Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Recent epidemic survey data have revealed a globally increasing prevalence of autism spectrum disorders (ASDs). Currently, while Western medicine mostly uses a combination of comprehensive intervention and rehabilitative treatment, patient outcomes remain unsatisfactory. used as a pair drug, positively affects the brain and kidneys, and can improve intelligence, wisdom, and awareness; however, the underlying mechanism of action is unclear.

Objectives

We performed network pharmacology analysis of the mechanism of in treating ASD and its potential therapeutic effects to provide a scientific basis for the pharmaceutical’s clinical application.

Methods

The chemical compositions and targets corresponding to were obtained using the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform, Chemical Source Website, and PharmMapper database. Disease targets in ASD were screened using the DisGeNET, DrugBank, and GeneCards databases. Gene Ontology functional analysis and metabolic pathway analysis (Kyoto Encyclopedia of Genes and Genomes) were performed using the Metascape database and validated molecular docking using AutoDock Vina and PyMOL software.

Results

Molecular docking analysis showed that the key active components of interacted with the following key targets: EGFR, SRC, MAPK1, and ALB. Thus, the key active components of (sibiricaxanthone A, sibiricaxanthone B tenuifolin, polygalic acid, cycloartenol, and 8-isopentenyl-kaempferol) have been found to bind to EGFR, SRC, MAPK1, and ALB.

Conclusion

This study has preliminarily revealed the active ingredients and underlying mechanism of in the treatment of ASD, and our predictions need to be proven by further experimentation.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099266308231108112058
2023-11-20
2025-05-31
The full text of this item is not currently available.

