Skip to content
2000
image of Insights into the Molecular Mechanisms of Bushen Huoxue Decoction in Breast Cancer via Network Pharmacology and In vitro experiments

Abstract

Aims

Breast cancer (BC) is by far seen as the most common malignancy globally, with 2.261 million patients newly diagnosed, accounting for 11.7% of all cancer patients, according to the Global Cancer Statistics Report (2020). The luminal A subtype accounts for at least half of all BC diagnoses. According to TCM theory, Bushen Huoxue Decoction (BSHXD) is a prescription used for cancer treatment that may influence luminal A subtype breast cancer (LASBC).

Objectives

To analyze the clinical efficacy and underlying mechanisms of BSHXD in LASBC.

Materials and Methods

Network pharmacology and experiments were utilized to foresee the underlying mechanism of BSHXD for LASBC.

Results

According to the bioinformatics analysis, BSHXD induced several proliferation and apoptosis processes against LASBC, and the presumed targets of active components in BSHXD were mainly enriched in the HIF-1 and PI3K/AKT pathways. Flow cytometry assay and western blotting results revealed that the rate of apoptosis enhanced in a dose-dependent manner with BSHXD concentration increasing, respectively. BSHXD notably downregulated the expressions of HIF-1α, P-PI3K, PI3K, P-AKT and AKT proteins. However, adding an HIF-1α agonist restored those protein levels.

Conclusion

The study proved that the mechanism of BSHXD in LASBC may be connected to suppressing proliferation by inhibiting the activity of the HIF-1α/PI3K/AKT signaling pathway and promoting apoptosis the Caspase cascade in LASBC cells.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099269728231115060827
2023-11-27
2024-10-10
Loading full text...

Full text loading...

References

  1. Wang S. Xiong Y. Zhang Q. Su D. Yu C. Cao Y. Pan Y. Lu Q. Zuo Y. Yang L. Clinical significance and immunogenomic landscape analyses of the immune cell signature based prognostic model for patients with breast cancer. Brief. Bioinform. 2021 22 4 bbaa311 10.1093/bib/bbaa311 33302293
    [Google Scholar]
  2. Dastjerd N.T. Valibeik A. Rahimi Monfared S. Goodarzi G. Moradi Sarabi M. Hajabdollahi F. Maniati M. Amri J. Samavarchi Tehrani S. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem. Funct. 2022 40 1 28 48 10.1002/cbf.3676 34904722
    [Google Scholar]
  3. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  4. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  5. Telang N.T. Li G. Katdare M. Sepkovic D.W. Bradlow H.L. Wong G.Y.C. The nutritional herb Epimedium grandiflorum inhibits the growth in a model for the Luminal A molecular subtype of breast cancer. Oncol. Lett. 2017 13 4 2477 2482 10.3892/ol.2017.5720 28454423
    [Google Scholar]
  6. Gao J.J. Swain S.M. Luminal A. Breast Cancer and Molecular Assays: A Review. Oncologist 2018 23 5 556 565 10.1634/theoncologist.2017‑0535 29472313
    [Google Scholar]
  7. Kudela E. Samec M. Koklesova L. Liskova A. Kubatka P. Kozubik E. Rokos T. Pribulova T. Gabonova E. Smolar M. Biringer K. miRNA Expression Profiles in Luminal A Breast Cancer—Implications in Biology, Prognosis, and Prediction of Response to Hormonal Treatment. Int. J. Mol. Sci. 2020 21 20 7691 10.3390/ijms21207691 33080858
    [Google Scholar]
