Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

(HP) infection could lead to various gastrointestinal diseases. Urease is the most important virulence factor of HP. It protects the bacterium against gastric acid.

Objectives

Therefore, we aimed to design urease inhibitors as drugs against HP infection.

Methods

The DrugBank-approved library was assigned with 3D conformations and the structure of the urease was prepared. Using a re-docking strategy, the proper settings were determined for docking by PyRx and GOLD software. Virtual screening was performed to select the best inhibitory drugs based on binding affinity, FitnessScore, and binding orientation to critical amino acids of the active site. The best inhibitory drug was then evaluated by IC and the diameter of the zone of inhibition for bacterial growth.

Results

The structures of prepared drugs were screened against urease structure using the determined settings. Clodronic acid was determined to be the best-identified drug, due to higher PyRx binding energy, better GOLD FitnessScore, and interaction with critical amino acids of urease. results were also in line with the computational data. IC values of Clodronic acid and Acetohydroxamic Acid (AHA) were 29.78 ± 1.13 and 47.29 ± 2.06 μg/ml, respectively. Diameters of the zones of inhibition were 18 and 15 mm for Clodronic acid and AHA, respectively.

Conclusion

Clodronic acid has better HP urease inhibition potential than AHA. Given its approved status, the development of a repurposed drug based on Clodronic acid would require less time and cost. Further, studies would unveil the efficacy of Clodronic acid as a urease inhibitor.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099271837231026064439
2023-11-10
2025-05-22
Loading full text...

Full text loading...

References

  1. GravinaA.G. ZagariR.M. MusisC.D. RomanoL. LoguercioC. RomanoM. Helicobacter pylori and extragastric diseases: A review.World J. Gastroenterol.201824293204322110.3748/wjg.v24.i29.3204 30090002
    [Google Scholar]
  2. HooiJ.K.Y. LaiW.Y. NgW.K. SuenM.M.Y. UnderwoodF.E. TanyingohD. MalfertheinerP. GrahamD.Y. WongV.W.S. WuJ.C.Y. ChanF.K.L. SungJ.J.Y. KaplanG.G. NgS.C. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis.Gastroenterology2017153242042910.1053/j.gastro.2017.04.022 28456631
    [Google Scholar]
  3. RizzatoC. TorresJ. KasamatsuE. Camorlinga-PonceM. BravoM.M. CanzianF. KatoI. Potential role of biofilm formation in the development of digestive tract cancer with special reference to Helicobacter pylori infection.Front. Microbiol.20191084610.3389/fmicb.2019.00846 31110496
    [Google Scholar]
  4. FlemingS.L. AlcamoI.E. Helicobacter pylori.Chelsea House2007
    [Google Scholar]
  5. MobleyH.L. MendzG.L. HazellS.L. Helicobacter pylori: physiology and genetics.Washington, DCASM Press200110.1128/9781555818005
    [Google Scholar]
  6. EslickG.D. Helicobacter pylori infection causes gastric cancer A review of the epidemiological, meta-analytic, and experimental evidence.World J. Gastroenterol.200612192991299910.3748/wjg.v12.i19.2991 16718777
    [Google Scholar]
  7. LehoursP. FerreroR.L. Review: Helicobacter: Inflammation, immunology, and vaccines.Helicobacter201924S1e1264410.1111/hel.12644 31486236
    [Google Scholar]
  8. SidebothamR.L. WorkuM.L. KarimQ.N. DhirN.K. BaronJ.H. How Helicobacter pylori urease may affect external pH and influence growth and motility in the mucus environment.Eur. J. Gastroenterol. Hepatol.200315439540110.1097/00042737‑200304000‑00010 12655260
    [Google Scholar]
  9. TakeshitaH. WatanabeE. NoroseY. ItoY. TakahashiH. Neutralizing antibodies for Helicobacter pylori urease inhibit bacterial colonization in the murine stomach in vivo. Biomed. Res.2019402879510.2220/biomedres.40.87 30982804
    [Google Scholar]
  10. MobleyH.L. IslandM.D. HausingerR.P. Molecular biology of microbial ureases.Microbiol. Rev.199559345148010.1128/mr.59.3.451‑480.1995 7565414
