Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

In China, Niuxi-Mugua formula (NMF) has been widely used to prevent and treat coronavirus disease 2019 (COVID-19). However, the mechanism of NMF for treating COVID-19 is not yet fully understood.

Objectives

This study aimed to explore the potential mechanism of NMF for treating COVID-19 by network pharmacology, computational biology, and surface plasmon resonance (SPR) verification.

Materials and Methods

The NMF-compound-target network was constructed to screen the key compounds, and the Molecular Complex Detection (MCODE) tool was used to screen the preliminary key genes. The overlapped genes (OGEs) and the preliminary key genes were further analyzed by enrichment analysis. Then, the correlation analysis of immune signatures and the preliminary key genes was performed. Molecular docking and molecular dynamic (MD) simulation assays were applied to clarify the interactions between key compounds and key genes. Moreover, the SPR interaction experiment was used for further affinity kinetic verification.

Results

Lipid and atherosclerosis, TNF, IL-17, and NF-kappa B signaling pathways were the main pathways of NMF in the treatment of COVID-19. There was a positive correlation between almost the majority of immune signatures and all preliminary key genes. The key compounds and the key genes were screened out, and they were involved in the main pathways of NMF for treating COVID-19. Moreover, the binding affinities of most key compounds binding to key genes were good, and IL1B-Quercetin had the best binding stability. SPR analysis further demonstrated that IL1B-Quercetin showed good binding affinity.

Conclusion

Our findings provided theoretical grounds for NMF in the treatment of COVID-19.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099272592231004170422
2023-10-18
2025-05-22
Loading full text...

Full text loading...

