Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Neglected tropical diseases (NTDs) are parasitic and bacterial diseases that affect approximately 149 countries, mainly the poor population without basic sanitation. Among these, Human African Trypanosomiasis (HAT), known as sleeping sickness, shows alarming data, with treatment based on suramin and pentamidine in the initial phase and melarsoprol and eflornithine in the chronic phase. Thus, to discover new drugs, several studies point to rhodesain as a promising drug target due to the function of protein degradation and intracellular transport of proteins between the insect and host cells and is present in all cycle phases of the parasite.

Methods

Here, based on the previous studies by Nascimento (2021) [5], that show the main rhodesain inhibitors development in the last decade, molecular docking and dynamics were applied in these inhibitors datasets to reveal crucial information that can be into drug design.

Results

Also, our findings using MD simulations and MM-PBSA calculations confirmed Gly19, Gly23, Gly65, Asp161, and Trp184, showing high binding energy (G between -72.782 to -124.477 kJ.mol-1). In addition, Van der Waals interactions have a better contribution (-140,930 to -96,988 kJ.mol-1) than electrostatic forces (-43,270 to -6,854 kJ.mol-1), indicating Van der Waals interactions are the leading forces in forming and maintaining ligand-rhodesain complexes. Thus, conventional and covalent docking was employed and highlighted the presence of Michael acceptors in the ligands in a peptidomimetics scaffold, and interaction with Gly19, Gly23, Gly65, Asp161, and Trp184 is essential to the inhibiting activity. Furthermore, the Dynamic Cross-Correlation Maps (DCCM) show more correlated movements for all complexes than the free rhodesain and strong interactions in the regions of the aforementioned residues. Principal Component Analysis (PCA) demonstrates complex stability corroborating with RMSF and RMSD.

Conclusion

This study can provide valuable insights that can guide researchers worldwide to discover a new promising drug against HAT.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099274797231205055827
2024-01-19
2024-11-26
Loading full text...

Full text loading...