    [Google Scholar]
  11. FuccioL. LaterzaL. ZagariR.M. CennamoV. GrilliD. BazzoliF. Treatment of Helicobacter pylori infection.BMJ2008337sep15 1a145410.1136/bmj.a145418794181
    [Google Scholar]
  12. (a CheyW.D. LeontiadisG.I. HowdenC.W. MossS.F. ACG clinical guideline: Treatment of Helicobacter pylori infection.Am. J. Gastroenterol.20171122212239
    [Google Scholar]
  13. (b FalloneC.A. ChibaN. van ZantenS.V. FischbachL. GisbertJ.P. HuntR.H. JonesN.L. RenderC. LeontiadisG.I. MoayyediP. The Toronto consensus for the treatment of Helicobacter pylori infection in adults.Gastroenterology201615115169. e1410.1053/j.gastro.2016.04.006
    [Google Scholar]
  14. (c MalfertheinerP. MegraudF. O’MorainC.A. GisbertJ.P. KuipersE.J. AxonA.T. BazzoliF. GasbarriniA. AthertonJ. GrahamD.Y. HuntR. MoayyediP. RokkasT. RuggeM. SelgradM. SuerbaumS. SuganoK. El-OmarE.M. Management of Helicobacter pylori infection-the maastricht v/florence consensus report.Gut201766163010.1136/gutjnl‑2016‑312288 27707777
    [Google Scholar]
  15. HazellS. LeeA. Campylobacter pyloridis, urease, hydrogen ion back diffusion, and gastric ulcers.Lancet19863288497151710.1016/S0140‑6736(86)92561‑4 2873317
    [Google Scholar]
  16. (a RobinsonK. ArgentR.H. AthertonJ.C. The inflammatory and immune response to Helicobacter pylori infection.Best Pract. Res. Clin. Gastroenterol.200721223725910.1016/j.bpg.2007.01.00117382275
    [Google Scholar]
  17. (b TacconelliE. CarraraE. SavoldiA. HarbarthS. MendelsonM. MonnetD.L. PulciniC. KahlmeterG. KluytmansJ. CarmeliY. OuelletteM. OuttersonK. PatelJ. CavaleriM. CoxE.M. HouchensC.R. GraysonM.L. HansenP. SinghN. TheuretzbacherU. MagriniN. AboderinA.O. Al-AbriS.S. Awang JalilN. BenzonanaN. BhattacharyaS. BrinkA.J. BurkertF.R. CarsO. CornagliaG. DyarO.J. FriedrichA.W. GalesA.C. GandraS. GiskeC.G. GoffD.A. GoossensH. GottliebT. Guzman BlancoM. HryniewiczW. KattulaD. JinksT. KanjS.S. KerrL. KienyM-P. KimY.S. KozlovR.S. LabarcaJ. LaxminarayanR. LederK. LeiboviciL. Levy-HaraG. LittmanJ. Malhotra-KumarS. ManchandaV. MojaL. NdoyeB. PanA. PatersonD.L. PaulM. QiuH. Ramon-PardoP. Rodríguez-BañoJ. SanguinettiM. SenguptaS. SharlandM. Si-MehandM. SilverL.L. SongW. SteinbakkM. ThomsenJ. ThwaitesG.E. van der MeerJ.W.M. Van KinhN. VegaS. VillegasM.V. Wechsler-FördösA. WertheimH.F.L. WesangulaE. WoodfordN. YilmazF.O. ZorzetA. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis.Lancet Infect. Dis.201818331832710.1016/S1473‑3099(17)30753‑3 29276051
    [Google Scholar]
  18. VitaN.A. AndersonS.M. LaFleurM.D. LeeR.E. Targeting Helicobacter pylori for antibacterial drug discovery with novel therapeutics.Curr. Opin. Microbiol.20227010220310.1016/j.mib.2022.102203 36156373
    [Google Scholar]
  19. YangW. FengQ. PengZ. WangG. An overview on the synthetic urease inhibitors with structure-activity relationship and molecular docking.Eur. J. Med. Chem.202223411427310.1016/j.ejmech.2022.114273 35305460
    [Google Scholar]
  20. ChenW. LiY. CuiY. ZhangX. ZhuH.L. ZengQ. Synthesis, molecular docking and biological evaluation of Schiff base transition metal complexes as potential urease inhibitors.Eur. J. Med. Chem.201045104473447810.1016/j.ejmech.2010.07.007 20691510
    [Google Scholar]
  21. (a Salehi AshaniR. AzizianH. Sadeghi AlavijehN. Fathi VavsariV. MaherniaS. SheysiN. BiglarM. AmanlouM. BalalaieS. Synthesis, biological evaluation and molecular docking of deferasirox and substituted 1,2,4‐triazole derivatives as novel potent urease inhibitors: Proposing repositioning candidate.Chem. Biodivers.2020175e190071010.1002/cbdv.201900710 32187446
    [Google Scholar]
  22. (b MazT.G. CaliskanH.B. CapanI. CaliskanB. ÖzçelikB. BanogluE. Design, synthesis and evaluation of aryl‐tailored oxadiazole‐thiones as new urease inhibitors.ChemistrySelect202388e20220444910.1002/slct.202204449
