Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Aims

Breast cancer (BC) is by far seen as the most common malignancy globally, with 2.261 million patients newly diagnosed, accounting for 11.7% of all cancer patients, according to the Global Cancer Statistics Report (2020). The luminal A subtype accounts for at least half of all BC diagnoses. According to TCM theory, Bushen Huoxue Decoction (BSHXD) is a prescription used for cancer treatment that may influence luminal A subtype breast cancer (LASBC).

Objectives

To analyze the clinical efficacy and underlying mechanisms of BSHXD in LASBC.

Materials and Methods

Network pharmacology and experiments were utilized to foresee the underlying mechanism of BSHXD for LASBC.

Results

According to the bioinformatics analysis, BSHXD induced several proliferation and apoptosis processes against LASBC, and the presumed targets of active components in BSHXD were mainly enriched in the HIF-1 and PI3K/AKT pathways. Flow cytometry assay and western blotting results revealed that the rate of apoptosis enhanced in a dose-dependent manner with BSHXD concentration increasing, respectively. BSHXD notably downregulated the expressions of HIF-1α, P-PI3K, PI3K, P-AKT and AKT proteins. However, adding an HIF-1α agonist restored those protein levels.

Conclusion

The study proved that the mechanism of BSHXD in LASBC may be connected to suppressing proliferation by inhibiting the activity of the HIF-1α/PI3K/AKT signaling pathway and promoting apoptosis the Caspase cascade in LASBC cells.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099269728231115060827
2023-11-27
2024-11-26
Loading full text...

Full text loading...

References

  1. WangS. XiongY. ZhangQ. SuD. YuC. CaoY. PanY. LuQ. ZuoY. YangL. Clinical significance and immunogenomic landscape analyses of the immune cell signature based prognostic model for patients with breast cancer.Brief. Bioinform.2021224bbaa31110.1093/bib/bbaa31133302293
    [Google Scholar]
  2. DastjerdN.T. ValibeikA. Rahimi MonfaredS. GoodarziG. Moradi SarabiM. HajabdollahiF. ManiatiM. AmriJ. Samavarchi TehraniS. Gene therapy: A promising approach for breast cancer treatment.Cell Biochem. Funct.2022401284810.1002/cbf.367634904722
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  4. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  5. TelangN.T. LiG. KatdareM. SepkovicD.W. BradlowH.L. WongG.Y.C. The nutritional herb Epimedium grandiflorum inhibits the growth in a model for the Luminal A molecular subtype of breast cancer.Oncol. Lett.20171342477248210.3892/ol.2017.572028454423
    [Google Scholar]
  6. GaoJ.J. SwainS.M. Luminal A Breast Cancer and Molecular Assays: A Review.Oncologist201823555656510.1634/theoncologist.2017‑053529472313
    [Google Scholar]
  7. KudelaE. SamecM. KoklesovaL. LiskovaA. KubatkaP. KozubikE. RokosT. PribulovaT. GabonovaE. SmolarM. BiringerK. miRNA Expression Profiles in Luminal A Breast Cancer—Implications in Biology, Prognosis, and Prediction of Response to Hormonal Treatment.Int. J. Mol. Sci.20202120769110.3390/ijms2120769133080858
    [Google Scholar]
  8. TrapaniD. GinsburgO. FadeluT. LinN.U. HassettM. IlbawiA.M. AndersonB.O. CuriglianoG. Global challenges and policy solutions in breast cancer control.Cancer Treat. Rev.202210410233910.1016/j.ctrv.2022.10233935074727