References

  1. TsaiT.I. KhaliliJ.S. GilchristM. WaightA.B. CohenD. ZhuoS. ZhangY. DingM. ZhuH. MakA.N.S. ZhuY. GouletD.R. ACE2-Fc fusion protein overcomes viral escape by potently neutralizing SARS-CoV-2 variants of concern.Antiviral Res.202219910527110.1016/j.antiviral.2022.105271 35240221
    [Google Scholar]
  2. AbdullahU. SalehN. ShawP. JalalN. COVID-19: The Ethno-Geographic Perspective of Differential Immunity.Vaccines (Basel)202311231910.3390/vaccines11020319 36851197
    [Google Scholar]
  3. MaS. YangL. LiH. ChenX. LinX. GeW. WangY. SunL. ZhaoG. WangB. WangZ. WuM. LuX. AkhtarM.L. YangD. BaiY. LiY. NieH. Understanding metabolic alterations after SARS-CoV-2 infection: insights from the patients’ oral microenvironmental metabolites.BMC Infect. Dis.20232314210.1186/s12879‑022‑07979‑y 36690957
    [Google Scholar]
  4. PlutaM.P. ZachuraM.N. WiniarskaK. KalembaA. KapłanC. SzczepańskaA.J. KrzychŁ.J. Usefulness of Selected Peripheral Blood Counts in Predicting Death in Patients with Severe and Critical COVID-19.J. Clin. Med.2022114101110.3390/jcm11041011 35207281
    [Google Scholar]
  5. MukaiK. TsunodaH. ImaiR. NumataA. KidaK. ObaK. YagishitaK. YamauchiH. KanomataN. KuriharaY. The location of unilateral axillary lymphadenopathy after COVID-19 vaccination compared with that of metastasis from breast cancer without vaccination.Jpn. J. Radiol.202341661762410.1007/s11604‑023‑01387‑1 36626076
    [Google Scholar]
  6. SunF. LiuJ. TariqA. WangZ. WuY. LiL. Unraveling the mechanism of action of cepharanthine for the treatment of novel coronavirus pneumonia (COVID-19) from the perspectives of systematic pharmacology.Arab. J. Chem.202316610472210.1016/j.arabjc.2023.104722 36910427
    [Google Scholar]
  7. PrabhakarP.K. KhuranaN. VyasM. SharmaV. BatihaG.E.S. KaurH. SinghJ. KumarD. SharmaN. KaushikA. KumarR. Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications.Pharmaceutics202315245110.3390/pharmaceutics15020451 36839773
    [Google Scholar]
  8. WeiJ. YuY. LiY. ShaoJ. LiJ. LiL. LiY. Pharmacokinetics, tissue distribution and excretion of 6-O-demethylmenisporphine, a bioactive oxoisoaporphine alkaloid from Menispermi Rhizoma, as determined by a HPLC-MS/MS method.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2020115612229710.1016/j.jchromb.2020.122297 32829132
    [Google Scholar]
  9. LanX. OlaleyeO.E. LuJ. YangW. DuF. YangJ. ChengC. ShiY. WangF. ZengX. TianN. LiaoP. YuX. XuF. LiY. WangH. ZhangN. JiaW. LiC. Pharmacokinetics-based identification of pseudoaldosterogenic compounds originating from Glycyrrhiza uralensis roots (Gancao) after dosing LianhuaQingwen capsule.Acta Pharmacol. Sin.202142122155217210.1038/s41401‑021‑00651‑2 33931765
    [Google Scholar]
  10. WuH. JiC. DaiR. HeiP. LiangJ. WuX. LiQ. YangJ. MaoW. GuoQ. Traditional Chinese medicine treatment for COVID-19: An overview of systematic reviews and meta-analyses.J. Integr. Med.202220541642610.1016/j.joim.2022.06.006 35811240
    [Google Scholar]
  11. ZaoX. ZhouY. LiangY. CaoX. ChenH. LiX. YeY. The host immune response of a discharged COVID-19 patient with twice reemergence of SARS-CoV-2: a case report.BMC Infect. Dis.202121199110.1186/s12879‑021‑06679‑3 34556058
    [Google Scholar]
  12. ChenL. YuM. LiuY. ZengM. ZhangC. HuangS. Analysis of the characteristics and curative effect of 85 cases of novel coronavirus pneumonia from the perspective of Five-Yun.Chiang-Hsi Chung I Yao202152101721https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iy_Rpms2pqwbFRRUtoUImHQs2MdQ22WGM3m8IlhwcM2ycj8mXzT8qomwgBBs9P3Ey&uniplatform=NZKPT
    [Google Scholar]
  13. WangL. WangM. MouS. The application of the Niuxi Mugua decoction in Gengzi year.Clinical Journal of Chinese Medicine20231501101103https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7ioT0BO4yQ4m_mOgeS2ml3UDQl-ZL75zdCaLrbZfFVihd43VszdcKtY1ASzCcqdQ2r&uniplatform=NZKPT
    [Google Scholar]
  14. XuL. LiY. ZhengD. ShaoZ. WenS. LinF. ZengZ. SongY. Prescription Law of New Coronavirus Pneumonia in Different Stages.Zhongguo Shiyan Fangjixue Zazhi20202681610.13422/j.cnki.syfjx.20201211