    [Google Scholar]
  23. (cSarveAhrabi, Y. Anti-Helicobacter pylori activity of new derivatives of 1, 3,4-oxadiazole: In silico study.Avicenna J. Clin. Microbiol. Infect.20218413513810.34172/ajcmi.2021.25
    [Google Scholar]
  24. (d KhanY. MaalikA. RehmanW. HussainR. KhanS. AlanaziM.M. AsiriH.H. IqbalS. Identification of novel oxadiazole-based benzothiazole derivatives as potent inhibitors of α-glucosidase and urease: Synthesis, in vitro bio-evaluation and their in silico molecular docking study.J. Saudi Chem. Soc.202327410168210.1016/j.jscs.2023.101682
    [Google Scholar]
  25. (e RezaeiE.B. AbedinifarF. AzizianH. MontazerM.N. AsadiM. HosseiniS. SepehriS. Mohammadi-KhanaposhtaniM. BiglarM. LarijaniB. AmanlouM. MahdaviM. Design, synthesis, and evaluation of metronidazole-1,2,3-triazole derivatives as potent urease inhibitors.Chem. Pap.20217584217422610.1007/s11696‑021‑01653‑4
    [Google Scholar]
  26. (f SinghR. KumarP. DeviM. SindhuJ. KumarA. LalS. SinghD. KumarH. KumarS. Urease inhibition and structure‐activity relationship study of thiazolidinone‐, triazole‐, and benzothiazole‐based heterocyclic derivatives: A focus review.ChemistrySelect2023813e20230024410.1002/slct.202300244
    [Google Scholar]
  27. (g SongW.Q. LiuM.L. LiS.Y. XiaoZ.P. Recent efforts in the discovery of urease inhibitor identifications.Curr. Top. Med. Chem.20222229510710.2174/1568026621666211129095441 34844543
    [Google Scholar]
  28. (a MenteşeE. BektaşH. SokmenB.B. EmirikM. ÇakırD. KahveciB. Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1 H -benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease.Bioorg. Med. Chem. Lett.201727133014301810.1016/j.bmcl.2017.05.019 28526368
    [Google Scholar]
  29. (b RuhunageS. UdukalaD.N. GunaratnaM.J. Design, synthesis and evaluation of 3-hydroxy quinazolinone derivatives as urease inhibitors against Helicobacter pylori. Proceedings of the 1st International Conference on Frontiers in Chemical TechnologyColombo, Sri Lanka202077
    [Google Scholar]
  30. (c BaltaşN. Synthesis of quinazolinone derivatives containing an acyl hydrazone skeleton as potent anti-urease agents enzyme kinetic studies and anti-oxidant properties.J. Chem. Res.202246310.1177/17475198221096568
    [Google Scholar]
  31. (d AlwisY.V. GunaratnaM.J. UdukalaD.N. Synthesis, evaluation and structure activity relationship study of 2-phenyl-3Hquinazolinone derivatives as urease inhibitors against Helicobacter pylori.Proceedings of the 1st International Conference on Frontiers in Chemical TechnologyColombo, Sri Lanka2020103
    [Google Scholar]
  32. (a RaufA. ShahzadS. BajdaM. YarM. AhmedF. HussainN. AkhtarM.N. KhanA. JończykJ. Design and synthesis of new barbituric- and thiobarbituric acid derivatives as potent urease inhibitors: Structure activity relationship and molecular modeling studies.Bioorg. Med. Chem.201523176049605810.1016/j.bmc.2015.05.038 26081763
    [Google Scholar]
  33. (b SedaghatiS. AzizianH. MontazerM.N. Mohammadi-KhanaposhtaniM. AsadiM. MoradkhaniF. ArdestaniM.S. AsgariM.S. Yahya-MeymandiA. BiglarM. LarijaniB. Sadat-EbrahimiS.E. ForoumadiA. AmanlouM. MahdaviM. Novel (thio)barbituric-phenoxy-N-phenylacetamide derivatives as potent urease inhibitors: Synthesis, in vitro urease inhibition, and in silico evaluations.Struct. Chem.2021321374810.1007/s11224‑020‑01617‑6
    [Google Scholar]
  34. (c HosseinzadehN. NazariM.M. Mohammadi-KhanaposhtaniM. ValizadehY. AmanlouM. MahdaviM. Rational design, synthesis, docking simulation, and admet prediction of novel barbituric‐hydrazine‐phenoxy‐1,2,3‐triazole‐acetamide derivatives as potent urease inhibitors.ChemistrySelect202383e20220329710.1002/slct.202203297
    [Google Scholar]
