Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Introduction

Inflammatory bowel disease (IBD) has become one of the public problems worldwide and its incidence rate is increasing year by year. Its concomitant disease . diabetes mellitus (DM) has attracted more and more attention due to DM altering the progression of IBD and leading to long periods of intermittent recurrence and deterioration. The common mechanism and potential target drug of IBD with comorbid chronic conditions of DM were explored.

Methods

Gene expression profile data were downloaded from the Gene Expression Omnibus (GEO) public database. The differentially expressed genes (DEGs) were identified by R software. GO annotation and pathway enrichment were performed, a protein-protein interaction (PPI) network was constructed, associated lncRNAs were predicted and drug prediction targeting key genes was made. Additionally, the regulatory network among core genes, associated pathways, and predicted lncRNA in IBD with coexistent DM were visualized.

Results

We identified the critical gene MMP3 with lncRNA CDKN2BAS involved in the PPAR pathway, which uncovered the underlying regulatory mechanism of IBD with coexistent DM. We also predicted the potential therapeutic compound ZINC05905909 acting on MMP3.

Conclusion

Our findings revealed the regulatory mechanism chain of critical gene MMP3, lncRNA CDKN2BAS, and PPAR pathway and provided potential therapeutic compound ZINC05905909 for drug therapy to treat comorbid IBD DM.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099282247231211111219
2024-01-03
2025-04-19
The full text of this item is not currently available.