    [Google Scholar]
  15. ShiS. LiuQ. On TCM Value in Treatment to COVID-19 Based on TCM Model of Jiangxia Cabin Hospital.Jiangsu Journal of Traditional Chinese Medicine20205204111410.19844/j.cnki.1672‑397x.2020.00.008https://kns.cnki.net/kcms2/article/abstract?v=dlzqEeXOOWvZtVTxVn0a3GaYDE9mob0Bus_v9VQd67YdqqPI66zk-riLWx4ESpH 48k9K6rePMgLCsdWnoggEqlWJ_AHdj9mpVbpdQxfVuWtA4bwQ5A3x23CzYHY3dJuF&uniplatform=NZKPT&language=gb
    [Google Scholar]
  16. MingY. JiachenL. TaoG. ZhihuiW. Exploration of the Mechanism of Tripterygium Wilfordii in the Treatment of Myocardial Fibrosis Based on Network Pharmacology and Molecular Docking.Curr. Computeraided Drug Des.2023191687910.2174/1573409919666221028120329 36306461
    [Google Scholar]
  17. LiuS. WangZ. ZhuR. WangF. ChengY. LiuY. Three differential expression analysis methods for RNA sequencing: Limma, EdgeR, DESeq2.J. Vis. Exp.202117510.3791/62528
    [Google Scholar]
  18. CharwudziA. MengY. HuL. DingC. PuL. LiQ. XuM. ZhaiZ. XiongS. Integrated bioinformatics analysis reveals dynamic candidate genes and signaling pathways involved in the progression and prognosis of diffuse large B-cell lymphoma.PeerJ20219e1239410.7717/peerj.12394 34760386
    [Google Scholar]
  19. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.2009312NA10.1002/jcc.2133419499576
    [Google Scholar]
  20. RakhshaniH. DehghanianE. RahatiA. Enhanced GROMACS: toward a better numerical simulation framework.J. Mol. Model.2019251235510.1007/s00894‑019‑4232‑z 31768713
    [Google Scholar]
  21. GulS. AhmadS. UllahA. IsmailS. KhurramM. Tahir ul Qamar, M.; Hakami, A.R.; Alkhathami, A.G.; Alrumaihi, F.; Allemailem, K.S. Designing a Recombinant Vaccine against Providencia rettgeri Using Immunoinformatics Approach.Vaccines (Basel)202210218910.3390/vaccines10020189 35214648
    [Google Scholar]
  22. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  23. XuH. ZhangY. WangP. ZhangJ. ChenH. ZhangL. DuX. ZhaoC. WuD. LiuF. YangH. LiuC. A comprehensive review of integrative pharmacology-based investigation: A paradigm shift in traditional Chinese medicine.Acta Pharm. Sin. B20211161379139910.1016/j.apsb.2021.03.024 34221858
    [Google Scholar]
  24. LiuC. YuL. JiangY. GuS. LiC. YinW. ZhouZ. The possibility of polygonum cuspidatum against osteoarthritis based on network pharmacology and molecular docking.Curr Comput Aided Drug Des.202320(2)10.2174/1573409919666230403114131
    [Google Scholar]
  25. MaoX. XuH. LiS. SuJ. LiW. GuoQ. WangP. GuoR. XiaoX. ZhangY. YangH. Exploring pharmacological mechanisms of Xueshuan-Xinmai-Ning tablets acting on coronary heart disease based on drug target-disease gene interaction network.Phytomedicine20195415916810.1016/j.phymed.2018.09.018 30668365
    [Google Scholar]
  26. YangJ. WangC. ChengS. ZhangY. JinY. ZhangN. WangY. Construction and validation of a novel ferroptosis-related signature for evaluating prognosis and immune microenvironment in ovarian cancer.Front. Genet.202313109447410.3389/fgene.2022.1094474 36685851
    [Google Scholar]
  27. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  28. CuestaS.A. MoraJ.R. MárquezE.A. In silicoscreening of the drugbank database to search for possible drugs against SARS-CoV-2.Molecules2021264110010.3390/molecules26041100 33669720
    [Google Scholar]
  29. WangY. XiaoJ. SuzekT.O. ZhangJ. WangJ. ZhouZ. HanL. KarapetyanK. DrachevaS. ShoemakerB.A. BoltonE. GindulyteA. BryantS.H. PubChem’s bioassay database.Nucleic Acids Res.201240D1D400D41210.1093/nar/gkr1132 22140110
    [Google Scholar]
  30. ChenX. JiZ.L. ChenY.Z. TTD: Therapeutic target database.Nucleic Acids Res.200230141241510.1093/nar/30.1.412 11752352
    [Google Scholar]
  31. BarbarinoJ.M. Whirl-CarrilloM. AltmanR.B. KleinT.E. PharmGKB: A worldwide resource for pharmacogenomic information.Wiley Interdiscip. Rev. Syst. Biol. Med.2018104e141710.1002/wsbm.1417 29474005