  35. (d MollazadehM. AzizianH. FakhrioliaeiA. IrajiA. AvizhehL. ValizadehY. ZomorodianK. ElahiF. MoazzamA. KazemzadehH. AmanlouM. GarmciriF. HamidianE. BiglarM. LarijaniB. MahdaviM. Different barbiturate derivatives linked to aryl hydrazone moieties as urease inhibitors; design, synthesis, urease inhibitory evaluations, and molecular dynamic simulations.Med. Chem. Res.202332593094310.1007/s00044‑023‑03050‑w
    [Google Scholar]
  36. (a TahaM. IsmailN.H. ImranS. WadoodA. RahimF. KhanK.M. RiazM. Hybrid benzothiazole analogs as antiurease agent: Synthesis and molecular docking studies.Bioorg. Chem.201666808710.1016/j.bioorg.2016.03.010 27038849
    [Google Scholar]
  37. (b ShahinA.I. ZaibS. ZaraeiS.O. KediaR.A. AnbarH.S. YounasM.T. Al-TelT.H. KhoderG. El-GamalM.I. Design and synthesis of novel anti-urease imidazothiazole derivatives with promising antibacterial activity against Helicobacter pylori.PLoS One2023186e028668410.1371/journal.pone.0286684 37267378
    [Google Scholar]
  38. (c MermerA. Design, synthesize and antiurease activity of novel thiazole derivatives: Machine learning, molecular docking and biological investigation.J. Mol. Struct.2020122212886010.1016/j.molstruc.2020.128860
    [Google Scholar]
  39. (d ChannarP.A. SaeedA. AfzalS. HussainD. KalesseM. ShehzadiS.A. IqbalJ. Hydrazine clubbed 1,3-thiazoles as potent urease inhibitors: design, synthesis and molecular docking studies.Mol. Divers.202125211310.1007/s11030‑020‑10057‑7 32095975
    [Google Scholar]
  40. (a MenteşeE. EmirikM. SökmenB.B. Design, molecular docking and synthesis of novel 5,6-dichloro-2-methyl-1H-benzimidazole derivatives as potential urease enzyme inhibitors.Bioorg. Chem.20198615115810.1016/j.bioorg.2019.01.061 30710848
    [Google Scholar]
  41. (b MohammedS.O. El AshryS.H.E. KhalidA. AmerM.R. MetwalyA.M. EissaI.H. ElkaeedE.B. ElshobakyA. HafezE.E. Expression, purification, and comparative inhibition of helicobacter pylori urease by regio-selectively alkylated benzimidazole 2-thione derivatives.Molecules202227386510.3390/molecules27030865 35164122
    [Google Scholar]
  42. (c Saeedian MoghadamE. Mohammed Al-SadiA. GhafarzadeganR. TalebiM. AmanlouM. AminiM. Abdel-JalilR. Benzimidazole derivatives act as dual urease inhibitor and anti-Helicobacter pylori agent; synthesis, bioactivity, and molecular docking study.Synth. Commun.202252693694810.1080/00397911.2022.2061357
    [Google Scholar]
  43. (d RostamiH. HaddadiM.H. Benzimidazole derivatives: A versatile scaffold for drug development against Helicobacter pylori ‐related diseases.Fundam. Clin. Pharmacol.202236693094310.1111/fcp.12810 35716372
    [Google Scholar]
  44. (e MumtazS. IqbalS. ShahM. HussainR. RahimF. RehmanW. KhanS. AbidO.R. RasheedL. DeraA.A. Al-ghulikahH.A. KehiliS. ElkaeedE.B. AlrbyawiH. AlahmdiM.I. New triazinoindole bearing benzimidazole/benzoxazole hybrids analogs as potent inhibitors of urease: Synthesis, in vitro analysis and molecular docking studies.Molecules20222719658010.3390/molecules27196580 36235116
    [Google Scholar]
  45. (f PereiraC. de LyraA. OliveiraB. NascimentoI. da Silva-JúniorE. de AquinoT. SistoF. FigueiredoI. MartinsF. ModoloL. SantosJ. de FátimaÂ. 2-(Pyridin-4yl)benzothiazole and its benzimidazole-analogue: Biophysical and in silico studies on their interaction with urease and in vitro anti-Helicobacter pylori activities.J. Braz. Chem. Soc.2022331041105710.21577/0103‑5053.20220020
    [Google Scholar]
  46. (a XiaoZ.P. PengZ.Y. DongJ.J. DengR.C. WangX.D. OuyangH. YangP. HeJ. WangY.F. ZhuM. PengX.C. PengW.X. ZhuH.L. Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors.Eur. J. Med. Chem.20136821222110.1016/j.ejmech.2013.07.047 23974021
    [Google Scholar]
  47. (b MamidalaR. BhimathatiS.R.S. VemaA. Discovery of novel dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori urease inhibitors.Bioorg. Chem.202111410501010.1016/j.bioorg.2021.105010 34102519
    [Google Scholar]
  48. (a TahaM. IsmailN.H. KhanA. ShahS.A.A. AnwarA. HalimS.A. FatmiM.Q. ImranS. RahimF. KhanK.M. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies.Bioorg. Med. Chem. Lett.201525163285328910.1016/j.bmcl.2015.05.069 26077497