  8. Trapani D. Ginsburg O. Fadelu T. Lin N.U. Hassett M. Ilbawi A.M. Anderson B.O. Curigliano G. Global challenges and policy solutions in breast cancer control. Cancer Treat. Rev. 2022 104 102339 10.1016/j.ctrv.2022.102339 35074727
    [Google Scholar]
  9. Cantini L. Bertoli G. Cava C. Dubois T. Zinovyev A. Caselle M. Castiglioni I. Barillot E. Martignetti L. Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer. Nucleic Acids Res. 2019 47 5 2205 2215 10.1093/nar/gkz016 30657980
    [Google Scholar]
  10. Johansson A. Yu N.Y. Iftimi A. Tobin N.P. van ’t Veer L. Nordenskjöld B. Benz C.C. Fornander T. Perez-Tenorio G. Stål O. Esserman L.J. Yau C. Lindström L.S. Clinical and molecular characteristics of estrogen receptor‐positive ultralow risk breast cancer tumors identified by the 70‐gene signature. Int. J. Cancer 2022 150 12 2072 2082 10.1002/ijc.33969 35179782
    [Google Scholar]
  11. Lippman M.E. Efforts to combine endocrine and chemotherapy in the management of breast cancer: Do two and two equal three? Breast Cancer Res. Treat. 1983 3 2 117 127 10.1007/BF01803554 6351947
    [Google Scholar]
  12. Mansoori B. Najafi S. Mohammadi A. The synergy between miR-486-5p and tamoxifen causes profound cell death of tamoxifen-resistant breast cancer cells. Biomed. Pharmacother. 2021 141 111925 10.1016/j.biopha.2021.111925
    [Google Scholar]
  13. Schettini F. Giuliano M. Giudici F. Conte B. De Placido P. Venturini S. Rognoni C. Di Leo A. Locci M. Jerusalem G. Del Mastro L. Puglisi F. Conte P. De Laurentiis M. Pusztai L. Rimawi M.F. Schiff R. Arpino G. De Placido S. Prat A. Generali D. Endocrine-Based Treatments in Clinically-Relevant Subgroups of Hormone Receptor-Positive/HER2-Negative Metastatic Breast Cancer: Systematic Review and Meta-Analysis. Cancers (Basel) 2021 13 6 1458 10.3390/cancers13061458 33810205
    [Google Scholar]
  14. Park Y.H. Senkus-Konefka E. Im, S.A.; Pentheroudakis, G.; Saji, S.; Gupta, S.; Iwata, H.; Mastura, M.Y.; Dent, R.; Lu, Y.S.; Yin, Y.; Smruti, B.K.; Toyama, T.; Malwinder, S.; Lee, S.C.; Tseng, L.M.; Kim, J.H.; Kim, T.Y.; Suh, K.J.; Cardoso, F.; Yoshino, T.; Douillard, J.Y. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with early breast cancer: A KSMO-ESMO initiative endorsed by CSCO, ISMPO, JSMO, MOS, SSO and TOS. Ann. Oncol. 2020 31 4 451 469 10.1016/j.annonc.2020.01.008 32081575
    [Google Scholar]
  15. Ansari M.A. Thiruvengadam M. Farooqui Z. Rajakumar G. Sajid Jamal Q.M. Alzohairy M.A. Almatroudi A. Alomary M.N. Chung I.M. Al-Suhaimi E.A. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin. Cancer Biol. 2021 69 109 128 10.1016/j.semcancer.2019.12.022 31891780
    [Google Scholar]
  16. Pradubyat N. Giannoudis A. Elmetwali T. Mahalapbutr P. Palmieri C. Mitrpant C. Ketchart W. 1′-Acetoxychavicol Acetate from Alpinia galanga Represses Proliferation and Invasion, and Induces Apoptosis via HER2-signaling in Endocrine-Resistant Breast Cancer Cells. Planta Med. 2022 88 2 163 178 10.1055/a‑1307‑3997 33445186
    [Google Scholar]
  17. Du L. Yau C. Brown-Swigart L. Gould R. Krings G. Hirst G.L. Bedrosian I. Layman R.M. Carter J.M. Klein M. Venters S. Shad S. van der Noordaa M. Chien A.J. Haddad T. Isaacs C. Pusztai L. Albain K. Nanda R. Tripathy D. Liu M.C. Boughey J. Schwab R. Hylton N. DeMichele A. Perlmutter J. Yee D. Berry D. van’t Veer L. Valero V. Esserman L.J. Symmans W.F. Predicted sensitivity to endocrine therapy for stage II-III hormone receptor-positive and HER2-negative (HR+/HER2−) breast cancer before chemo-endocrine therapy. Ann. Oncol. 2021 32 5 642 651 10.1016/j.annonc.2021.02.011 33617937
