianY. ChenB. WuT. JiG. Recent progress regarding kaempferol for the treatment of various diseases (Review).Exp. Ther. Med.20191842759277610.3892/etm.2019.788631572524
    [Google Scholar]
  15. QianJ. ChenX. ChenX. SunC. JiangY. QianY. ZhangY. KhanZ. ZhouJ. LiangG. ZhengC. Kaempferol reduces K63-linked polyubiquitination to inhibit nuclear factor-κB and inflammatory responses in acute lung injury in mice.Toxicol. Lett.2019306536010.1016/j.toxlet.2019.02.00530769083
    [Google Scholar]
  16. RabhaD.J. SinghT.U. RungsungS. KumarT. ParidaS. LingarajuM.C. PaulA. SahooM. KumarD. Kaempferol attenuates acute lung injury in caecal ligation and puncture model of sepsis in mice.Exp. Lung Res.2018442637810.1080/01902148.2017.142027129393707
    [Google Scholar]
  17. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review.J. Tradit. Chin. Med.202242347948635610020
    [Google Scholar]
  18. YangB. WangR. JiL.L. LiX.P. LiX.H. ZhouH.G. HeZ.K. XuH.L. MengF.J. WangG.S. Exploration of the function of ginsenoside RD attenuates lipopolysaccharide-induced lung injury: A Study of network pharmacology and experimental validation.Shock202257221222010.1097/SHK.000000000000182434172615
    [Google Scholar]
  19. WangY. YuanY. WangW. HeY. ZhongH. ZhouX. ChenY. CaiX.J. LiuL. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking.Comput. Biol. Med.202214510545410.1016/j.compbiomed.2022.10545435367781
    [Google Scholar]
  20. ZhuH. WangS. ShanC. LiX. TanB. ChenQ. YangY. YuH. YangA. Mechanism of protective effect of xuan-bai-cheng-qi decoction on LPS-induced acute lung injury based on an integrated network pharmacology and RNA-sequencing approach.Respir. Res.202122118810.1186/s12931‑021‑01781‑134183011
    [Google Scholar]
  21. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.11630636858276
    [Google Scholar]
  22. ZhangS. HuD. ZhuoY. CuiL. LiD. ZhangL. Protective effect of liriodendrin on IgG immune complex-induced acute lung injury via inhibiting SRC/STAT3/MAPK signaling pathway: A network pharmacology research.Naunyn. Schmiedebergs. Arch. Pharmacol.2023396113269328310.1007/s00210‑023‑02534‑1
    [Google Scholar]
  23. MingY. JiachenL. TaoG. ZhihuiW. Exploration of the mechanism of tripterygium wilfordii in the treatment of myocardial fibrosis based on network pharmacology and molecular docking.Curr. Computeraided Drug Des.2023191687910.2174/157340991966622102812032936306461
    [Google Scholar]
  24. ShenC. ShenP. WangX. WangX. ShaoW. GengK. XieH. Integrating bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of schisandrin on hypertrophic cardiomyopathy.Curr. Computeraided Drug Des.202319319220110.2174/157340991966622112414471336424782
    [Google Scholar]
  25. WangX. ShenY. WangS. LiS. ZhangW. LiuX. LaiL. PeiJ. LiH. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database.Nucleic Acids Res.201745W1W356W36010.1093/nar/gkx37428472422
    [Google Scholar]
  26. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz38231106366
    [Google Scholar]
  27. DavisA.P. GrondinC.J. JohnsonR.J. SciakyD. WiegersJ. WiegersT.C. MattinglyC.J. Comparative Toxicogenomics Database (CTD): Update 2021.Nucleic Acids Res.202149D1D1138D114310.1093/nar/gkaa89133068428
    [Google Scholar]
  28. UniProt ConsortiumUniProt: A hub for protein information.Nucleic Acids Res.201543Database issueD204D21225348405
    [Google Scholar]
  29. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT.I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The genecards suite: From gene data mining to disease genome sequence analyses.Curr. Protoc. Bioinformatics201654130.1, 3310.1002/cpbi.527322403
    [Google Scholar]
  30. PiñeroJ. Queralt-RosinachN. BravoA. Deu-PonsJ. Bauer-MehrenA. BaronM. SanzF. FurlongL.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes.Database201520150bav02810.1093/database/bav02825877637