    [Google Scholar]
  49. (b KalatuwawegeI.P. GunaratnaM.J. UdukalaD.N. Synthesis, in silico studies, and evaluation of syn and anti isomers of n-substituted indole-3-carbaldehyde oxime derivatives as urease inhibitors against Helicobacter pylori.Molecules20212621665810.3390/molecules26216658 34771067
    [Google Scholar]
  50. (c UllahH. ArshadG. RahimF. NawazA. KhanF. IqbalN. HayatS. ZadaH. SamadA. WadoodA. Synthesis, in vitro urease inhibitory potential and molecular docking study of bis-indole bearing sulfonamide analogues.Chemical Data Collections20234410099910.1016/j.cdc.2023.100999
    [Google Scholar]
  51. (a KazmiM. KhanI. KhanA. HalimS.A. SaeedA. MehsudS. Al-HarrasiA. IbrarA. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis.Bioorg. Med. Chem.2019272211512310.1016/j.bmc.2019.115123 31623971
    [Google Scholar]
  52. (b NusfaM. GunaratnaM. Syntheses and evaluation of chalcone derivatives as urease inhibitors against Helicobacter pylori and their antioxidant behavior.International Conference on Applied and Pure SciencesSri Lanka2021
    [Google Scholar]
  53. (a AsgharH. AsgharH. AsgharT. A review on anti-urease potential of coumarins.Curr. Drug Targets202122171926194310.2174/1389450122666210222091412 33618646
    [Google Scholar]
  54. (bKhan, K.M.; Iqbal, S.; Lodhi, M.A.; Maharvi, G.M.; Perveen, S.; Choudhary, M.I.; Atta-ur-Rahman, ; Chohan, Z.H.; Supuran, C.T. Synthesis and urease enzyme inhibitory effects of some dicoumarols.J. Enzyme Inhib. Med. Chem.200419436737110.1080/14756360409162452 15558955
    [Google Scholar]
  55. (c KhanI. KhanA. Ahsan HalimS. SaeedA. MehsudS. CsukR. Al-HarrasiA. IbrarA. Exploring biological efficacy of coumarin clubbed thiazolo[3,2–b][1,2,4]triazoles as efficient inhibitors of urease: A biochemical and in silico approach.Int. J. Biol. Macromol.202014234535410.1016/j.ijbiomac.2019.09.105 31593727
    [Google Scholar]
  56. (dNaz, F.; Kanwal, ; Latif, M.; Salar, U.; Khan, K.M.; al-Rashida, M.; Ali, I.; Ali, B.; Taha, M.; Perveen, S. 4-Oxycoumarinyl linked acetohydrazide Schiff bases as potent urease inhibitors.Bioorg. Chem.202010510436510.1016/j.bioorg.2020.104365 33091669
    [Google Scholar]
  57. (a KatariaR. KhatkarA. Molecular docking, synthesis, kinetics study, structure–activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors.BMC Chem.20191314510.1186/s13065‑019‑0562‑2 31384793
    [Google Scholar]
  58. (b Al-RooqiM.M. MughalE.U. RajaQ.A. HusseinE.M. NaeemN. SadiqA. AsgharB.H. MoussaZ. AhmedS.A. Flavonoids and related privileged scaffolds as potential urease inhibitors: a review.RSC Advances20231353210323310.1039/D2RA08284E 36756398
    [Google Scholar]
  59. (c SharafM. ArifM. HamoudaH.I. KhanS. AbdallaM. ShabanaS. RozanH.E. KhanT.U. ChiZ. LiuC. Preparation, urease inhibition mechanisms, and anti-Helicobacter pylori activities of hesperetin-7-rhamnoglucoside.Curr. Res. Microb. Sci.20223100103
    [Google Scholar]
  60. (a GholivandK. PooyanM. MohammadpanahF. PirastefarF. JunkP.C. WangJ. EbrahimiV.A.A. Mani-VarnosfaderaniA. Synthesis, crystal structure and biological evaluation of new phosphoramide derivatives as urease inhibitors using docking, QSAR and kinetic studies.Bioorg. Chem.20198648249310.1016/j.bioorg.2019.01.064 30772649
    [Google Scholar]
  61. (b Fiori-DuarteA.T. RodriguesR.P. KitagawaR.R. KawanoD.F. Insights into the design of inhibitors of the urease enzyme-a major target for the treatment of Helicobacter pylori infections.Curr. Med. Chem.202027233967398210.2174/0929867326666190301143549 30827224
    [Google Scholar]
  62. (aArshia.; Begum, F.; Almandil, N.B.; Lodhi, M.A.; Khan, K.M.; Hameed, A.; Perveen, S. Synthesis and urease inhibitory potential of benzophenone sulfonamide hybrid in vitro and in silico. Bioorg. Med. Chem.20192761009102210.1016/j.bmc.2019.01.043 30738655