    [Google Scholar]
  9. CantiniL. BertoliG. CavaC. DuboisT. ZinovyevA. CaselleM. CastiglioniI. BarillotE. MartignettiL. Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer.Nucleic Acids Res.20194752205221510.1093/nar/gkz01630657980
    [Google Scholar]
  10. JohanssonA. YuN.Y. IftimiA. TobinN.P. van ’t VeerL. NordenskjöldB. BenzC.C. FornanderT. Perez-TenorioG. StålO. EssermanL.J. YauC. LindströmL.S. Clinical and molecular characteristics of estrogen receptor‐positive ultralow risk breast cancer tumors identified by the 70‐gene signature.Int. J. Cancer2022150122072208210.1002/ijc.3396935179782
    [Google Scholar]
  11. LippmanM.E. Efforts to combine endocrine and chemotherapy in the management of breast cancer: Do two and two equal three?Breast Cancer Res. Treat.19833211712710.1007/BF018035546351947
    [Google Scholar]
  12. MansooriB. NajafiS. MohammadiA. The synergy between miR-486-5p and tamoxifen causes profound cell death of tamoxifen-resistant breast cancer cells.Biomed Pharmacother.202114111192510.1016/j.biopha.2021.111925
    [Google Scholar]
  13. SchettiniF. GiulianoM. GiudiciF. ConteB. De PlacidoP. VenturiniS. RognoniC. Di LeoA. LocciM. JerusalemG. Del MastroL. PuglisiF. ConteP. De LaurentiisM. PusztaiL. RimawiM.F. SchiffR. ArpinoG. De PlacidoS. PratA. GeneraliD. Endocrine-Based Treatments in Clinically-Relevant Subgroups of Hormone Receptor-Positive/HER2-Negative Metastatic Breast Cancer: Systematic Review and Meta-Analysis.Cancers (Basel)2021136145810.3390/cancers1306145833810205
    [Google Scholar]
  14. ParkY.H. Senkus-KonefkaE. ImS.A. PentheroudakisG. SajiS. GuptaS. IwataH. MasturaM.Y. DentR. LuY.S. YinY. SmrutiB.K. ToyamaT. MalwinderS. LeeS.C. TsengL.M. KimJ.H. KimT.Y. SuhK.J. CardosoF. YoshinoT. DouillardJ.Y. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with early breast cancer: A KSMO-ESMO initiative endorsed by CSCO, ISMPO, JSMO, MOS, SSO and TOS.Ann. Oncol.202031445146910.1016/j.annonc.2020.01.00832081575
    [Google Scholar]
  15. AnsariM.A. ThiruvengadamM. FarooquiZ. RajakumarG. Sajid JamalQ.M. AlzohairyM.A. AlmatroudiA. AlomaryM.N. ChungI.M. Al-SuhaimiE.A. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer.Semin. Cancer Biol.20216910912810.1016/j.semcancer.2019.12.02231891780
    [Google Scholar]
  16. PradubyatN. GiannoudisA. ElmetwaliT. MahalapbutrP. PalmieriC. MitrpantC. KetchartW. 1′-Acetoxychavicol Acetate from Alpinia galanga Represses Proliferation and Invasion, and Induces Apoptosis via HER2-signaling in Endocrine-Resistant Breast Cancer Cells.Planta Med.202288216317810.1055/a‑1307‑399733445186
    [Google Scholar]
  17. DuL. YauC. Brown-SwigartL. GouldR. KringsG. HirstG.L. BedrosianI. LaymanR.M. CarterJ.M. KleinM. VentersS. ShadS. van der NoordaaM. ChienA.J. HaddadT. IsaacsC. PusztaiL. AlbainK. NandaR. TripathyD. LiuM.C. BougheyJ. SchwabR. HyltonN. DeMicheleA. PerlmutterJ. YeeD. BerryD. van’t VeerL. ValeroV. EssermanL.J. SymmansW.F. Predicted sensitivity to endocrine therapy for stage II-III hormone receptor-positive and HER2-negative (HR+/HER2−) breast cancer before chemo-endocrine therapy.Ann. Oncol.202132564265110.1016/j.annonc.2021.02.01133617937