    [Google Scholar]
  32. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  33. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.27 10592173
    [Google Scholar]
  34. ZhaoX. WangL. ChenG. Joint covariate detection on expression profiles for identifying micrornas related to venous metastasis in hepatocellular carcinoma.Sci. Rep.201771534910.1038/s41598‑017‑05776‑1 28706271
    [Google Scholar]
  35. LoweryS.A. SariolA. PerlmanS. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19.Cell Host Microbe20212971052106210.1016/j.chom.2021.05.004 34022154
    [Google Scholar]
  36. ParkS.H. An impaired inflammatory and innate immune response in COVID-19.Mol. Cells202144638439110.14348/molcells.2021.0068 34098591
    [Google Scholar]
  37. WangT. TianJ. JinY. VCAM1 expression in the myocardium is associated with the risk of heart failure and immune cell infiltration in myocardium.Sci. Rep.20211111948810.1038/s41598‑021‑98998‑3 34593936
    [Google Scholar]
  38. VangeelL. ChiuW. De JongheS. MaesP. SlechtenB. RaymenantsJ. AndréE. LeyssenP. NeytsJ. JochmansD. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern.Antiviral Res.202219810525210.1016/j.antiviral.2022.105252 35085683
    [Google Scholar]
  39. NirajN. MahajanS.S. PrakashA. SarmaP. MedhiB. Paxlovid: A promising drug for the challenging treatment of SARS-COV-2 in the pandemic era.Indian J. Pharmacol.202254645245810.4103/ijp.ijp_291_22 36722557
    [Google Scholar]
  40. GoodsellD.S. ZardeckiC. Di CostanzoL. DuarteJ.M. HudsonB.P. PersikovaI. SeguraJ. ShaoC. VoigtM. WestbrookJ.D. YoungJ.Y. BurleyS.K. RCSB Protein Data Bank: Enabling biomedical research and drug discovery.Protein Sci.2020291526510.1002/pro.3730 31531901
    [Google Scholar]
  41. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  42. XuL. ZhangJ. WangY. ZhangZ. WangF. TangX. Uncovering the mechanism of Ge-Gen-Qin-Lian decoction for treating ulcerative colitis based on network pharmacology and molecular docking verification.Biosci. Rep.2021412BSR2020356510.1042/BSR20203565 33409535
    [Google Scholar]
  43. WangT. FanL. FengS. DingX. AnX. ChenJ. WangM. ZhaiX. LiY. Network pharmacology of iridoid glycosides from Eucommia ulmoides Oliver against osteoporosis.Sci. Rep.2022121743010.1038/s41598‑022‑10769‑w 35523810
    [Google Scholar]
  44. MaoJ. WangG. YangL. TanL. TianC. TangL. FangL. MuZ. ZhuZ. LiY. Combined network pharmacology and molecular docking to verify the treatment of type 2 diabetes with pueraria lobata radix and salviae miltiorrhizae radix.Comput. Math. Methods Med.2023202311510.1155/2023/9150324 36820318
    [Google Scholar]
  45. NgoS.T. Quynh Anh PhamN. Thi LeL. PhamD.H. VuV.V. Computational determination of potential inhibitors of SARS-CoV-2 main protease.J. Chem. Inf. Model.202060125771578010.1021/acs.jcim.0c00491 32530282
    [Google Scholar]
  46. BeyehN.K. Nonappa; Liljeström, V.; Mikkilä, J.; Korpi, A.; Bochicchio, D.; Pavan, G.M.; Ikkala, O.; Ras, R.H.A.; Kostiainen, M.A. Crystalline cyclophane–protein cage frameworks.ACS Nano20181288029803610.1021/acsnano.8b02856 30028590
    [Google Scholar]
  47. HrdinovaJ. FernándezD.I. ErcigB. TullemansB.M.E. SuylenD.P.L. AgtenS.M. JurkK. HackengT.M. VanhoorelbekeK. VoorbergJ. ReutelingspergerC.P.M. WichapongK. HeemskerkJ.W.M. NicolaesG.A.F. Structure-based cyclic glycoprotein ibα-derived peptides interfering with von willebrand factor-binding, affecting platelet aggregation under shear.Int. J. Mol. Sci.2022234204610.3390/ijms23042046 35216161
    [Google Scholar]
  48. GhufranM. UllahM. KhanH.A. GhufranS. AyazM. SiddiqM. AbbasS.Q. HassanS.S. BungauS. In-Silico lead druggable compounds identification against SARS COVID-19 main protease target from in-house, chembridge and zinc databases by structure-based virtual screening, molecular docking and molecular dynamics simulations.Bioengineering202310110010.3390/bioengineering10010100 36671672
    [Google Scholar]