    [Google Scholar]
  63. (b HamadA. KhanM.A. RahmanK.M. AhmadI. Ul-HaqZ. KhanS. ShafiqZ. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies.Bioorg. Chem.202010210405710.1016/j.bioorg.2020.104057 32663667
    [Google Scholar]
  64. (c AhmadS. Abdul QadirM. AhmedM. ImranM. YousafN. WaniT.A. ZargarS. AliI. MuddassarM. Exploring the potential of propanamide-sulfonamide based drug conjugates as dual inhibitors of urease and cyclooxygenase-2: biological and their in silico studies.Front Chem.202311120638010.3389/fchem.2023.1206380 37601915
    [Google Scholar]
  65. (a WahidS. JahangirS. VersianiM.A. KhanK.M. SalarU. AshrafM. FarzandU. WadoodA. Kanwal; Ashfaq-ur-Rehaman; Arshia; Taha, M.; Perveen, S. Atenolol thiourea hybrid as potent urease inhibitors: Design, biology-oriented drug synthesis, inhibitory activity screening, and molecular docking studies.Bioorg. Chem.20209410335910.1016/j.bioorg.2019.103359 31640931
    [Google Scholar]
  66. (b ZahraU. ZaibS. SaeedA. RehmanM. ShabirG. AlsaabH.O. KhanI. New acetylphenol-based acyl thioureas broaden the scope of drug candidates for urease inhibition: synthesis, in vitro screening and in silico analysis.Int. J. Biol. Macromol.202219815716710.1016/j.ijbiomac.2021.12.064 34953808
    [Google Scholar]
  67. (c LiW.Y. NiW.W. YeY.X. FangH.L. PanX.M. HeJ.L. ZhouT.L. YiJ. LiuS.S. ZhouM. XiaoZ.P. ZhuH.L. N -monoarylacetothioureas as potent urease inhibitors: Synthesis, SAR, and biological evaluation.J. Enzyme Inhib. Med. Chem.202035140441310.1080/14756366.2019.1706503 31880473
    [Google Scholar]
  68. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. DoigA. GuilliamsT. LatimerJ. McNameeC. NorrisA. SanseauP. CavallaD. PirmohamedM. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168 30310233
    [Google Scholar]
  69. (a KhaliliS. RasaeeM.J. MousaviS.L. AmaniJ. JahangiriA. BornaH. In silico prediction and in vitro verification of a novel multi-epitope antigen for HBV detection.Mol. Gen. Microbiol. Virol.201732423024010.3103/S0891416817040097
    [Google Scholar]
  70. (b RahbarM.R. ZareiM. JahangiriA. KhaliliS. NezafatN. NegahdaripourM. FattahianY. GhasemiY. Trimeric autotransporter adhesins in Acinetobacter baumannii, coincidental evolution at work.Infect. Genet. Evol.20197111612710.1016/j.meegid.2019.03.023 30922803
    [Google Scholar]
  71. VerdonkM.L. ColeJ.C. HartshornM.J. MurrayC.W. TaylorR.D. Improved protein-ligand docking using GOLD.Proteins200352460962310.1002/prot.10465 12910460
    [Google Scholar]
  72. (a AroraR. IssarU. KakkarR. In silico study of the active site of Helicobacter pylori urease and its inhibition by hydroxamic acids.J. Mol. Graph. Model.201883647310.1016/j.jmgm.2018.04.018 29775804
    [Google Scholar]
  73. (b LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  74. (c ChannarP. SaeedA. AlbericioF. LarikF. AbbasQ. HassanM. RazaH. SeoS.Y. Sulfonamide-linked ciprofloxacin, sulfadiazine and amantadine derivatives as a novel class of inhibitors of jack bean urease; synthesis, kinetic mechanism and molecular docking.Molecules2017228135210.3390/molecules22081352 28813027
    [Google Scholar]
  75. Abdul FattahT. SaeedA. ChannarP.A. AshrafZ. AbbasQ. HassanM. LarikF.A. Synthesis, enzyme inhibitory kinetics, and computational studies of novel 1‐(2‐(4‐isobutylphenyl) propanoyl)‐3‐arylthioureas as Jack bean urease inhibitors.Chem. Biol. Drug Des.201891243444710.1111/cbdd.13090 28834266
    [Google Scholar]
  76. (a WeatherburnM.W. Phenol-hypochlorite reaction for determination of ammonia.Anal. Chem.196739897197410.1021/ac60252a045
    [Google Scholar]
  77. (b VosooghiM. FarzipourS. SaeediM. SharehN.B. MahdaviM. MaherniaS. ForoumadiA. AmanlouM. ShafieeA. Synthesis of novel 5-arylidene (thio) barbituric acid and evaluation of their urease inhibitory activity.J. Indian Chem. Soc.201512814871491
    [Google Scholar]