    [Google Scholar]
  18. ShiD. LiH. ZhangZ. HeY. ChenM. SunL. ZhaoP. Cryptotanshinone inhibits proliferation and induces apoptosis of breast cancer MCF-7 cells via GPER mediated PI3K/AKT signaling pathway.PLoS One2022171e026238910.1371/journal.pone.026238935061800
    [Google Scholar]
  19. LiuJ. LiuY. LiH. WeiC. MaoA. LiuW. PanG. Polyphyllin D induces apoptosis and protective autophagy in breast cancer cells through JNK1-Bcl-2 pathway.J. Ethnopharmacol.202228211459110.1016/j.jep.2021.11459134481873
    [Google Scholar]
  20. YaoN. RenK. WangY. JinQ. LuX. LuY. JiangC. ZhangD. LuJ. WangC. HuoJ. ChenY. ZhangJ. Paris polyphylla Suppresses Proliferation and Vasculogenic Mimicry of Human Osteosarcoma Cells and Inhibits Tumor Growth In Vivo.Am. J. Chin. Med.201745357559810.1142/S0192415X1750034328385078
    [Google Scholar]
  21. XuH.H. LiS.M. XuR. FangL. XuH. TongP.J. Predication of the underlying mechanism of Bushenhuoxue formula acting on knee osteoarthritis via network pharmacology-based analyses combined with experimental validation.J. Ethnopharmacol.202026311321710.1016/j.jep.2020.11321732763417
    [Google Scholar]
  22. YangX. SuS. RenQ. LiuL. LiJ. ZhangW. CaiK. XuZ. PanX. BushenHuoxue Recipe for the Treatment of Prethrombotic State of ACA-Positive Recurrent Miscarriage via the Regulation of the PI3K-AKT Signaling Pathway.Evid Based Complement Alternat Med.20222022238553410.1155/2022/2385534
    [Google Scholar]
  23. WangP. ZhangL. YingJ. JinX. LuoC. XuS. DongR. XiaoL. TongP. JinH. Bushenhuoxue formula attenuates cartilage degeneration in an osteoarthritic mouse model through TGF-β/MMP13 signaling.J. Transl. Med.20181617210.1186/s12967‑018‑1437‑329554973
    [Google Scholar]
  24. LinJ. GuJ. FanD. LiW. Herbal formula modified Bu-Shen-Huo-Xue Decoction attenuates intervertebral disc degeneration via regulating inflammation and oxidative stress.Evid Based Complement Alternat Med.20222022428489310.1155/2022/4284893
    [Google Scholar]
  25. JiangX. YuanY. ShiM. ZhangS. SuiM. ZhouH. Bu-shen-zhu-yun decoction inhibits granulosa cell apoptosis in rat polycystic ovary syndrome through estrogen receptor α-mediated PI3K/AKT/mTOR pathway.J. Ethnopharmacol.202228811486210.1016/j.jep.2021.11486234861362
    [Google Scholar]
  26. LuoS. JingJ. ZhangY. YuW. GaoW. Network pharmacology and the experimental findings of Bushenhuoxue formula for improving hippocampal neuron injury in vascular demented rats.J. Integr. Neurosci.202120484785910.31083/j.jin200408734997709
    [Google Scholar]
  27. RossiV. BerchiallaP. GiannarelliD. NisticòC. FerrettiG. GasparroS. RussilloM. CataniaG. VignaL. MancusiR.L. BriaE. MontemurroF. CognettiF. FabiA. Should All Patients With HR-Positive HER2-Negative Metastatic Breast Cancer Receive CDK 4/6 Inhibitor As First-Line Based Therapy? A Network Meta-Analysis of Data from the PALOMA 2, MONALEESA 2, MONALEESA 7, MONARCH 3, FALCON, SWOG and FACT Trials.Cancers (Basel)20191111166110.3390/cancers1111166131717791
    [Google Scholar]
  28. HuangX.H. LiangR.H. SuL. GuoW. WangC.J. Mechanism of Bushen Jianpi decoction in preventing and treating osteoporosis caused by aromatase inhibitors in breast cancer treatment.Cancer Biomark.201718218319010.3233/CBM‑16028127983533