    [Google Scholar]
  31. AmbergerJ.S. HamoshA. Searching Online Mendelian Inheritance in Man (OMIM): A knowledgebase of human genes and genetic phenotypes.Curr. Protoc. Bioinformatics20175812.1, 1210.1002/cpbi.2728654725
    [Google Scholar]
  32. LiY.H. YuC.Y. LiX.X. ZhangP. TangJ. YangQ. FuT. ZhangX. CuiX. TuG. ZhangY. LiS. YangF. SunQ. QinC. ZengX. ChenZ. ChenY.Z. ZhuF. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics.Nucleic Acids Res.201846D1D1121D112710.1093/nar/gkx107629140520
    [Google Scholar]
  33. LotiaS. MontojoJ. DongY. BaderG.D. PicoA.R. Cytoscape app store.Bioinformatics201329101350135110.1093/bioinformatics/btt13823595664
    [Google Scholar]
  34. SzklarczykD. FranceschiniA. WyderS. ForslundK. HellerD. Huerta-CepasJ. SimonovicM. RothA. SantosA. TsafouK.P. KuhnM. BorkP. JensenL.J. von MeringC. STRING v10: Protein-protein interaction networks, integrated over the tree of life.Nucleic Acids Res.201543D1D447D45210.1093/nar/gku100325352553
    [Google Scholar]
  35. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  36. LiuP. FengY. LiH. ChenX. WangG. XuS. LiY. ZhaoL. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis.Cell. Mol. Biol. Lett.20202511010.1186/s11658‑020‑00205‑032161620
    [Google Scholar]
  37. XuY. LiuX. ZhangZ. STV‐Na attenuates lipopolysaccharide‐induced lung injury in mice via the TLR4/NF‐kB pathway.Immun. Inflamm. Dis.2023111e77010.1002/iid3.77036705406
    [Google Scholar]
  38. GaoY. WangN. JiaD. H3K27 tri-demethylase JMJD3 inhibits macrophage apoptosis by promoting ADORA2A in lipopolysaccharide-induced acute lung injury.Cell Death Discov.20228147510.1038/s41420‑022‑01268‑y36456564
    [Google Scholar]
  39. HuQ. HaoC. TangS. From sepsis to acute respiratory distress syndrome (ARDS): Emerging preventive strategies based on molecular and genetic researches.Biosci. Rep.202040
    [Google Scholar]
  40. Plata-MenchacaE.P. FerrerR. Ruiz RodríguezJ.C. MoraisR. PóvoaP. Antibiotic treatment in patients with sepsis: A narrative review.Hosp. Pract.202250320321310.1080/21548331.2020.179154132627615
    [Google Scholar]
  41. PeltanI.D. BrownS.M. BledsoeJ.R. SorensenJ. SamoreM.H. AllenT.L. HoughC.L. ED Door-to-Antibiotic Time and Long-term Mortality in Sepsis.Chest2019155593894610.1016/j.chest.2019.02.00830779916
    [Google Scholar]
  42. ZhouX. SuL.X. ZhangJ.H. LiuD.W. LongY. Rules of anti-infection therapy for sepsis and septic shock.Chin. Med. J.2019132558959610.1097/CM9.000000000000010130807357
    [Google Scholar]
  43. SeokH. JeonJ.H. ParkD.W. Antimicrobial therapy and antimicrobial stewardship in sepsis.Infect. Chemother.2020521193010.3947/ic.2020.52.1.1932239809
    [Google Scholar]
  44. KuttabH.I. LykinsJ.D. HughesM.D. WroblewskiK. KeastE.P. KukoyiO. KopecJ.A. HallS. WardM.A. Evaluation and predictors of fluid resuscitation in patients with severe sepsis and septic shock.Crit. Care Med.201947111582159010.1097/CCM.000000000000396031393324
    [Google Scholar]
  45. ChenZ. HuangX. LuH. DengW. HuangL. WuD. WangD. ZhanQ. WangC. The association between early fluid strategy and prognosis of acute respiratory distress syndrome: A post hoc study of CHARDS.Pulm. Circ.2023133e1226110.1002/pul2.1226137404902
    [Google Scholar]
  46. KeddissiJ. YounessH. JonesK. KinasewitzG. Fluid management in acute respiratory distress syndrome: A narrative review.Can. J. Respir. Ther.2019551810.29390/cjrt‑2018‑01631297439
    [Google Scholar]
  47. MendesR.S. PelosiP. SchultzM.J. RoccoP.R.M. SilvaP.L. Fluids in ARDS: More pros than cons.Intensive Care Med. Exp.20208S13210.1186/s40635‑020‑00319‑x33336259
    [Google Scholar]