  78. LiuQ. ShiW.K. RenS.Z. NiW.W. LiW.Y. ChenH.M. LiuP. YuanJ. HeX.S. LiuJ.J. CaoP. YangP.Z. XiaoZ.P. ZhuH.L. Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection.Eur. J. Med. Chem.201815612613610.1016/j.ejmech.2018.06.065 30006158
    [Google Scholar]
  79. TanL. LiC. ChenH. MoZ. ZhouJ. LiuY. MaZ. XuY. YangX. XieJ. SuZ. Epiberberine, a natural protoberberine alkaloid, inhibits urease of Helicobacter pylori and jack bean: Susceptibility and mechanism.Eur. J. Pharm. Sci.2017110778610.1016/j.ejps.2017.02.004 28167234
    [Google Scholar]
  80. (a ZhouJ.T. LiC.L. TanL.H. XuY.F. LiuY.H. MoZ.Z. DouY.X. SuR. SuZ.R. HuangP. XieJ.H. Inhibition of Helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism.PLoS One2017121e016894410.1371/journal.pone.0168944 28045966
    [Google Scholar]
  81. (b PanL. WangC. YanK. ZhaoK. ShengG. ZhuH. ZhaoX. QuD. NiuF. YouZ. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper(II) complexes with tridentate aroylhydrazone ligands.J. Inorg. Biochem.2016159222810.1016/j.jinorgbio.2016.02.017 26908284
    [Google Scholar]
  82. (a KuipersE.J. UyterlindeA.M. PeñaA.S. HazenbergH.J. BloemenaE. LindemanJ. Klinkenberg-KnolE.C. MeuwissenS.G. Increase of Helicobacter pylori-associated corpus gastritis during acid suppressive therapy: implications for long-term safety.Am. J. Gastroenterol.199590914011406 7661157
    [Google Scholar]
  83. (b MobleyH.L. HausingerR.P. Microbial ureases: Significance, regulation, and molecular characterization.Microbiol. Rev.19895318510810.1128/mr.53.1.85‑108.1989 2651866
    [Google Scholar]
  84. HassanS. ŠvajdlenkaE. Biological evaluation and molecular docking of protocatechuic acid from Hibiscus sabdariffa L. as a potent urease inhibitor by an ESI-MS based method.Molecules20172210169610.3390/molecules22101696 29019930
    [Google Scholar]
  85. WangS. HaapalainenA.M. YanF. DuQ. TylerP.C. EvansG.B. Rinaldo-MatthisA. BrownR.L. NorrisG.E. AlmoS.C. SchrammV.L. A picomolar transition state analogue inhibitor of MTAN as a specific antibiotic for Helicobacter pylori.Biochemistry201251356892689410.1021/bi3009664 22891633
    [Google Scholar]
  86. (a MugenganaA.K. VitaN.A. Brown GandtA. MoranK. AgyapongG. SharmaL.K. GriffithE.C. LiuJ. YangL. GavrishE. HevenerK.E. LaFleurM.D. LeeR.E. The discovery and development of thienopyrimidines as inhibitors of Helicobacter pylori that act through inhibition of the respiratory complex I.ACS Infect. Dis.2021751044105810.1021/acsinfecdis.0c00300 33471519
    [Google Scholar]
  87. (b CarcanagueD. ShueY.K. WuonolaM.A. Uria-NickelsenM. JoubranC. AbediJ.K. JonesJ. KühlerT.C. Novel structures derived from 2-[[(2-pyridyl)methyl]thio]-1H-benzimidazole as anti-Helicobacter pylori agents, Part 2.J. Med. Chem.200245194300430910.1021/jm020868v 12213071
    [Google Scholar]
  88. FreigangJ. DiederichsK. SchäferK.P. WelteW. PaulR. Crystal structure of oxidized flavodoxin, an essential protein in Helicobacter pylori.Protein Sci.200211225326110.1110/ps.28602 11790835
    [Google Scholar]
  89. (a GriffithD.P. GleesonM.J. LeeH. LonguetR. DemanE. EarleN. Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi.Eur. Urol.199120324324710.1159/000471707 1726639
    [Google Scholar]
  90. (b KosikowskaP. BerlickiŁ. Urease inhibitors as potential drugs for gastric and urinary tract infections: A patent review.Expert Opin. Ther. Pat.201121694595710.1517/13543776.2011.574615 21457123
    [Google Scholar]
  91. (a ModakJ.K. TikhomirovaA. GorrellR.J. RahmanM.M. KotsanasD. KormanT.M. Garcia-BustosJ. KwokT. FerreroR.L. SupuranC.T. RoujeinikovaA. Anti-Helicobacter pylori activity of ethoxzolamide.J. Enzyme Inhib. Med. Chem.20193411660166710.1080/14756366.2019.1663416 31530039
    [Google Scholar]
  92. (b RahmanM.M. TikhomirovaA. ModakJ.K. HuttonM.L. SupuranC.T. RoujeinikovaA. Antibacterial activity of ethoxzolamide against Helicobacter pylori strains SS1 and 26695.Gut Pathog.20201212010.1186/s13099‑020‑00358‑5 32318117