    [Google Scholar]
  29. YuH. YaoS. ZhouC. FuF. LuoH. DuW. JinH. TongP. ChenD. WuC. RuanH. Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-κB signaling.J. Ethnopharmacol.202126611344710.1016/j.jep.2020.11344733022338
    [Google Scholar]
  30. García-CortésD. Hernández-LemusE. Espinal-EnríquezJ. Luminal A Breast Cancer Co-expression Network: Structural and Functional Alterations.Front. Genet.20211262947510.3389/fgene.2021.62947533959148
    [Google Scholar]
  31. LiZ. QuB. WuX. ChenH. WangJ. ZhouL. WuX. ZhangW. Methodology improvement for network pharmacology to correct the deviation of deduced medicinal constituents and mechanism: Xian-Ling-Gu-Bao as an example.J. Ethnopharmacol.202228911505810.1016/j.jep.2022.11505835114343
    [Google Scholar]
  32. LiuM. ZhangB. LiZ. WangZ. LiS. LiuH. DengY. HeN. Precise discrimination of Luminal A breast cancer subtype using an aptamer in vitro and in vivo.Nanoscale20201238196891970110.1039/D0NR03324C32966497
    [Google Scholar]
  33. ZengX. ZhangP. WangY. QinC. ChenS. HeW. TaoL. TanY. GaoD. WangB. ChenZ. ChenW. JiangY.Y. ChenY.Z. CMAUP: A database of collective molecular activities of useful plants.Nucleic Acids Res.201947D1D1118D112710.1093/nar/gky96530357356
    [Google Scholar]
  34. GyőrffyB. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer.Comput. Struct. Biotechnol. J.2021194101410910.1016/j.csbj.2021.07.01434527184
    [Google Scholar]
  35. WangY. HanD. ZhouT. ChenC. CaoH. ZhangJ.Z. MaN. LiuC. SongM. ShiJ. JinX. CaoF. DongN. DUSP26 induces aortic valve calcification by antagonizing MDM2-mediated ubiquitination of DPP4 in human valvular interstitial cells.Eur. Heart J.202142302935295110.1093/eurheartj/ehab31634179958
    [Google Scholar]
  36. WangX. WuH. ZhaoL. LiuZ. QiM. JinY. LiuW. FLCN regulates transferrin receptor 1 transport and iron homeostasis.J. Biol. Chem.202129610042610.1016/j.jbc.2021.10042633609526
    [Google Scholar]
  37. BarrakN.H. KhajahM.A. LuqmaniY.A. Hypoxic environment may enhance migration/penetration of endocrine resistant MCF7- derived breast cancer cells through monolayers of other non-invasive cancer cells in vitro.Sci. Rep.2020101112710.1038/s41598‑020‑58055‑x31980706
    [Google Scholar]
  38. DuanL. TaoJ. YangX. YeL. WuY. HeQ. DuanY. ChenL. ZhuJ. HVEM/HIF-1α promoted proliferation and inhibited apoptosis of ovarian cancer cells under hypoxic microenvironment conditions.J. Ovarian Res.20201314010.1186/s13048‑020‑00646‑332312328
    [Google Scholar]
  39. Vakili SaatlooM. AghbaliA.A. KoohsoltaniM. Yari KhosroushahiA. Akt1 and Jak1 siRNA based silencing effects on the proliferation and apoptosis in head and neck squamous cell carcinoma.Gene201971414399710.1016/j.gene.2019.14399731348981
    [Google Scholar]
  40. XuF. LiQ. WangZ. CaoX. Sinomenine inhibits proliferation, migration, invasion and promotes apoptosis of prostate cancer cells by regulation of miR-23a.Biomed Pharmacother.201911910859210.1016/j.biopha.2019.01.053
    [Google Scholar]
  41. WangK. ZhuG. BaoS. ChenS. Long Non-Coding RNA LINC00511 Mediates the Effects of ESR1 on Proliferation and Invasion of Ovarian Cancer Through miR-424-5p and miR-370-5p.Cancer Manag. Res.201911108071081910.2147/CMAR.S23214031920390