    [Google Scholar]
  18. Shi D. Li H. Zhang Z. He Y. Chen M. Sun L. Zhao P. Cryptotanshinone inhibits proliferation and induces apoptosis of breast cancer MCF-7 cells via GPER mediated PI3K/AKT signaling pathway. PLoS One 2022 17 1 e0262389 10.1371/journal.pone.0262389 35061800
    [Google Scholar]
  19. Liu J. Liu Y. Li H. Wei C. Mao A. Liu W. Pan G. Polyphyllin D induces apoptosis and protective autophagy in breast cancer cells through JNK1-Bcl-2 pathway. J. Ethnopharmacol. 2022 282 114591 10.1016/j.jep.2021.114591 34481873
    [Google Scholar]
  20. Yao N. Ren K. Wang Y. Jin Q. Lu X. Lu Y. Jiang C. Zhang D. Lu J. Wang C. Huo J. Chen Y. Zhang J. Paris polyphylla Suppresses Proliferation and Vasculogenic Mimicry of Human Osteosarcoma Cells and Inhibits Tumor Growth In Vivo. Am. J. Chin. Med. 2017 45 3 575 598 10.1142/S0192415X17500343 28385078
    [Google Scholar]
  21. Xu H.H. Li S.M. Xu R. Fang L. Xu H. Tong P.J. Predication of the underlying mechanism of Bushenhuoxue formula acting on knee osteoarthritis via network pharmacology-based analyses combined with experimental validation. J. Ethnopharmacol. 2020 263 113217 10.1016/j.jep.2020.113217 32763417
    [Google Scholar]
  22. Yang X. Su S. Ren Q. Liu L. Li J. Zhang W. Cai K. Xu Z. Pan X. BushenHuoxue Recipe for the Treatment of Prethrombotic State of ACA-Positive Recurrent Miscarriage via the Regulation of the PI3K-AKT Signaling Pathway. Evid. Based Complement. Alternat. Med. 2022 2022 2385534 10.1155/2022/2385534
    [Google Scholar]
  23. Wang P. Zhang L. Ying J. Jin X. Luo C. Xu S. Dong R. Xiao L. Tong P. Jin H. Bushenhuoxue formula attenuates cartilage degeneration in an osteoarthritic mouse model through TGF-β/MMP13 signaling. J. Transl. Med. 2018 16 1 72 10.1186/s12967‑018‑1437‑3 29554973
    [Google Scholar]
  24. Lin J. Gu J. Fan D. Li W. Herbal formula modified Bu-Shen-Huo-Xue Decoction attenuates intervertebral disc degeneration via regulating inflammation and oxidative stress. Evid. Based Complement. Alternat. Med. 2022 2022 4284893 10.1155/2022/4284893
    [Google Scholar]
  25. Jiang X. Yuan Y. Shi M. Zhang S. Sui M. Zhou H. Bu-shen-zhu-yun decoction inhibits granulosa cell apoptosis in rat polycystic ovary syndrome through estrogen receptor α-mediated PI3K/AKT/mTOR pathway. J. Ethnopharmacol. 2022 288 114862 10.1016/j.jep.2021.114862 34861362
    [Google Scholar]
  26. Luo S. Jing J. Zhang Y. Yu W. Gao W. Network pharmacology and the experimental findings of Bushenhuoxue formula for improving hippocampal neuron injury in vascular demented rats. J. Integr. Neurosci. 2021 20 4 847 859 10.31083/j.jin2004087 34997709
    [Google Scholar]
  27. Rossi V. Berchialla P. Giannarelli D. Nisticò C. Ferretti G. Gasparro S. Russillo M. Catania G. Vigna L. Mancusi R.L. Bria E. Montemurro F. Cognetti F. Fabi A. Should All Patients With HR-Positive HER2-Negative Metastatic Breast Cancer Receive CDK 4/6 Inhibitor As First-Line Based Therapy? A Network Meta-Analysis of Data from the PALOMA 2, MONALEESA 2, MONALEESA 7, MONARCH 3, FALCON, SWOG and FACT Trials. Cancers (Basel) 2019 11 11 1661 10.3390/cancers11111661 31717791
    [Google Scholar]
  28. Huang X.H. Liang R.H. Su L. Guo W. Wang C.J. Mechanism of Bushen Jianpi decoction in preventing and treating osteoporosis caused by aromatase inhibitors in breast cancer treatment. Cancer Biomark. 2017 18 2 183 190 10.3233/CBM‑160281 27983533