References

  1. HirotaT. KingB.H. Autism spectrum disorder.JAMA2023329215716810.1001/jama.2022.23661 36625807
    [Google Scholar]
  2. ZHANG, X.Y.; KONG, Y.M.; MA, B.X.; DANG, W.L.; ZHOU, R.Y.; SHI, W.L. Research progress in the neurobiology of animal models of autism spectrum disorder.Acta Laboratorium Animalis Scientia Sinica2022300811411149
    [Google Scholar]
  3. MaennerM.J. WarrenZ. WilliamsA.R. AmoakoheneE. BakianA.V. BilderD.A. DurkinM.S. FitzgeraldR.T. FurnierS.M. HughesM.M. Ladd-AcostaC.M. McArthurD. PasE.T. SalinasA. VehornA. WilliamsS. EslerA. GrzybowskiA. Hall-LandeJ. NguyenR.H.N. PierceK. ZahorodnyW. HudsonA. HallasL. MancillaK.C. PatrickM. ShenoudaJ. SidwellK. DiRienzoM. GutierrezJ. SpiveyM.H. LopezM. PettygroveS. SchwenkY.D. WashingtonA. ShawK.A. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2020.MMWR Surveill. Summ.202372211410.15585/mmwr.ss7202a1 36952288
    [Google Scholar]
  4. ZhouH. XuX. YanW. ZouX. WuL. LuoX. LiT. HuangY. GuanH. ChenX. MaoM. XiaK. ZhangL. LiE. GeX. ZhangL. LiC. ZhangX. ZhouY. DingD. ShihA. FombonneE. ZhengY. HanJ. SunZ. JiangY. WangY. Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years.Neurosci. Bull.202036996197110.1007/s12264‑020‑00530‑6 32607739
    [Google Scholar]
  5. WangL. DingY.R. WangS.C. Experience of WANG Shou-chuan in treating and differentiating autism with syndrome of deficiency of both heart and spleen.Zhonghua Zhongyiyao Zazhi201833833933395
    [Google Scholar]
  6. Guidelines for clinical diagnosis and treatment of pediatrics in traditional Chinese medicineChina Press of Traditional Chinese MedicineBeijing2020
    [Google Scholar]
  7. LiJ.H. LiG.M. OuF.J. HuangY. Experience of HUANG yan on treating encephalopathy with TCM pair drugs.Zhonghua Zhongyiyao Xuekan2016340613091312
    [Google Scholar]
  8. JIANG, B.; JI, X.X.; YIN, L.; CHEN, H.; HUANG, X.Y.; ZHANG, K.W.; LI, Y.Q.; WEI, L.; WANG, S.M. Use of Kongsheng Zhenzhong Pill to treat 3 cases of children’s mental diseases by WANG Su-mei.Beijing J. Tradit Chin Med.2020397765766
    [Google Scholar]
  9. J.S. Shi Jinmo’s Pair Drugs.BeijingPeople's Military Medical Press2010
    [Google Scholar]
  10. LI, Z. Analysis of insomnia pathogenesis from shi jinmo herb couples.J. Basic Clin. Med.20172306883884
    [Google Scholar]
  11. WangJ. ZhouX.J. HuY. ChenC. DuanD.M. LiuP. DongX.Z. Research progress on pharmacodynamic material basis and pharmacological action mechanism of Kai-Xin-San.Chin. Tradit. Herbal Drugs2020511847804788
    [Google Scholar]
  12. LI, X.Q.; ZHAO, J.Q.; TIAN, Y.J; HAN, C.; LI, Q.Q.; CHU, S.F.; HE, W.B. Memory-improving substances basis and mechanism of polygalae radix, acori tatarinowii rhizoma and its couplet medicines.Zhongguo Shiyan Fangjixue Zazhi2019253190199
    [Google Scholar]
  13. LiuY. ChenY.J. ChenW.Q. HuangX.B. Effects of Yuanzhi decoction on cognitive function and apoptosis-related protein in hippocampus of rats with chronic cerebral hypoperfusion.Journal of Capital Medical University2019403323329
    [Google Scholar]
  14. MaY.Y. LiuM. YuM.F. Study on the prescription patterns for treatment of autism spectrum disorders and action mechanism of its core herbal combinations.GUTCM2023404965974
    [Google Scholar]
  15. HsinK.Y. GhoshS. KitanoH. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology.PLoS One2013812e8392210.1371/journal.pone.0083922 24391846
    [Google Scholar]
  16. Gas-PascualE. BernaA. BachT.J. SchallerH. Plant oxidosqualene metabolism: Cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.PLoS One2014910e10915610.1371/journal.pone.0109156 25343375
    [Google Scholar]
  17. ZhangL.Y. SunJ. ChenD. HuangZ.G. Kaempferol inhibits brain injury, inflammation, oxidation stress and apoptosis in the rats with cerebral ischemia/reperfusion.J. Histochem. Cytochem.2022314381386
    [Google Scholar]
  18. JIN, G.F.; YU, H.H.; LU, X.H.; HUANG, Z.G; YANG, H. Protective effects of tenuifolin on hippocampus neurons and neuronal mitochondria in APP/PS1 double transgenic mice.Chinese Journal of Geriatric Heart Brain and Vessel Diseases2022244426429
    [Google Scholar]
  19. PeckhamH. GiuffridaL. WoodR. GonsalvezD. FernerA. KilpatrickT.J. MurrayS.S. XiaoJ. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination.Glia201664225526910.1002/glia.22927 26449489
    [Google Scholar]
  20. García-DomínguezI. Suárez-PereiraI. SantiagoM. Pérez-VillegasE.M. BravoL. López-MartínC. Roca-CeballosM.A. García-RevillaJ. Espinosa-OlivaA.M. Rodríguez-GómezJ.A. JosephB. BerrocosoE. ArmengolJ.Á. VeneroJ.L. RuizR. de PablosR.M. Selective deletion of Caspase-3 gene in the dopaminergic system exhibits autistic-like behaviour.Prog. Neuropsychopharmacol. Biol. Psychiatry202110411003010.1016/j.pnpbp.2020.110030 32634539
    [Google Scholar]
  21. ChangJ. ZhangY. ShenN. ZhouJ. ZhangH. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation.Exp. Brain Res.2021239113359337010.1007/s00221‑021‑06203‑8 34482419
    [Google Scholar]
  22. DengY. ZhangJ. SunX. MaG. LuoG. MiaoZ. SongL. miR 132 improves the cognitive function of rats with Alzheimer’s disease by inhibiting the MAPK1 signal pathway.Exp. Ther. Med.202020615910.3892/etm.2020.9288 33093897
    [Google Scholar]
  23. JayaswamyP.K. VijaykrishnarajM. PatilP. AlexanderL.M. KellaraiA. ShettyP. Implicative role of epidermal growth factor receptor and its associated signaling partners in the pathogenesis of Alzheimer’s disease.Ageing Res. Rev.20238310179110.1016/j.arr.2022.101791 36403890
    [Google Scholar]
  24. PengS.C. LaiY.T. HuangH.Y. HuangH.D. HuangY.S. A novel role of CPEB3 in regulating EGFR gene transcription via association with Stat5b in neurons.Nucleic Acids Res.201038217446745710.1093/nar/gkq634 20639532
    [Google Scholar]
  25. WangL. ChenJ. HuY. LiaoA. ZhengW. WangX. LanJ. ShenJ. WangS. YangF. WangY. LiY. ChenD. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD.Transl. Psychiatry202212111410.1038/s41398‑022‑01875‑4 35318322
    [Google Scholar]
  26. ZhangJ. ZhangJ.X. ZhangQ.L. PI3K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder.Brain Res. Bull.201612515215810.1016/j.brainresbull.2016.06.007 27320472
    [Google Scholar]
  27. GkogkasC.G. KhoutorskyA. RanI. RampakakisE. NevarkoT. WeatherillD.B. VasutaC. YeeS. TruittM. DallaireP. MajorF. LaskoP. RuggeroD. NaderK. LacailleJ.C. SonenbergN. Autism-related deficits via dysregulated eIF4E-dependent translational control.Nature2013493743237137710.1038/nature11628 23172145
    [Google Scholar]
  28. ZHANG, H.; DU, Y.S. Improving the behavioral and neuroanatomical phenotypes in mouse models of autism spectrum disorder by inhibiting the mammalian target of rapamycin 1 signaling pathway.J. Shanghai Med.2017402114117
    [Google Scholar]
/content/journals/cad/10.2174/0115734099266308231108112058
Loading
/content/journals/cad/10.2174/0115734099266308231108112058
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test