References

  1. BaumgartD.C. SandbornW.J. Inflammatory bowel disease: clinical aspects and established and evolving therapies.Lancet200736995731641165710.1016/S0140‑6736(07)60751‑X 17499606
    [Google Scholar]
  2. ShivashankarR. TremaineW.J. HarmsenW.S. LoftusE.V.Jr Incidence and prevalence of crohn’s disease and ulcerative colitis in olmsted county, minnesota from 1970 through 2010.Clin. Gastroenterol. Hepatol.201715685786310.1016/j.cgh.2016.10.039 27856364
    [Google Scholar]
  3. PiperM.S. SaadR.J. Diabetes mellitus and the colon.Curr. Treat. Options Gastroenterol.201715446047410.1007/s11938‑017‑0151‑1 29063998
    [Google Scholar]
  4. OgurtsovaK. da Rocha FernandesJ.D. HuangY. LinnenkampU. GuariguataL. ChoN.H. CavanD. ShawJ.E. MakaroffL.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040.Diabetes Res. Clin. Pract.2017128405010.1016/j.diabres.2017.03.024 28437734
    [Google Scholar]
  5. WildS. RoglicG. GreenA. SicreeR. KingH. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030.Diabetes Care20042751047105310.2337/diacare.27.5.1047 15111519
    [Google Scholar]
  6. LiY. TengD. ShiX. QinG. QinY. QuanH. ShiB. SunH. BaJ. ChenB. DuJ. HeL. LaiX. LiY. ChiH. LiaoE. LiuC. LiuL. TangX. TongN. WangG. ZhangJ. WangY. XueY. YanL. YangJ. YangL. YaoY. YeZ. ZhangQ. ZhangL. ZhuJ. ZhuM. NingG. MuY. ZhaoJ. TengW. ShanZ. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the american diabetes association: National cross sectional study.BMJ2020369m99710.1136/bmj.m997 32345662
    [Google Scholar]
  7. DinH. AndersonA.J. Ramos RiversC. ProksellS. KoutroumpakisF. SalimT. BabichenkoD. TangG. KoutroubakisI.E. SchwartzM. JohnstonE. BarrieA. HarrisonJ. HashashJ. DunnM.A. HartmanD.J. BinionD.G. Disease characteristics and severity in patients with inflammatory bowel disease with coexistent diabetes mellitus.Inflamm. Bowel Dis.20202691436144210.1093/ibd/izz305 31944255
    [Google Scholar]
  8. UwagbaleE. AdeniranO.G. AdeniranO.A. OnukoguI. AgbrokoS. SonpalN. In-hospital outcomes of inflammatory bowel diseases in patients with diabetes mellitus: A propensity score matching analysis.Cureus2021137e1656610.7759/cureus.16566 34430168
    [Google Scholar]
  9. KumarA. TeslovaT. TaubE. MillerJ.D. LukinD.J. Comorbid diabetes in inflammatory bowel disease predicts adverse disease-related outcomes and infectious complications.Dig. Dis. Sci.20216662005201310.1007/s10620‑020‑06439‑4 32617771
    [Google Scholar]
  10. BowerJ.A.J. O’FlynnL. KakadR. AldulaimiD. Effect of inflammatory bowel disease treatments on patients with diabetes mellitus.World J. Diabetes20211281248125410.4239/wjd.v12.i8.1248 34512890
    [Google Scholar]
  11. JurjusA. EidA. Al KattarS. ZeennyM.N. Gerges-GeageaA. HaydarH. HilalA. OueidatD. MatarM. TawilahJ. HusseinI.H. Schembri-WismayerP. CappelloF. TomaselloG. LeoneA. JurjusR.A. Inflammatory bowel disease, colorectal cancer and type 2 diabetes mellitus: The links.BBA Clin.201655162410.1016/j.bbacli.2015.11.002 27051585
    [Google Scholar]
  12. TangM.S. BowcuttR. LeungJ.M. WolffM.J. GundraU.M. HudesmanD. MalterL.B. PolesM.A. ChenL.A. PeiZ. NetoA.G. AbidiW.M. UllmanT. MayerL. BonneauR.A. ChoI. LokeP. Integrated analysis of biopsies from inflammatory bowel disease patients identifies saa1 as a link between mucosal microbes with TH17 and TH22 Cells.Inflamm. Bowel Dis.20172391544155410.1097/MIB.0000000000001208 28806280
    [Google Scholar]
  13. VanhoveW. PeetersP.M. StaelensD. SchraenenA. Van der GotenJ. CleynenI. De SchepperS. Van LommelL. ReynaertN.L. SchuitF. Van AsscheG. FerranteM. De HertoghG. WoutersE.F.M. RutgeertsP. VermeireS. NysK. ArijsI. Strong upregulation of AIM2 and IFI16 inflammasomes in the mucosa of patients with active inflammatory bowel disease.Inflamm. Bowel Dis.201521112673268210.1097/MIB.0000000000000535 26313692
    [Google Scholar]
  14. ZhaoX. FanJ. ZhiF. LiA. LiC. BergerA.E. BoorgulaM.P. BarkatakiS. CourneyaJ.P. ChenY. BarnesK.C. CheadleC. Mobilization of epithelial mesenchymal transition genes distinguishes active from inactive lesional tissue in patients with ulcerative colitis.Hum. Mol. Genet.201524164615462410.1093/hmg/ddv192 26034135
    [Google Scholar]
  15. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.0118 22455463
    [Google Scholar]
  16. ItoK. MurphyD. Application of ggplot2 to pharmacometric graphics.CPT Pharmacometrics Syst. Pharmacol.20132107910.1038/psp.2013.56
    [Google Scholar]
  17. MeringC. HuynenM. JaeggiD. SchmidtS. BorkP. SnelB. STRING: A database of predicted functional associations between proteins.Nucleic Acids Res.200331125826110.1093/nar/gkg034 12519996
    [Google Scholar]
  18. IrwinJ.J. SterlingT. MysingerM.M. BolstadE.S. ColemanR.G. ZINC: A free tool to discover chemistry for biology.J. Chem. Inf. Model.20125271757176810.1021/ci3001277 22587354
    [Google Scholar]
  19. de LeeuwN. DijkhuizenT. Hehir-KwaJ.Y. CarterN.P. FeukL. FirthH.V. KuhnR.M. LedbetterD.H. MartinC.L. van Ravenswaaij-ArtsC.M.A. SchererS.W. ShamsS. Van VoorenS. SijmonsR. SwertzM. HastingsR. Diagnostic interpretation of array data using public databases and internet sources.Hum. Mutat.201233693094010.1002/humu.22049 26285306
    [Google Scholar]
  20. YangX. ZhuS. LiL. ZhangL. XianS. WangY. ChengY. Identification of differentially expressed genes and signaling pathways in ovarian cancer by integrated bioinformatics analysis.Onco Targets Ther.201811111457147410.2147/OTT.S152238 29588600