    [Google Scholar]
  29. Yu H. Yao S. Zhou C. Fu F. Luo H. Du W. Jin H. Tong P. Chen D. Wu C. Ruan H. Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-κB signaling. J. Ethnopharmacol. 2021 266 113447 10.1016/j.jep.2020.113447 33022338
    [Google Scholar]
  30. García-Cortés D. Hernández-Lemus E. Espinal-Enríquez J. Luminal A. Breast Cancer Co-expression Network: Structural and Functional Alterations. Front. Genet. 2021 12 629475 10.3389/fgene.2021.629475 33959148
    [Google Scholar]
  31. Li Z. Qu B. Wu X. Chen H. Wang J. Zhou L. Wu X. Zhang W. Methodology improvement for network pharmacology to correct the deviation of deduced medicinal constituents and mechanism: Xian-Ling-Gu-Bao as an example. J. Ethnopharmacol. 2022 289 115058 10.1016/j.jep.2022.115058 35114343
    [Google Scholar]
  32. Liu M. Zhang B. Li Z. Wang Z. Li S. Liu H. Deng Y. He N. Precise discrimination of Luminal A breast cancer subtype using an aptamer in vitro and in vivo. Nanoscale 2020 12 38 19689 19701 10.1039/D0NR03324C 32966497
    [Google Scholar]
  33. Zeng X. Zhang P. Wang Y. Qin C. Chen S. He W. Tao L. Tan Y. Gao D. Wang B. Chen Z. Chen W. Jiang Y.Y. Chen Y.Z. CMAUP: A database of collective molecular activities of useful plants. Nucleic Acids Res. 2019 47 D1 D1118 D1127 10.1093/nar/gky965 30357356
    [Google Scholar]
  34. Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput. Struct. Biotechnol. J. 2021 19 4101 4109 10.1016/j.csbj.2021.07.014 34527184
    [Google Scholar]
  35. Wang Y. Han D. Zhou T. Chen C. Cao H. Zhang J.Z. Ma N. Liu C. Song M. Shi J. Jin X. Cao F. Dong N. DUSP26 induces aortic valve calcification by antagonizing MDM2-mediated ubiquitination of DPP4 in human valvular interstitial cells. Eur. Heart J. 2021 42 30 2935 2951 10.1093/eurheartj/ehab316 34179958
    [Google Scholar]
  36. Wang X. Wu H. Zhao L. Liu Z. Qi M. Jin Y. Liu W. FLCN regulates transferrin receptor 1 transport and iron homeostasis. J. Biol. Chem. 2021 296 100426 10.1016/j.jbc.2021.100426 33609526
    [Google Scholar]
  37. Barrak N.H. Khajah M.A. Luqmani Y.A. Hypoxic environment may enhance migration/penetration of endocrine resistant MCF7- derived breast cancer cells through monolayers of other non-invasive cancer cells in vitro. Sci. Rep. 2020 10 1 1127 10.1038/s41598‑020‑58055‑x 31980706
    [Google Scholar]
  38. Duan L. Tao J. Yang X. Ye L. Wu Y. He Q. Duan Y. Chen L. Zhu J. HVEM/HIF-1α promoted proliferation and inhibited apoptosis of ovarian cancer cells under hypoxic microenvironment conditions. J. Ovarian Res. 2020 13 1 40 10.1186/s13048‑020‑00646‑3 32312328
    [Google Scholar]
  39. Vakili Saatloo M. Aghbali A.A. Koohsoltani M. Yari Khosroushahi A. Akt1 and Jak1 siRNA based silencing effects on the proliferation and apoptosis in head and neck squamous cell carcinoma. Gene 2019 714 143997 10.1016/j.gene.2019.143997 31348981
    [Google Scholar]
  40. Xu F. Li Q. Wang Z. Cao X. Sinomenine inhibits proliferation, migration, invasion and promotes apoptosis of prostate cancer cells by regulation of miR-23a. Biomed. Pharmacother. 2019 119 108592 10.1016/j.biopha.2019.01.053
    [Google Scholar]
  41. Wang K. Zhu G. Bao S. Chen S. Long Non-Coding RNA LINC00511 Mediates the Effects of ESR1 on Proliferation and Invasion of Ovarian Cancer Through miR-424-5p and miR-370-5p. Cancer Manag. Res. 2019 11 10807 10819 10.2147/CMAR.S232140 31920390