  48. GrasselliG. CalfeeC.S. CamporotaL. PooleD. AmatoM.B.P. AntonelliM. ArabiY.M. BaroncelliF. BeitlerJ.R. BellaniG. BellinganG. BlackwoodB. BosL.D.J. BrochardL. BrodieD. BurnsK.E.A. CombesA. D’ArrigoS. De BackerD. DemouleA. EinavS. FanE. FergusonN.D. FratJ.P. GattinoniL. GuérinC. HerridgeM.S. HodgsonC. HoughC.L. JaberS. JuffermansN.P. KaragiannidisC. KeseciogluJ. KwizeraA. LaffeyJ.G. ManceboJ. MatthayM.A. McAuleyD.F. MercatA. MeyerN.J. MossM. MunshiL. MyatraS.N. Ng GongM. PapazianL. PatelB.K. PellegriniM. PernerA. PesentiA. PiquilloudL. QiuH. RanieriM.V. RivielloE. SlutskyA.S. StapletonR.D. SummersC. ThompsonT.B. Valente BarbasC.S. VillarJ. WareL.B. WeissB. ZampieriF.G. AzoulayE. CecconiM. ESICM guidelines on acute respiratory distress syndrome: Definition, phenotyping and respiratory support strategies.Intensive Care Med.202349772775910.1007/s00134‑023‑07050‑737326646
    [Google Scholar]
  49. LiaqatA. MasonM. FosterB.J. KulkarniS. BarlasA. FarooqA.M. PatakP. LiaqatH. BassoR.G. ZamanM.S. PauD. Evidence-based mechanical ventilatory strategies in ARDS.J. Clin. Med.202211231910.3390/jcm1102031935054013
    [Google Scholar]
  50. NedevaC. MenassaJ. PuthalakathH. Sepsis: Inflammation is a necessary evil.Front. Cell Dev. Biol.2019710810.3389/fcell.2019.0010831281814
    [Google Scholar]
  51. MeyerN.J. GattinoniL. CalfeeC.S. Acute respiratory distress syndrome.Lancet20213981030062263710.1016/S0140‑6736(21)00439‑634217425
    [Google Scholar]
  52. BosL.D.J. LaffeyJ.G. WareL.B. HeijnenN.F.L. SinhaP. PatelB. JabaudonM. BastaracheJ.A. McAuleyD.F. SummersC. CalfeeC.S. Shankar-HariM. Towards a biological definition of ARDS: are treatable traits the solution?Intensive Care Med. Exp.2022101810.1186/s40635‑022‑00435‑w35274164
    [Google Scholar]
  53. HuangM. CaiS. SuJ. The pathogenesis of sepsis and potential therapeutic targets.Int. J. Mol. Sci.20192021537610.3390/ijms2021537631671729
    [Google Scholar]
  54. GillS.E. TanejaR. RohanM. WangL. MehtaS. Pulmonary microvascular albumin leak is associated with endothelial cell death in murine sepsis-induced lung injury in vivo.PLoS One201492e8850110.1371/journal.pone.008850124516666
    [Google Scholar]
  55. ZhangE. WangJ. ChenQ. WangZ. LiD. JiangN. JuX. Artesunate ameliorates sepsis-induced acute lung injury by activating the mTOR/AKT/PI3K axis.Gene202075914496910.1016/j.gene.2020.14496932712064
    [Google Scholar]
  56. LiJ. MaJ. LiM. TaoJ. ChenJ. YaoC. YaoS. GYY4137 alleviates sepsis-induced acute lung injury in mice by inhibiting the PDGFRβ/Akt/NF-κB/NLRP3 pathway.Life Sci.202127111919210.1016/j.lfs.2021.11919233577850
    [Google Scholar]
  57. LinM. XieW. XiongD. TangS. HuangX. DengL. HuangL. ZhangX. ZhouT. QianR. ZengQ. SangX. LuoY. HuaQ. RenL. LiuW. Cyasterone ameliorates sepsis-related acute lung injury via AKT (Ser473)/GSK3β (Ser9)/Nrf2 pathway.Chin. Med.202318113610.1186/s13020‑023‑00837‑237853474
    [Google Scholar]
  58. GongH. ChenY. ChenM. LiJ. ZhangH. YanS. LvC. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome.Front. Med.20229104385910.3389/fmed.2022.104385936452899
    [Google Scholar]
  59. JoffreJ. HellmanJ. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation.Antioxid. Redox Signal.202135151291130710.1089/ars.2021.002733637016
    [Google Scholar]
  60. ZhouH. WangX. ZhangB. Depression of lncRNA NEAT1 antagonizes lps-evoked acute injury and inflammatory response in alveolar epithelial cells via hmgb1-rage signaling.Mediators Inflamm.2020202011110.1155/2020/801946732089649
    [Google Scholar]
  61. GirardotT. RimmeléT. VenetF. MonneretG. Apoptosis-induced lymphopenia in sepsis and other severe injuries.Apoptosis201722229530510.1007/s10495‑016‑1325‑327812767
    [Google Scholar]
  62. LiX. JamalM. GuoP. JinZ. ZhengF. SongX. ZhanJ. WuH. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways.Biomed. Pharmacother.201911810936310.1016/j.biopha.2019.10936331545277
    [Google Scholar]