    [Google Scholar]
  21. YaraniR. MirzaA.H. KaurS. PociotF. The emerging role of lncRNAs in inflammatory bowel disease.Exp. Mol. Med.2018501211410.1038/s12276‑018‑0188‑9 30523244
    [Google Scholar]
  22. MaD. CaoY. WangZ. HeJ. ChenH. XiongH. RenL. ShenC. ZhangX. YanY. YanT. GuoF. XuanB. CuiZ. YeG. FangJ.Y. ChenH. HongJ. CCAT1 lncRNA promotes inflammatory bowel disease malignancy by destroying intestinal barrier via downregulating miR-185-3p.Inflamm. Bowel Dis.201925586287410.1093/ibd/izy381 30615124
    [Google Scholar]
  23. ArihiroS. OhtaniH. HiwatashiN. ToriiA. SorsaT. NaguraH. Vascular smooth muscle cells and pericytes express MMP‐1, MMP‐9, TIMP‐1 and type I procollagen in inflammatory bowel disease.Histopathology2001391505910.1046/j.1365‑2559.2001.01142.x 11454044
    [Google Scholar]
  24. BaileyC.J. HembryR.M. AlexanderA. IrvingM.H. GrantM.E. ShuttleworthC.A. Distribution of the matrix metalloproteinases stromelysin, gelatinases A and B, and collagenase in Crohn’s disease and normal intestine.J. Clin. Pathol.199447211311610.1136/jcp.47.2.113 8132824
    [Google Scholar]
  25. BarberioB. D’IncàR. FacchinS. Dalla GasperinaM. Fohom TagneC.A. CardinR. GhisaM. LorenzonG. MarinelliC. SavarinoE.V. ZingoneF. Matrix metalloproteinase 3 predicts therapeutic response in inflammatory bowel disease patients treated with infliximab.Inflamm. Bowel Dis.202026575676310.1093/ibd/izz195 31504536
    [Google Scholar]
  26. von LampeB. BarthelB. CouplandS.E. RieckenE.O. RosewiczS. Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease.Gut2000471637310.1136/gut.47.1.63 10861266
    [Google Scholar]
  27. SteereB. SchmitzJ. PowellN. HiggsR. GottliebK. LiuY. JiaB. TuttleJ.L. SandbornW.J. SandsB.E. D’HaensG. ReinischW. KrishnanV. Mirikizumab regulates genes involved in ulcerative colitis disease activity and Anti-TNF resistance: Results from a phase 2 study.Clin. Transl. Gastroenterol.2023147e0057810.14309/ctg.0000000000000578 36881820
    [Google Scholar]
  28. ŽákovičováE. CharvatJ. KukackaJ. ChlumskyJ. SvabP. KvapilM. Circulating serum matrix metalloproteinase-3 and metalloproteinase-9 are not associated with echocardiographic parameters of diastolic function in asymptomatic type 2 diabetic patients.J. Int. Med. Res.20103862093209910.1177/147323001003800625 21227015
    [Google Scholar]
  29. GnassoA. MottiC. IraceC. CaralloC. LiberatoscioliL. BernardiniS. MassoudR. MattioliP.L. FedericiG. CorteseC. Genetic variation in human stromelysin gene promoter and common carotid geometry in healthy male subjects.Arterioscler. Thromb. Vasc. Biol.20002061600160510.1161/01.ATV.20.6.1600 10845878
    [Google Scholar]
  30. FallahS. SeifiM. SamadikuchaksaraeiA. Risk of coronary artery stenosis in Iranian type 2 diabetics: Is there a role for matrix metalloproteinase-3 gene (-1612 5A/6A) polymorphism?J. Physiol. Biochem.201066435936410.1007/s13105‑010‑0042‑6 20740392
    [Google Scholar]
  31. RankinC.R. LokhandwalaZ.A. HuangR. PekowJ. PothoulakisC. PaduaD. Linear and circular CDKN2B-AS1 expression is associated with inflammatory bowel disease and participates in intestinal barrier formation.Life Sci.201923123111657110.1016/j.lfs.2019.116571 31207308
    [Google Scholar]
  32. MirzaA.H. BerthelsenC.H.B. SeemannS.E. PanX. FrederiksenK.S. VilienM. GorodkinJ. PociotF. Transcriptomic landscape of lncRNAs in inflammatory bowel disease.Genome Med.2015713910.1186/s13073‑015‑0162‑2 25991924
    [Google Scholar]
  33. TsaiF.J. YangC.F. ChenC.C. ChuangL.M. LuC.H. ChangC.T. WangT.Y. ChenR.H. ShiuC.F. LiuY.M. ChangC.C. ChenP. ChenC.H. FannC.S.J. ChenY.T. WuJ.Y. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese.PLoS Genet.201062e100084710.1371/journal.pgen.1000847 20174558
    [Google Scholar]
  34. Menendez-GutierrezM.P. RoszerT. RicoteM. Biology and therapeutic applications of peroxisome proliferator- activated receptors.Curr. Top. Med. Chem.201212654858410.2174/156802612799436669 22242855
    [Google Scholar]
  35. MohammadT. SiddiquiS. ShamsiA. AlajmiM.F. HussainA. IslamA. AhmadF. HassanM.I. Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: Combined molecular docking and simulation studies.Molecules202025482310.3390/molecules25040823 32070031
    [Google Scholar]
  36. E.A. de Lima W. F. Pereira A, A. de Castro A, F.F. da Cunha EC. Ramalho T. Flexibility in the molecular design of acetylcholinesterase reactivators: Probing representative conformations by chemometric techniques and docking/QM calculations.Lett. Drug Des. Discov.201513536037110.2174/1570180812666150918191550
    [Google Scholar]
  37. GiacoppoJ.O.S. C C FrançaT. KučaK. da CunhaE.F. AbagyanR. ManciniD.T. RamalhoT.C. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents.J. Biomol. Struct. Dyn.20153392048205810.1080/07391102.2014.989408 25407587
    [Google Scholar]
  38. PinheiroJ.R. BitencourtM. da CunhaE.F.F. RamalhoT.C. FreitasM.P. Novel anti-HIV cyclotriazadisulfonamide derivatives as modeled by ligand- and receptor-based approaches.Bioorg. Med. Chem.20081641683169010.1016/j.bmc.2007.11.020 18053727
    [Google Scholar]
/content/journals/cad/10.2174/0115734099282247231211111219
Loading
/content/journals/cad/10.2174/0115734099282247231211111219
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test