    [Google Scholar]
  42. Abdalla M.O.A. Yamamoto T. Maehara K. Nogami J. Ohkawa Y. Miura H. Poonperm R. Hiratani I. Nakayama H. Nakao M. Saitoh N. The Eleanor ncRNAs activate the topological domain of the ESR1 locus to balance against apoptosis. Nat. Commun. 2019 10 1 3778 10.1038/s41467‑019‑11378‑4 31439835
    [Google Scholar]
  43. Zhao Y.L. Yuan B.Q. Shen G.S. Mechanism of RET gene mediated EGFR signaling pathway on epithelial-mesenchymal transition, proliferation and apoptosis of papillary thyroid carcinoma cells. Eur. Rev. Med. Pharmacol. Sci. 2020 24 15 8036 8047 10.26355/eurrev_202008_22487 32767330
    [Google Scholar]
  44. Cui J. Tian J. Wang W. He T. Li X. Gu C. Wang L. Wu J. Shang A. IGF2BP2 promotes the progression of colorectal cancer through a YAP‐dependent mechanism. Cancer Sci. 2021 112 10 4087 4099 10.1111/cas.15083 34309973
    [Google Scholar]
  45. Pan X. Tan J. Weng X. Du R. Jiang Y. Weng Y. Zhou D. Shen Y. ICT1 Promotes Osteosarcoma Cell Proliferation and Inhibits Apoptosis via STAT3/BCL-2 Pathway. BioMed Res. Int. 2021 2021 1 10 10.1155/2021/8971728 33585660
    [Google Scholar]
  46. Guo F. Zhu X. Zhao Q. Huang Q. miR 589 3p sponged by the lncRNA TINCR inhibits the proliferation, migration and invasion and promotes the apoptosis of breast cancer cells by suppressing the Akt pathway via IGF1R. Int. J. Mol. Med. 2020 46 3 989 1002 10.3892/ijmm.2020.4666 32705168
    [Google Scholar]
  47. Yang J. Zhao S. Tian F. SP1‐mediated lncRNA PVT1 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract via miR‐214‐3p/MMP2 axis. J. Cell. Mol. Med. 2020 24 1 554 561 10.1111/jcmm.14762 31755246
    [Google Scholar]
  48. Zhang Y. Yan N. Wang X. Chang Y. Wang Y. MiR-129-5p regulates cell proliferation and apoptosis via IGF-1R/Src/ERK/Egr-1 pathway in RA-fibroblast-like synoviocytes. Biosci. Rep. 2019 39 12 BSR20192009 10.1042/BSR20192009 31661546
    [Google Scholar]
  49. Zhang L. Ma T. Tao Q. Tan W. Chen H. Liu W. Lin P. Zhou D. Wang A. Jin Y. Tang K. Bta-miR-34b inhibits proliferation and promotes apoptosis via the MEK/ERK pathway by targeting MAP2K1 in bovine primary Sertoli cells. J. Anim. Sci. 2020 98 10 skaa313 10.1093/jas/skaa313 32954430
    [Google Scholar]
  50. Escobar E. Peñafiel C. Gómez-Valenzuela F. Chimenos-Küstner E. Pérez-Tomás R. Cyclooxygenase-2 protein expression modulates cell proliferation and apoptosis in solid ameloblastoma and odontogenic keratocyst. J. Oral Pathol. Med. 2021 50 9 13237 10.1111/jop.13237
    [Google Scholar]
  51. Wu D. Zhou J. Tan M. Zhou Y. LINC01116 regulates proliferation, migration, and apoptosis of keloid fibroblasts by the TGF-β1/SMAD3 signaling via targeting miR-3141. Anal. Biochem. 2021 627 114249 10.1016/j.ab.2021.114249 34048784
    [Google Scholar]
  52. Ba M.C. Ba Z. Gong Y.F. Lin K.P. Wu Y.B. Tu Y.N. Knockdown of lncRNA ZNRD1-AS1 suppresses gastric cancer cell proliferation and metastasis by targeting the miR-9-5p/HSP90AA1 axis. Aging (Albany NY) 2021 13 13 17285 17301 10.18632/aging.203209 34226297
    [Google Scholar]
  53. Xiao X. Wang W. Li Y. Yang D. Li X. Shen C. Liu Y. Ke X. Guo S. Guo Z. HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma. J. Exp. Clin. Cancer Res. 2018 37 1 201 10.1186/s13046‑018‑0880‑6 30153855
    [Google Scholar]