  63. YangL. ZhangZ. ZhuoY. CuiL. LiC. LiD. ZhangS. CuiN. WangX. GaoH. Resveratrol alleviates sepsis-induced acute lung injury by suppressing inflammation and apoptosis of alveolar macrophage cells.Am. J. Transl. Res.20181071961197530093935
    [Google Scholar]
  64. LuJ. YanJ. YanJ. ZhangL. ChenM. ChenQ. ChengL. LiP. Network pharmacology based research into the effect and mechanism of Xijiao Dihuang decoction against sepsis.Biomed. Pharmacother.202012210977710.1016/j.biopha.2019.10977731918261
    [Google Scholar]
  65. ShiJ. YuT. SongK. DuS. HeS. HuX. LiX. LiH. DongS. ZhangY. XieZ. LiC. YuJ. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway.Redox Biol.20214110195410.1016/j.redox.2021.10195433774474
    [Google Scholar]
  66. LiX. ShanC. WuZ. YuH. YangA. TanB. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway.Inflamm. Res.202069436537310.1007/s00011‑020‑01331‑332130427
    [Google Scholar]
  67. HeS. FanC. JiY. SuQ. ZhaoF. XieC. ChenX. ZhangY. ChenY. SENP3 facilitates M1 macrophage polarization via the HIF-1α/PKM2 axis in lipopolysaccharide-induced acute lung injury.Innate Immun.2023291-2253410.1177/1753425923116621237016838
    [Google Scholar]
  68. MengY. KongK. ChangY. DengX. YangT. Histone methyltransferase SETD2 inhibits M1 macrophage polarization and glycolysis by suppressing HIF-1α in sepsis-induced acute lung injury.Med. Microbiol. Immunol.2023212536937910.1007/s00430‑023‑00778‑537658121
    [Google Scholar]
  69. MiaoR.F. TuJ. LncRNA CDKN2B‐AS1 interacts with LIN28B to exacerbate sepsis‐induced acute lung injury by inducing HIF ‐1α/ NLRP3 ‐mediated pyroptosis.Kaohsiung J. Med. Sci.202339988389510.1002/kjm2.1269737265187
    [Google Scholar]
  70. LiX. YuJ. GongL. ZhangY. DongS. ShiJ. LiC. LiY. ZhangY. LiH. Heme oxygenase-1(HO-1) regulates Golgi stress and attenuates endotoxin-induced acute lung injury through hypoxia inducible factor-1α (HIF-1α)/HO-1 signaling pathway.Free Radic. Biol. Med.202116524325310.1016/j.freeradbiomed.2021.01.02833493554
    [Google Scholar]
  71. ChenQ. ShaoX. HeY. LuE. ZhuL. TangW. Norisoboldine attenuates sepsis-induced acute lung injury by modulating macrophage polarization via PKM2/HIF-1α/PGC-1α Pathway.Biol. Pharm. Bull.202144101536154710.1248/bpb.b21‑0045734602563
    [Google Scholar]
  72. DuN. LinH. ZhangA. CaoC. HuX. ZhangJ. WangL. PanX. ZhuY. QianF. WangY. ZhaoD. LiuM. HuangY. N-phenethyl-5-phenylpicolinamide alleviates inflammation in acute lung injury by inhibiting HIF-1α/glycolysis/ASIC1a pathway.Life Sci.202230912098710.1016/j.lfs.2022.12098736155179
    [Google Scholar]
  73. ChenX. YangX. LiuT. GuanM. FengX. DongW. ChuX. LiuJ. TianX. CiX. LiH. WeiJ. DengY. DengX. ChiG. SunZ. Kaempferol regulates MAPKs and NF-κB signaling pathways to attenuate LPS-induced acute lung injury in mice.Int. Immunopharmacol.201214220921610.1016/j.intimp.2012.07.00722835426
    [Google Scholar]
  74. HuangR. HeW.J. ZhangP.P. WangD.Q. [Exploring the treatment of sepsis-associated acute lung injury with Liangge Powder via ERK1/2 and PI3K/AKT pathways: Based on network pharmacology and whole animal experimentation].Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi20234129410336882272
    [Google Scholar]
  75. GuoW. HuZ. SRPK1 promotes sepsis-induced acute lung injury via regulating PI3K/AKT/FOXO3 signaling.Immunopharmacol. Immunotoxicol.202345220321210.1080/08923973.2022.213478936226860
    [Google Scholar]
  76. TianJ. LiY. MaoX. XieK. ZhengY. YuY. YuY. Effects of the PI3K/Akt/HO-1 pathway on autophagy in a sepsis-induced acute lung injury mouse model.Int. Immunopharmacol.2023124Pt B11106310.1016/j.intimp.2023.11106337857120
    [Google Scholar]
/content/journals/cad/10.2174/0115734099295805240126043059
Loading
/content/journals/cad/10.2174/0115734099295805240126043059
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test