    [Google Scholar]
  42. AbdallaM.O.A. YamamotoT. MaeharaK. NogamiJ. OhkawaY. MiuraH. PoonpermR. HirataniI. NakayamaH. NakaoM. SaitohN. The Eleanor ncRNAs activate the topological domain of the ESR1 locus to balance against apoptosis.Nat. Commun.2019101377810.1038/s41467‑019‑11378‑431439835
    [Google Scholar]
  43. ZhaoY.L. YuanB.Q. ShenG.S. Mechanism of RET gene mediated EGFR signaling pathway on epithelial-mesenchymal transition, proliferation and apoptosis of papillary thyroid carcinoma cells.Eur. Rev. Med. Pharmacol. Sci.202024158036804710.26355/eurrev_202008_2248732767330
    [Google Scholar]
  44. CuiJ. TianJ. WangW. HeT. LiX. GuC. WangL. WuJ. ShangA. IGF2BP2 promotes the progression of colorectal cancer through a YAP‐dependent mechanism.Cancer Sci.2021112104087409910.1111/cas.1508334309973
    [Google Scholar]
  45. PanX. TanJ. WengX. DuR. JiangY. WengY. ZhouD. ShenY. ICT1 Promotes Osteosarcoma Cell Proliferation and Inhibits Apoptosis via STAT3/BCL-2 Pathway.BioMed Res. Int.2021202111010.1155/2021/897172833585660
    [Google Scholar]
  46. GuoF. ZhuX. ZhaoQ. HuangQ. miR‑589‑3p sponged by the lncRNA TINCR inhibits the proliferation, migration and invasion and promotes the apoptosis of breast cancer cells by suppressing the Akt pathway via IGF1R.Int. J. Mol. Med.2020463989100210.3892/ijmm.2020.466632705168
    [Google Scholar]
  47. YangJ. ZhaoS. TianF. SP1‐mediated lncRNA PVT1 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract via miR‐214‐3p/MMP2 axis.J. Cell. Mol. Med.202024155456110.1111/jcmm.1476231755246
    [Google Scholar]
  48. ZhangY. YanN. WangX. ChangY. WangY. MiR-129-5p regulates cell proliferation and apoptosis via IGF-1R/Src/ERK/Egr-1 pathway in RA-fibroblast-like synoviocytes.Biosci. Rep.20193912BSR2019200910.1042/BSR2019200931661546
    [Google Scholar]
  49. ZhangL. MaT. TaoQ. TanW. ChenH. LiuW. LinP. ZhouD. WangA. JinY. TangK. Bta-miR-34b inhibits proliferation and promotes apoptosis via the MEK/ERK pathway by targeting MAP2K1 in bovine primary Sertoli cells.J. Anim. Sci.20209810skaa31310.1093/jas/skaa31332954430
    [Google Scholar]
  50. EscobarE. PeñafielC. Gómez-ValenzuelaF. Chimenos-KüstnerE. Pérez-TomásR. Cyclooxygenase-2 protein expression modulates cell proliferation and apoptosis in solid ameloblastoma and odontogenic keratocyst.J Oral Pathol Med20215091323710.1111/jop.13237
    [Google Scholar]
  51. WuD. ZhouJ. TanM. ZhouY. LINC01116 regulates proliferation, migration, and apoptosis of keloid fibroblasts by the TGF-β1/SMAD3 signaling via targeting miR-3141.Anal. Biochem.202162711424910.1016/j.ab.2021.11424934048784
    [Google Scholar]
  52. BaM.C. BaZ. GongY.F. LinK.P. WuY.B. TuY.N. Knockdown of lncRNA ZNRD1-AS1 suppresses gastric cancer cell proliferation and metastasis by targeting the miR-9-5p/HSP90AA1 axis.Aging (Albany NY)20211313172851730110.18632/aging.20320934226297
    [Google Scholar]
  53. XiaoX. WangW. LiY. YangD. LiX. ShenC. LiuY. KeX. GuoS. GuoZ. HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma.J. Exp. Clin. Cancer Res.201837120110.1186/s13046‑018‑0880‑630153855
    [Google Scholar]