  54. Ding H.M. Zhang H. Wang J. Zhou J.H. Shen F.R. Ji R.N. Shi J.Y. Chen Y.G. miR 302c 3p and miR 520a 3p suppress the proliferation of cervical carcinoma cells by targeting CXCL8. Mol. Med. Rep. 2021 23 5 322 10.3892/mmr.2021.11961 33760117
    [Google Scholar]
  55. Martínez-Hernández J. Seco-Rovira V. Beltrán-Frutos E. Ferrer C. Serrano-Sánchez M.I. Pastor L.M. Proliferation, apoptosis, and number of Sertoli cells in the Syrian hamster during recrudescence after exposure to short photoperiod†‡. Biol. Reprod. 2020 102 3 588 597 10.1093/biolre/ioz198 31621831
    [Google Scholar]
  56. Chen L. Zhang J. Zou Y. Wang F. Li J. Sun F. Luo X. Zhang M. Guo Y. Yu Q. Yang P. Zhou Q. Chen Z. Zhang H. Gong Q. Zhao J. Eizirik D.L. Zhou Z. Xiong F. Zhang S. Wang C.Y. Kdm2a deficiency in macrophages enhances thermogenesis to protect mice against HFD-induced obesity by enhancing H3K36me2 at the Pparg locus. Cell Death Differ. 2021 28 6 1880 1899 10.1038/s41418‑020‑00714‑7 33462408
    [Google Scholar]
  57. Hill K.S. Roberts E.R. Wang X. Marin E. Park T.D. Son S. Ren Y. Fang B. Yoder S. Kim S. Wan L. Sarnaik A.A. Koomen J.M. Messina J.L. Teer J.K. Kim Y. Wu J. Chalfant C.E. Kim M. PTPN11 Plays Oncogenic Roles and Is a Therapeutic Target for BRAF Wild-Type Melanomas. Mol. Cancer Res. 2019 17 2 583 593 10.1158/1541‑7786.MCR‑18‑0777 30355677
    [Google Scholar]
  58. Mihály Z. Győrffy B. Improving Pathological Assessment of Breast Cancer by Employing Array-Based Transcriptome Analysis. Microarrays (Basel) 2013 2 3 228 242 10.3390/microarrays2030228 27605190
    [Google Scholar]
  59. Zhang J. Xu J. Dong Y. Huang B. Down-regulation of HIF-1α inhibits the proliferation, migration, and invasion of gastric cancer by inhibiting PI3K/AKT pathway and VEGF expression. Biosci. Rep. 2018 38 6 BSR20180741 10.1042/BSR20180741 29899167
    [Google Scholar]
  60. Generali D. Berruti A. Brizzi M.P. Campo L. Bonardi S. Wigfield S. Bersiga A. Allevi G. Milani M. Aguggini S. Gandolfi V. Dogliotti L. Bottini A. Harris A.L. Fox S.B. Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin. Cancer Res. 2006 12 15 4562 4568 10.1158/1078‑0432.CCR‑05‑2690 16899602
    [Google Scholar]
  61. Qian J. Bai H. Gao Z. Dong Y. Pei J. Ma M. Han B. Downregulation of HIF-1α inhibits the proliferation and invasion of non-small cell lung cancer NCI-H157 cells. Oncol. Lett. 2016 11 3 1738 1744 10.3892/ol.2016.4150 26998070
    [Google Scholar]
  62. Xu D. Dai W. Li C. Polo-like kinase 3, hypoxic responses, and tumorigenesis. Cell Cycle 2017 16 21 2032 2036 10.1080/15384101.2017.1373224 28857653
    [Google Scholar]
  63. Li Z.Q. Wang Z. Zhang Y. Lu C. Ding Q.L. Ren R. Cheng B.B. Lou L.X. CircRNA_103801 accelerates proliferation of osteosarcoma cells by sponging miR-338-3p and regulating HIF-1/Rap1/PI3K-Akt pathway. J. Biol. Regul. Homeost. Agents 2021 35 3 1021 1028 10.23812/20‑725‑A 34157832
    [Google Scholar]
  64. Yang L. Xie P. Wu J. Yu J. Li X. Ma H. Yu T. Wang H. Ye J. Wang J. Zheng H. Deferoxamine Treatment Combined With Sevoflurane Postconditioning Attenuates Myocardial Ischemia-Reperfusion Injury by Restoring HIF-1/BNIP3-Mediated Mitochondrial Autophagy in GK Rats. Front. Pharmacol. 2020 11 6 10.3389/fphar.2020.00006 32140105
    [Google Scholar]
  65. Hou Z. Nie C. Si Z. Ma Y. Deferoxamine enhances neovascularization and accelerates wound healing in diabetic rats via the accumulation of hypoxia-inducible factor-1α. Diabetes Res. Clin. Pract. 2013 101 1 62 71 10.1016/j.diabres.2013.04.012 23726275