  49. FattahiA. KoohsariP. ShadmanL.M. GhandiK. The impact of the surface modification on tin-doped indium oxide nanocomposite properties.Nanomaterials (Basel)202212115510.3390/nano12010155 35010105
    [Google Scholar]
  50. NiuX. LiuQ. XuZ. ChenZ. XuL. XuL. LiJ. FangX. Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs).Nat. Commun.2020111549610.1038/s41467‑020‑19260‑4 33127896
    [Google Scholar]
  51. SinhaS. WangS.M. Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation.Comput. Struct. Biotechnol. J.20201872373610.1016/j.csbj.2020.03.013 32257056
    [Google Scholar]
  52. DasK.C. KonharR. BiswalD.K. Fasciola gigantica vaccine construct: An In silico approach towards identification and design of a multi-epitope subunit vaccine using calcium binding EF-hand proteins.BMC Immunol.2023241110.1186/s12865‑022‑00535‑y 36604615
    [Google Scholar]
  53. YangK. JinH. GaoX. WangG.C. ZhangG.Q. Elucidating the molecular determinants in the process of gastrin C-terminal pentapeptide amide end activating cholecystokinin 2 receptor by Gaussian accelerated molecular dynamics simulations.Front. Pharmacol.202313105457510.3389/fphar.2022.1054575 36756145
    [Google Scholar]
  54. HeH.P. LuoM. CaoY.L. LinY.X. ZhangH. ZhangX. OuJ.Y. YuB. ChenX. XuM. FengL. ZengM.S. ZengY.X. GaoS. Structure of Epstein-Barr virus tegument protein complex BBRF2-BSRF1 reveals its potential role in viral envelopment.Nat. Commun.2020111540510.1038/s41467‑020‑19259‑x 33106493
    [Google Scholar]
  55. AbelY. PaivaA.C.F. BizarroJ. ChagotM.E. SantoP.E. RobertM.C. QuinternetM. VandermoereF. SousaP.M.F. FortP. CharpentierB. ManivalX. BandeirasT.M. BertrandE. VerheggenC. NOPCHAP1 is a PAQosome cofactor that helps loading NOP58 on RUVBL1/2 during box C/D snoRNP biogenesis.Nucleic Acids Res.20214921094111310.1093/nar/gkaa1226 33367824
    [Google Scholar]
  56. RohnerN.A. NguyenD. von RecumH.A. Affinity effects on the release of non-conventional antifibrotics from polymer depots.Pharmaceutics202012327510.3390/pharmaceutics12030275 32192207
    [Google Scholar]
  57. KwofieS.K. BroniE. TeyeJ. QuansahE. IssahI. WilsonM.D. MillerW.A.III TiburuE.K. BonneyJ.H.K. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24.Comput. Biol. Med.201911310341410.1016/j.compbiomed.2019.103414 31536833
    [Google Scholar]
  58. ZhengS. ZhouB. YangL. HouA. ZhangJ. YuH. KuangH. JiangH. YangL. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from Duhuo Jisheng decoction on osteoarthritis in rats.J. Ethnopharmacol.202331511667910.1016/j.jep.2023.116679 37257711
    [Google Scholar]
  59. KangX. JinD. JiangL. ZhangY. ZhangY. AnX. DuanL. YangC. ZhouR. DuanY. SunY. LianF. Efficacy and mechanisms of traditional Chinese medicine for COVID-19: A systematic review.Chin. Med.20221713010.1186/s13020‑022‑00587‑7 35227280
    [Google Scholar]
  60. CavaC. BertoliG. CastiglioniI. Potential drugs against COVID-19 revealed by gene expression profile, molecular docking and molecular dynamic simulation.Future Virol.202116852754210.2217/fvl‑2020‑0392 34306168
    [Google Scholar]
  61. YeM. LuoG. YeD. SheM. SunN. LuY.J. ZhengJ. Network pharmacology, molecular docking integrated surface plasmon resonance technology reveals the mechanism of Toujie Quwen Granules against coronavirus disease 2019 pneumonia.Phytomedicine20218515340110.1016/j.phymed.2020.153401 33191068
    [Google Scholar]
  62. DerosaG. MaffioliP. D’AngeloA. Di PierroF. A role for quercetin in coronavirus disease 2019 (COVID‐19).Phytother. Res.20213531230123610.1002/ptr.6887 33034398
    [Google Scholar]
  63. TroninaT. MrozowskaM. BartmańskaA. PopłońskiJ. SordonS. HuszczaE. Simple and rapid method for wogonin preparation and its biotransformation.Int. J. Mol. Sci.20212216897310.3390/ijms22168973 34445678
    [Google Scholar]
  64. LiuY. ZhangH.G. Vigilance on new-onset atherosclerosis following SARS-CoV-2 infection.Front. Med.2021762941310.3389/fmed.2020.629413 33553222
    [Google Scholar]