    [Google Scholar]
  93. FredianiB. CavalieriL. CremonesiG. Clodronic acid formulations available in Europe and their use in osteoporosis: A review.Clin. Drug Investig.200929635937910.2165/00044011‑200929060‑00001 19432497
    [Google Scholar]
  94. AmtulZ. Atta-ur-RahmanB.S.P. SiddiquiR. ChoudharyM. Chemistry and mechanism of urease inhibition.Curr. Med. Chem.20029141323134810.2174/0929867023369853 12132990
    [Google Scholar]
  95. (a AbidO.R. BabarT.M. AliF.I. AhmedS. WadoodA. RamaN.H. UddinR. Zaheer-ul-Haq; Khan, A.; Choudhary, M.I. Identification of novel urease inhibitors by high-throughput virtual and in vitro screening.ACS Med. Chem. Lett.20101414514910.1021/ml100068u 24900188
    [Google Scholar]
  96. (b AkhtarT. HameedS. KhanK. ChoudharyM. Syntheses, urease inhibition, and antimicrobial studies of some chiral 3-substituted-4-amino-5-thioxo-1H,4H-1,2,4-triazoles.Med. Chem.20084653954310.2174/157340608786242025 18991737
    [Google Scholar]
  97. PervezH. ChohanZ.H. RamzanM. NasimF.U.H. KhanK.M. Synthesis and biological evaluation of some new N 4 -substituted isatin-3-thiosemicarbazones.J. Enzyme Inhib. Med. Chem.200924243744610.1080/14756360802188420 18629680
    [Google Scholar]
  98. CuiY. DongX. LiY. LiZ. ChenW. Synthesis, structures and urease inhibition studies of Schiff base metal complexes derived from 3,5-dibromosalicylaldehyde.Eur. J. Med. Chem.20125832333110.1016/j.ejmech.2012.09.037 23142672
    [Google Scholar]
  99. PerveenS. KhanK.M. LodhiM.A. ChoudharyM.I. Atta-ur-Rahman; Voelter, W. Urease and α-chymotrypsin inhibitory effects of selected urea derivatives.Lett. Drug Des. Discov.20085640140510.2174/157018008785777315
    [Google Scholar]
  100. HanifM. ShoaibK. SaleemM. Hasan RamaN. ZaibS. IqbalJ. Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1, 3, 4-oxadiazole derivatives.ISRN Pharmacol.20122012928901
    [Google Scholar]
  101. Mohammed KhanK. SaifyZ.S. Arif LodhiM. ButtN. PerveenS. Murtaza MaharviG. Iqbal ChoudharyM. Atta-ur-rahman, Piperidines: A new class of Urease inhibitors.Nat. Prod. Res.200620652353010.1080/1478641500059383 16835082
    [Google Scholar]
  102. VassiliouS. KosikowskaP. GrabowieckaA. YiotakisA. KafarskiP. BerlickiŁ. Computer-aided optimization of phosphinic inhibitors of bacterial ureases.J. Med. Chem.201053155597560610.1021/jm100340m 20684601
    [Google Scholar]
  103. HabalaL. DevínskyF. EggerA.E. REVIEW: Metal complexes as urease inhibitors.J. Coord. Chem.201871790794010.1080/00958972.2018.1458228
    [Google Scholar]
  104. PedroodK. AzizianH. MontazerM.N. Mohammadi-KhanaposhtaniM. AsgariM.S. AsadiM. BahadorikhaliliS. RastegarH. LarijaniB. AmanlouM. MahdaviM. Arylmethylene hydrazine derivatives containing 1,3-dimethylbarbituric moiety as novel urease inhibitors.Sci. Rep.20211111060710.1038/s41598‑021‑90104‑x 34012008
    [Google Scholar]
  105. (a JonesB.D. MobleyH.L. Proteus mirabilis urease: Nucleotide sequence determination and comparison with jack bean urease.J. Bacteriol.1989171126414642210.1128/jb.171.12.6414‑6422.1989 2687233
    [Google Scholar]
  106. (b SirkoA. BrodzikR. Plant ureases: Roles and regulation.Acta Biochim. Pol.20004741189119510.18388/abp.2000_3972 11996109
    [Google Scholar]
  107. KatariaR. KhatkarA. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of Chlorogenic acid against Urease protein and H. pylori bacterium.BMC Chem.20191314110.1186/s13065‑019‑0556‑0 31384789
    [Google Scholar]
  108. NabatiF. MojabF. Habibi-RezaeiM. BagherzadehK. AmanlouM. YousefiB. Large scale screening of commonly used Iranian traditional medicinal plants against urease activity.Daru20122017210.1186/2008‑2231‑20‑72 23351780
    [Google Scholar]
/content/journals/cad/10.2174/0115734099271837231026064439
Loading
/content/journals/cad/10.2174/0115734099271837231026064439
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test