    [Google Scholar]
  66. Duscher D. Neofytou E. Wong V.W. Maan Z.N. Rennert R.C. Inayathullah M. Januszyk M. Rodrigues M. Malkovskiy A.V. Whitmore A.J. Walmsley G.G. Galvez M.G. Whittam A.J. Brownlee M. Rajadas J. Gurtner G.C. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc. Natl. Acad. Sci. USA 2015 112 1 94 99 10.1073/pnas.1413445112 25535360
    [Google Scholar]
  67. Gradishar W.J. Moran M.S. Abraham J. Aft R. Agnese D. Allison K.H. Blair S.L. Burstein H.J. Dang C. Elias A.D. Giordano S.H. Goetz M.P. Goldstein L.J. Hurvitz S.A. Isakoff S.J. Jankowitz R.C. Javid S.H. Krishnamurthy J. Leitch M. Lyons J. Matro J. Mayer I.A. Mortimer J. O’Regan R.M. Patel S.A. Pierce L.J. Rugo H.S. Sitapati A. Smith K.L. Smith M.L. Soliman H. Stringer-Reasor E.M. Telli M.L. Ward J.H. Wisinski K.B. Young J.S. Burns J.L. Kumar R. NCCN Guidelines® Insights: Breast Cancer, Version 4.2021. J. Natl. Compr. Canc. Netw. 2021 19 5 484 493 10.6004/jnccn.2021.0023 34794122
    [Google Scholar]
  68. Luo T. Lu Y. Yan S. Xiao X. Rong X. Guo J. Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chin. J. Integr. Med. 2020 26 1 72 80 10.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  69. Li H. Chen M. Yang Z. Xu C. Yu Q. Song J. Wang M. Gao X. Amorphophalli Rhizoma inhibits breast cancer growth, proliferation, migration, and invasion via the PI3K/AKT pathway. J. Ethnopharmacol. 2022 286 114926 10.1016/j.jep.2021.114926 34929308
    [Google Scholar]
  70. Zhan Y. Wen Y. Zheng F. Du L. Chen T. Shen X. Wu R. Tang X. MiR-26b-3p Promotes Intestinal Motility Disorder by Targeting FZD10 to Inhibit GSK3β/β-Catenin Signaling and Induce Enteric Glial Cell Apoptosis. Mol. Neurobiol. 2023 Online ahead of print 10.1007/s12035‑023‑03600‑8 37728849
    [Google Scholar]
  71. Zhang J. Gao R.F. Li J. Yu K.D. Bi K.X. 2022, Alloimperatorin activates apoptosis, ferroptosis and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro. Biochem. Cell Biol. 2022 100 3 213 222 10.1139/bcb‑2021‑0399
    [Google Scholar]
  72. Hu G. Pen W. Wang M. TRIM14 Promotes Breast Cancer Cell Proliferation by Inhibiting Apoptosis. Oncol. Res. 2019 27 4 439 447 10.3727/096504018X15214994641786 29562956
    [Google Scholar]
  73. Liu F. Li X. Yan H. Wu J. Yang Y. He J. Chen J. Jiang Z. Wu F. Jiang Z. Downregulation of CPT2 promotes proliferation and inhibits apoptosis through p53 pathway in colorectal cancer. Cell. Signal. 2022 92 110267 10.1016/j.cellsig.2022.110267 35108639
    [Google Scholar]
  74. Zeng A. Liang X. Zhu S. Liu C. Wang S. Zhang Q. Zhao J. Song L. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF κB signaling pathway. Oncol. Rep. 2020 45 2 717 727 10.3892/or.2020.7891 33416150
    [Google Scholar]
  75. Du J. Li J. Song D. Li Q. Li L. Li B. Li L. Matrine exerts anti breast cancer activity by mediating apoptosis and protective autophagy via the AKT/mTOR pathway in MCF 7 cells. Mol. Med. Rep. 2020 22 5 3659 3666 10.3892/mmr.2020.11449 33000249
    [Google Scholar]
  76. Zheng F. Chen J. Zhang X. Wang Z. Chen J. Lin X. Huang H. Fu W. Liang J. Wu W. Li B. Yao H. Hu H. Song E. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat. Commun. 2021 12 1 1341 10.1038/s41467‑021‑21535‑3 33637716
    [Google Scholar]
  77. Liang Y. Song X. Li Y. Chen B. Zhao W. Wang L. Zhang H. Liu Y. Han D. Zhang N. Ma T. Wang Y. Ye F. Luo D. Li X. Yang Q. RETRACTED ARTICLE: LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol. Cancer 2020 19 1 85 10.1186/s12943‑020‑01206‑5 32384893