  65. ZanzaC. RomenskayaT. ManettiA.C. FranceschiF. La RussaR. BertozziG. MaieseA. SavioliG. VolonninoG. LonghitanoY. Cytokine storm in COVID-19: Immunopathogenesis and therapy.Medicina202258214410.3390/medicina58020144 35208467
    [Google Scholar]
  66. GeneraliD. BosioG. MalbertiF. CuzzoliA. TestaS. RomaniniL. FioravantiA. MorandiniA. PiantaL. GiannottiG. ViolaE.M. Giorgi-PierfranceschiM. ForamittiM. TiraR.A. ZangrandiI. ChiodelliG. MachiavelliA. CappellettiM.R. GiossiA. De GiuliV. CostanziC. CampanaC. BernocchiO. SiricoM. ZoncadaA. MolteniA. VenturiniS. GiudiciF. ScaltritiM. PanA. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study.Int. J. Infect. Dis.202110410443344010.1016/j.ijid.2020.12.073 33385581
    [Google Scholar]
  67. LinH. WangX. LiuM. HuangM. ShenZ. FengJ. YangH. LiZ. GaoJ. YeX. Exploring the treatment of COVID ‐19 with Yinqiao powder based on network pharmacology.Phytother. Res.20213552651266410.1002/ptr.7012 33452734
    [Google Scholar]
  68. ZhangR. ChenX. ZuoW. JiZ. QuY. SuY. YangM. ZuoP. MaG. LiY. Inflammatory activation and immune cell infiltration are main biological characteristics of SARS-CoV-2 infected myocardium.Bioengineered20221322486249710.1080/21655979.2021.2014621 35037831
    [Google Scholar]
  69. KircheisR. PlanzO. Could a lower toll-like receptor (TLR) and NF-κB activation due to a changed charge distribution in the spike protein be the reason for the lower pathogenicity of omicron?Int. J. Mol. Sci.20222311596610.3390/ijms23115966 35682644
    [Google Scholar]
  70. KavianpourM. SalehM. VerdiJ. The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm.Stem Cell Res. Ther.202011140410.1186/s13287‑020‑01849‑7 32948252
    [Google Scholar]
  71. JonnyJ. PutrantoT.A. SitepuE.C. IrfonR. Dendritic cell vaccine as a potential strategy to end the COVID-19 pandemic. Why should it be Ex Vivo?Expert Rev. Vaccines20222181111112010.1080/14760584.2022.2080658 35593184
    [Google Scholar]
  72. CoperchiniF. ChiovatoL. CroceL. MagriF. RotondiM. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system.Cytokine Growth Factor Rev.202053253210.1016/j.cytogfr.2020.05.003 32446778
    [Google Scholar]
  73. ToorS.M. SalehR. Sasidharan NairV. TahaR.Z. ElkordE. T‐cell responses and therapies against SARS‐CoV‐2 infection.Immunology20211621304310.1111/imm.13262 32935333
    [Google Scholar]
  74. YanW. ChenD. BigamboF.M. WeiH. WangX. XiaY. Differences of blood cells, lymphocyte subsets and cytokines in COVID-19 patients with different clinical stages: A network meta-analysis.BMC Infect. Dis.202121115610.1186/s12879‑021‑05847‑9 33557779
    [Google Scholar]
  75. Carnicer-LombarteA. ChenS.T. MalliarasG.G. BaroneD.G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics.Front. Bioeng. Biotechnol.2021962252410.3389/fbioe.2021.622524 33937212
    [Google Scholar]
  76. WangJ. JiangM. ChenX. MontanerL.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts.J. Leukoc. Biol.20201081174110.1002/JLB.3COVR0520‑272R 32534467
    [Google Scholar]
  77. YangL. XieX. TuZ. FuJ. XuD. ZhouY. The signal pathways and treatment of cytokine storm in COVID-19.Signal Transduct. Target. Ther.20216125510.1038/s41392‑021‑00679‑0 34234112
    [Google Scholar]
  78. LiuF. LiL. XuM. WuJ. LuoD. ZhuY. LiB. SongX. ZhouX. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19.J. Clin. Virol.202012710437010.1016/j.jcv.2020.104370 32344321
    [Google Scholar]
  79. CoomesE.A. HaghbayanH. Interleukin‐6 in Covid‐19: A systematic review and META‐ANALYSIS.Rev. Med. Virol.20203061910.1002/rmv.2141 32845568
    [Google Scholar]
  80. NagashimaS. MendesM.C. CamargoM.A.P. BorgesN.H. GodoyT.M. MiggiolaroA.F.R.S. da Silva DezidérioF. Machado-SouzaC. de NoronhaL. Endothelial dysfunction and thrombosis in patients with COVID-19—brief report.Arterioscler. Thromb. Vasc. Biol.202040102404240710.1161/ATVBAHA.120.314860 32762443
    [Google Scholar]
/content/journals/cad/10.2174/0115734099272592231004170422
Loading
/content/journals/cad/10.2174/0115734099272592231004170422
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test