  54. DingH.M. ZhangH. WangJ. ZhouJ.H. ShenF.R. JiR.N. ShiJ.Y. ChenY.G. miR‑302c‑3p and miR‑520a‑3p suppress the proliferation of cervical carcinoma cells by targeting CXCL8.Mol. Med. Rep.202123532210.3892/mmr.2021.1196133760117
    [Google Scholar]
  55. Martínez-HernándezJ. Seco-RoviraV. Beltrán-FrutosE. FerrerC. Serrano-SánchezM.I. PastorL.M. Proliferation, apoptosis, and number of Sertoli cells in the Syrian hamster during recrudescence after exposure to short photoperiod†‡.Biol. Reprod.2020102358859710.1093/biolre/ioz19831621831
    [Google Scholar]
  56. ChenL. ZhangJ. ZouY. WangF. LiJ. SunF. LuoX. ZhangM. GuoY. YuQ. YangP. ZhouQ. ChenZ. ZhangH. GongQ. ZhaoJ. EizirikD.L. ZhouZ. XiongF. ZhangS. WangC.Y. Kdm2a deficiency in macrophages enhances thermogenesis to protect mice against HFD-induced obesity by enhancing H3K36me2 at the Pparg locus.Cell Death Differ.20212861880189910.1038/s41418‑020‑00714‑733462408
    [Google Scholar]
  57. HillK.S. RobertsE.R. WangX. MarinE. ParkT.D. SonS. RenY. FangB. YoderS. KimS. WanL. SarnaikA.A. KoomenJ.M. MessinaJ.L. TeerJ.K. KimY. WuJ. ChalfantC.E. KimM. PTPN11 Plays Oncogenic Roles and Is a Therapeutic Target for BRAF Wild-Type Melanomas.Mol. Cancer Res.201917258359310.1158/1541‑7786.MCR‑18‑077730355677
    [Google Scholar]
  58. MihályZ. GyőrffyB. Improving Pathological Assessment of Breast Cancer by Employing Array-Based Transcriptome Analysis.Microarrays (Basel)20132322824210.3390/microarrays203022827605190
    [Google Scholar]
  59. ZhangJ. XuJ. DongY. HuangB. Down-regulation of HIF-1α inhibits the proliferation, migration, and invasion of gastric cancer by inhibiting PI3K/AKT pathway and VEGF expression.Biosci. Rep.2018386BSR2018074110.1042/BSR2018074129899167
    [Google Scholar]
  60. GeneraliD. BerrutiA. BrizziM.P. CampoL. BonardiS. WigfieldS. BersigaA. AlleviG. MilaniM. AgugginiS. GandolfiV. DogliottiL. BottiniA. HarrisA.L. FoxS.B. Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer.Clin. Cancer Res.200612154562456810.1158/1078‑0432.CCR‑05‑269016899602
    [Google Scholar]
  61. QianJ. BaiH. GaoZ. DongY. PeiJ. MaM. HanB. Downregulation of HIF-1α inhibits the proliferation and invasion of non-small cell lung cancer NCI-H157 cells.Oncol. Lett.20161131738174410.3892/ol.2016.415026998070
    [Google Scholar]
  62. XuD. DaiW. LiC. Polo-like kinase 3, hypoxic responses, and tumorigenesis.Cell Cycle201716212032203610.1080/15384101.2017.137322428857653
    [Google Scholar]
  63. LiZ.Q. WangZ. ZhangY. LuC. DingQ.L. RenR. ChengB.B. LouL.X. CircRNA_103801 accelerates proliferation of osteosarcoma cells by sponging miR-338-3p and regulating HIF-1/Rap1/PI3K-Akt pathway.J. Biol. Regul. Homeost. Agents20213531021102810.23812/20‑725‑A34157832
    [Google Scholar]
  64. YangL. XieP. WuJ. YuJ. LiX. MaH. YuT. WangH. YeJ. WangJ. ZhengH. Deferoxamine Treatment Combined With Sevoflurane Postconditioning Attenuates Myocardial Ischemia-Reperfusion Injury by Restoring HIF-1/BNIP3-Mediated Mitochondrial Autophagy in GK Rats.Front. Pharmacol.202011610.3389/fphar.2020.0000632140105
    [Google Scholar]
  65. HouZ. NieC. SiZ. MaY. Deferoxamine enhances neovascularization and accelerates wound healing in diabetic rats via the accumulation of hypoxia-inducible factor-1α.Diabetes Res. Clin. Pract.20131011627110.1016/j.diabres.2013.04.01223726275