    [Google Scholar]
  78. Budi H.S. Izadi S. Timoshin A. Asl S.H. Beyzai B. Ghaderpour A. Alian F. Eshaghi F.S. Mousavi S.M. Rafiee B. Nikkhoo A. Ahmadi A. Hassannia H. Ahmadi M. Sojoodi M. Jadidi-Niaragh F. Blockade of HIF-1α and STAT3 by hyaluronate-conjugated TAT-chitosan-SPION nanoparticles loaded with siRNA molecules prevents tumor growth. Nanomedicine 2021 34 102373 10.1016/j.nano.2021.102373 33667724
    [Google Scholar]
  79. Zhang T. Guo S. Zhu X. Qiu J. Deng G. Qiu C. Alpinetin inhibits breast cancer growth by ROS/NF‐κB/HIF‐1α axis. J. Cell. Mol. Med. 2020 24 15 8430 8440 10.1111/jcmm.15371 32562470
    [Google Scholar]
  80. Zhang X. Liu Z. Chen S. Li H. Dong L. Fu X. A new discovery: Total Bupleurum saponin extracts can inhibit the proliferation and induce apoptosis of colon cancer cells by regulating the PI3K/Akt/mTOR pathway. J. Ethnopharmacol. 2022 283 114742 10.1016/j.jep.2021.114742 34655668
    [Google Scholar]
  81. Miricescu D. Totan A. Stanescu-Spinu I.I. Badoiu S.C. Stefani C. Greabu M. PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. Int. J. Mol. Sci. 2020 22 1 173 10.3390/ijms22010173 33375317
    [Google Scholar]
  82. Nunnery S.E. Mayer I.A. Targeting the PI3K/AKT/mTOR Pathway in Hormone-Positive Breast Cancer. Drugs 2020 80 16 1685 1697 10.1007/s40265‑020‑01394‑w 32894420
    [Google Scholar]
  83. Ponnusamy L. Natarajan S.R. Manoharan R. MARK2 potentiate aerobic glycolysis‐mediated cell growth in breast cancer through regulating mTOR/HIF‐1α and p53 pathways. J. Cell. Biochem. 2022 123 4 759 771 10.1002/jcb.30219 35048405
    [Google Scholar]
  84. Duan F. Mei C. Yang L. Zheng J. Lu H. Xia Y. Hsu S. Liang H. Hong L. Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells. Sci. Rep. 2020 10 1 7714 10.1038/s41598‑020‑64880‑x 32382009
    [Google Scholar]
  85. Wang D. Zhao W. Liu J. Wang Y. Yuan C. Zhang F. Jin G. Qin Q. Effects of HIF-1α on spermatogenesis of varicocele rats by regulating VEGF/PI3K/Akt signaling pathway. Reprod. Sci. 2021 28 4 1161 1174 10.1007/s43032‑020‑00395‑0 33237516
    [Google Scholar]
  86. Won Y.S. Seo K.I. Lupiwighteone induces caspase-dependent and -independent apoptosis on human breast cancer cells via inhibiting PI3K/Akt/mTOR pathway. Food Chem. Toxicol. 2020 135 110863 10.1016/j.fct.2019.110863
    [Google Scholar]
  87. Omar A.M.M.E. AboulWafa, O.M.; Amr, M.E.; El-Shoukrofy, M.S. Antiproliferative activity, enzymatic inhibition and apoptosis-promoting effects of benzoxazole-based hybrids on human breast cancer cells. Bioorg. Chem. 2021 109 104752 10.1016/j.bioorg.2021.104752 33657444
    [Google Scholar]
  88. Yiming L. Yanfei H. Hang Y. Yimei C. Guangliang S. Shu L. Cadmium induces apoptosis of pig lymph nodes by regulating the PI3K/AKT/HIF-1α pathway. Toxicology 2021 451 152694 10.1016/j.tox.2021.152694 33493553
    [Google Scholar]
  89. Zhu Q. Wang H. Jiang B. Ni X. Jiang L. Li C. Wang X. Zhang F. Ke B. Lu L. Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/HIF-1α signaling pathway in liver inflammatory injury. Cell Death Dis. 2018 9 9 910 10.1038/s41419‑018‑0894‑1 30185770
    [Google Scholar]
/content/journals/cad/10.2174/0115734099269728231115060827
Loading
/content/journals/cad/10.2174/0115734099269728231115060827
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test