    [Google Scholar]
  66. DuscherD. NeofytouE. WongV.W. MaanZ.N. RennertR.C. InayathullahM. JanuszykM. RodriguesM. MalkovskiyA.V. WhitmoreA.J. WalmsleyG.G. GalvezM.G. WhittamA.J. BrownleeM. RajadasJ. GurtnerG.C. Transdermal deferoxamine prevents pressure-induced diabetic ulcers.Proc. Natl. Acad. Sci. USA20151121949910.1073/pnas.141344511225535360
    [Google Scholar]
  67. GradisharW.J. MoranM.S. AbrahamJ. AftR. AgneseD. AllisonK.H. BlairS.L. BursteinH.J. DangC. EliasA.D. GiordanoS.H. GoetzM.P. GoldsteinL.J. HurvitzS.A. IsakoffS.J. JankowitzR.C. JavidS.H. KrishnamurthyJ. LeitchM. LyonsJ. MatroJ. MayerI.A. MortimerJ. O’ReganR.M. PatelS.A. PierceL.J. RugoH.S. SitapatiA. SmithK.L. SmithM.L. SolimanH. Stringer-ReasorE.M. TelliM.L. WardJ.H. WisinskiK.B. YoungJ.S. BurnsJ.L. KumarR. NCCN Guidelines® Insights: Breast Cancer, Version 4.2021.J. Natl. Compr. Canc. Netw.202119548449310.6004/jnccn.2021.002334794122
    [Google Scholar]
  68. LuoT. LuY. YanS. XiaoX. RongX. GuoJ. Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective.Chin. J. Integr. Med.2020261728010.1007/s11655‑019‑3064‑030941682
    [Google Scholar]
  69. LiH. ChenM. YangZ. XuC. YuQ. SongJ. WangM. GaoX. Amorphophalli Rhizoma inhibits breast cancer growth, proliferation, migration, and invasion via the PI3K/AKT pathway.J. Ethnopharmacol.202228611492610.1016/j.jep.2021.11492634929308
    [Google Scholar]
  70. ZhanY. WenY. ZhengF. DuL. ChenT. ShenX. WuR. TangX. MiR-26b-3p Promotes Intestinal Motility Disorder by Targeting FZD10 to Inhibit GSK3β/β-Catenin Signaling and Induce Enteric Glial Cell Apoptosis.Mol. Neurobiol.2023Online ahead of print10.1007/s12035‑023‑03600‑837728849
    [Google Scholar]
  71. ZhangJ. GaoR. F. LiJ. YuK. D. BiK. X. 2022Alloimperatorin activates apoptosis, ferroptosis and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro.Biochem Cell Biol.2022100321322210.1139/bcb‑2021‑0399
    [Google Scholar]
  72. HuG. PenW. WangM. TRIM14 Promotes Breast Cancer Cell Proliferation by Inhibiting Apoptosis.Oncol. Res.201927443944710.3727/096504018X1521499464178629562956
    [Google Scholar]
  73. LiuF. LiX. YanH. WuJ. YangY. HeJ. ChenJ. JiangZ. WuF. JiangZ. Downregulation of CPT2 promotes proliferation and inhibits apoptosis through p53 pathway in colorectal cancer.Cell. Signal.20229211026710.1016/j.cellsig.2022.11026735108639
    [Google Scholar]
  74. ZengA. LiangX. ZhuS. LiuC. WangS. ZhangQ. ZhaoJ. SongL. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF‑κB signaling pathway.Oncol. Rep.202045271772710.3892/or.2020.789133416150
    [Google Scholar]
  75. DuJ. LiJ. SongD. LiQ. LiL. LiB. LiL. Matrine exerts anti‑breast cancer activity by mediating apoptosis and protective autophagy via the AKT/mTOR pathway in MCF‑7 cells.Mol. Med. Rep.20202253659366610.3892/mmr.2020.1144933000249
    [Google Scholar]
  76. ZhengF. ChenJ. ZhangX. WangZ. ChenJ. LinX. HuangH. FuW. LiangJ. WuW. LiB. YaoH. HuH. SongE. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis.Nat. Commun.2021121134110.1038/s41467‑021‑21535‑333637716
    [Google Scholar]
  77. LiangY. SongX. LiY. ChenB. ZhaoW. WangL. ZhangH. LiuY. HanD. ZhangN. MaT. WangY. YeF. LuoD. LiX. YangQ. RETRACTED ARTICLE: LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis.Mol. Cancer20201918510.1186/s12943‑020‑01206‑532384893
    [Google Scholar]
  78. BudiH.S. IzadiS. TimoshinA. AslS.H. BeyzaiB. GhaderpourA. AlianF. EshaghiF.S. MousaviS.M. RafieeB. NikkhooA. AhmadiA. HassanniaH. AhmadiM. SojoodiM. Jadidi-NiaraghF. Blockade of HIF-1α and STAT3 by hyaluronate-conjugated TAT-chitosan-SPION nanoparticles loaded with siRNA molecules prevents tumor growth.Nanomedicine20213410237310.1016/j.nano.2021.10237333667724
    [Google Scholar]
  79. ZhangT. GuoS. ZhuX. QiuJ. DengG. QiuC. Alpinetin inhibits breast cancer growth by ROS/NF‐κB/HIF‐1α axis.J. Cell. Mol. Med.202024158430844010.1111/jcmm.1537132562470
    [Google Scholar]
  80. ZhangX. LiuZ. ChenS. LiH. DongL. FuX. A new discovery: Total Bupleurum saponin extracts can inhibit the proliferation and induce apoptosis of colon cancer cells by regulating the PI3K/Akt/mTOR pathway.J. Ethnopharmacol.202228311474210.1016/j.jep.2021.11474234655668
    [Google Scholar]
  81. MiricescuD. TotanA. Stanescu-SpinuI.I. BadoiuS.C. StefaniC. GreabuM. PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects.Int. J. Mol. Sci.202022117310.3390/ijms2201017333375317
    [Google Scholar]
  82. NunneryS.E. MayerI.A. Targeting the PI3K/AKT/mTOR Pathway in Hormone-Positive Breast Cancer.Drugs202080161685169710.1007/s40265‑020‑01394‑w32894420
    [Google Scholar]
  83. PonnusamyL. NatarajanS.R. ManoharanR. MARK2 potentiate aerobic glycolysis‐mediated cell growth in breast cancer through regulating mTOR/HIF‐1α and p53 pathways.J. Cell. Biochem.2022123475977110.1002/jcb.3021935048405
    [Google Scholar]
  84. DuanF. MeiC. YangL. ZhengJ. LuH. XiaY. HsuS. LiangH. HongL. Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells.Sci. Rep.2020101771410.1038/s41598‑020‑64880‑x32382009
    [Google Scholar]
  85. WangD. ZhaoW. LiuJ. WangY. YuanC. ZhangF. JinG. QinQ. Effects of HIF-1α on spermatogenesis of varicocele rats by regulating VEGF/PI3K/Akt signaling pathway.Reprod. Sci.20212841161117410.1007/s43032‑020‑00395‑033237516
    [Google Scholar]
  86. WonY. S. SeoK. I. Lupiwighteone induces caspase-dependent and -independent apoptosis on human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway.Food Chem Toxicol202013511086310.1016/j.fct.2019.110863
    [Google Scholar]
  87. OmarA.M.M.E. AboulWafaO.M. AmrM.E. El-ShoukrofyM.S. Antiproliferative activity, enzymatic inhibition and apoptosis-promoting effects of benzoxazole-based hybrids on human breast cancer cells.Bioorg. Chem.202110910475210.1016/j.bioorg.2021.10475233657444
    [Google Scholar]
  88. YimingL. YanfeiH. HangY. YimeiC. GuangliangS. ShuL. Cadmium induces apoptosis of pig lymph nodes by regulating the PI3K/AKT/HIF-1α pathway.Toxicology202145115269410.1016/j.tox.2021.15269433493553
    [Google Scholar]
  89. ZhuQ. WangH. JiangB. NiX. JiangL. LiC. WangX. ZhangF. KeB. LuL. Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1α signaling pathway in liver inflammatory injury.Cell Death Dis.20189991010.1038/s41419‑018‑0894‑130185770
    [Google Scholar]
/content/journals/cad/10.2174/0115734099269728231115060827
Loading
/content/journals/cad/10.2174/0115734099269728231115060827
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test