References

  1. OngY.C. RoyS. AndrewsP.C. GasserG. Metal compounds against neglected tropical diseases.Chem. Rev.2019119273079610.1021/acs.chemrev.8b0033830507157
    [Google Scholar]
  2. FeaseyN. Wansbrough-JonesM. MabeyD.C.W. SolomonA.W. Neglected tropical diseases.Br. Med. Bull.201093117920010.1093/bmb/ldp04620007668
    [Google Scholar]
  3. WHO World Health Organization. Neglected Trop Dis2020Available from: https://www.who.int/neglected_diseases/diseases/en/ (accessed June 22, 2020).
    [Google Scholar]
  4. SoutoD.E.P. VolpeJ. GonçalvesC.C. RamosC.H.I. KubotaL.T. A brief review on the strategy of developing SPR-based biosensors for application to the diagnosis of neglected tropical diseases.Talanta201920512012210.1016/j.talanta.2019.12012231450437
    [Google Scholar]
  5. dos Santos NascimentoI.J. de AquinoT.M. da Silva-JúniorE.F. Cruzain and rhodesain inhibitors: Last decade of advances in seeking for new compounds against american and african trypanosomiases.Curr. Top. Med. Chem.202121211871189910.2174/18734294MTE10MTEoz33797369
    [Google Scholar]
  6. WengH.B. ChenH.X. WangM.W. Innovation in neglected tropical disease drug discovery and development.Infect. Dis. Poverty2018716710.1186/s40249‑018‑0444‑129950174
    [Google Scholar]
  7. VermelhoA.B. RodriguesG.C. SupuranC.T. Why hasn’t there been more progress in new Chagas disease drug discovery?Expert Opin. Drug Discov.202015214515810.1080/17460441.2020.168139431670987
    [Google Scholar]
  8. AkinsoluF.T. NemiebokaP.O. NjugunaD.W. AhadjiM.N. DezsoD. VargaO. Emerging resistance of neglected tropical diseases: A scoping review of the literature.Int. J. Environ. Res. Public Health20191611192510.3390/ijerph1611192531151318
    [Google Scholar]
  9. FazalO. HotezP.J. NTDs in the age of urbanization, climate change, and conflict: Karachi, Pakistan as a case study.PLoS Negl. Trop. Dis.20201411e000879110.1371/journal.pntd.000879133180793
    [Google Scholar]
  10. SuroowanS. MahomoodallyF. RagooL. Management and treatment of dengue and chikungunya - natural products to the rescue.Comb. Chem. High Throughput Screen.201619755456410.2174/138620731966616050612340127151484
    [Google Scholar]
  11. NascimentoI.J.S. Santos-JúniorP.F.S. AquinoT.M. Araújo-JúniorJ.X. Silva-JúniorE.F. Insights on dengue and zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors.Eur. J. Med. Chem.202122411369810.1016/j.ejmech.2021.11369834274831
    [Google Scholar]
  12. GoupilL.S. McKerrowJ.H. Introduction: drug discovery and development for neglected diseases.Chem. Rev.201411422111311113710.1021/cr500546h26721412
    [Google Scholar]
  13. FerreiraL.L.G. de MoraesJ. AndricopuloA.D. Approaches to advance drug discovery for neglected tropical diseases.Drug Discov. Today20222782278228710.1016/j.drudis.2022.04.00435398562
    [Google Scholar]
  14. PollastriM.P. Fexinidazole: A new drug for african sleeping sickness on the horizon.Trends Parasitol.201834317817910.1016/j.pt.2017.12.00229275007
    [Google Scholar]
  15. MalvyD. ChappuisF. Sleeping sickness.Clin. Microbiol. Infect.201117798699510.1111/j.1469‑0691.2011.03536.x21722252
    [Google Scholar]
  16. Human African trypanosomiasis (sleeping sickness) n.d.Available from: https://www.who.int/health-topics/human-african-trypanosomiasis#tab=tab_1 (accessed October 27, 2020).
  17. KennedyP.G.E. Update on human African trypanosomiasis (sleeping sickness).J. Neurol.201926692334233710.1007/s00415‑019‑09425‑731209574
    [Google Scholar]
  18. WelburnS.C. MolyneuxD.H. MaudlinI. Beyond tsetse – implications for research and control of human african trypanosomiasis epidemics.Trends Parasitol.201632323024110.1016/j.pt.2015.11.00826826783
    [Google Scholar]
  19. KennedyP.G.E. RodgersJ. Clinical and neuropathogenetic aspects of human african trypanosomiasis.Front. Immunol.2019103910.3389/fimmu.2019.0003930740102
    [Google Scholar]
  20. MudjiJ. BlumA. GrizeL. WampflerR. RufM.T. CnopsL. NickelB. BurriC. BlumJ. Gambiense human african trypanosomiasis sequelae after treatment: A follow-up study 12 years after treatment.Trop. Med. Infect. Dis.2020511010.3390/tropicalmed501001031940846
    [Google Scholar]
  21. BüscherP. CecchiG. JamonneauV. PriottoG. Human african trypanosomiasis.Lancet2017390101102397240910.1016/S0140‑6736(17)31510‑628673422
    [Google Scholar]
  22. FairlambA.H. HornD. Melarsoprol resistance in african trypanosomiasis.Trends Parasitol.201834648149210.1016/j.pt.2018.04.00229705579
    [Google Scholar]
  23. P De KoningH. The drugs of sleeping sickness: Their mechanisms of action and resistance, and a brief history.Trop. Med. Infect. Dis.2020511410.3390/tropicalmed501001431963784
    [Google Scholar]
  24. Singh GrewalA. PanditaD. BhardwajS. LatherV. Recent updates on development of drug molecules for human african trypanosomiasis.Curr. Top. Med. Chem.201616202245226510.2174/156802661666616041312533527072715
    [Google Scholar]
  25. MasandV.H. El-SayedN.N.E. MahajanD.T. MercaderA.G. AlafeefyA.M. ShibiI.G. QSAR modeling for anti-human African trypanosomiasis activity of substituted 2-Phenylimidazopyridines.J. Mol. Struct.2017113071171810.1016/j.molstruc.2016.11.012
    [Google Scholar]
  26. ScarimC.B. JornadaD.H. MachadoM.G.M. FerreiraC.M.R. dos SantosJ.L. ChungM.C. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria.Eur. J. Med. Chem.201916237839510.1016/j.ejmech.2018.11.01330453246
    [Google Scholar]
  27. José dos Santos NascimentoI. Mendonça de AquinoT. Fernando da Silva Santos-JúniorP. Xavier de Araújo-JúniorJ. Ferreira da Silva-JúniorE. Molecular Modeling Applied to Design of Cysteine Protease Inhibitors – A Powerful Tool for the Identification of Hit Compounds Against Neglected Tropical Diseases. Front. Comput. Chem20206311010.2174/9789811457791120050004
    [Google Scholar]
  28. SilvaL.R. GuimarãesA.S. do NascimentoJ. do Santos NascimentoI.J. da SilvaE.B. McKerrowJ.H. CardosoS.H. da Silva-JúniorE.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases.Bioorg. Med. Chem.20214111621310.1016/j.bmc.2021.11621333992862
    [Google Scholar]
  29. McShanD. KathmanS. LoweB. XuZ. ZhanJ. StatsyukA. OgungbeI.V. Identification of non-peptidic cysteine reactive fragments as inhibitors of cysteine protease rhodesain.Bioorg. Med. Chem. Lett.201525204509451210.1016/j.bmcl.2015.08.07426342866
    [Google Scholar]
  30. EttariR. TamboriniL. AngeloI.C. MicaleN. PintoA. De MicheliC. ContiP. Inhibition of rhodesain as a novel therapeutic modality for human African trypanosomiasis.J. Med. Chem.201356145637565810.1021/jm301424d23611656
    [Google Scholar]
  31. EttariR. PintoA. PrevitiS. TamboriniL. AngeloI.C. La PietraV. MarinelliL. NovellinoE. SchirmeisterT. ZappalàM. GrassoS. De MicheliC. ContiP. Development of novel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation.Bioorg. Med. Chem.201523217053706010.1016/j.bmc.2015.09.02926432608
    [Google Scholar]
  32. MaioranaS. EttariR. PrevitiS. AmendolaG. WagnerA. CosconatiS. HellmichU.A. SchirmeisterT. ZappalàM. Peptidyl vinyl ketone irreversible inhibitors of rhodesain: Modifications of the P2 fragment.ChemMedChem202015161552156110.1002/cmdc.20200036032567172
    [Google Scholar]
  33. ArafetK. GonzálezF.V. MolinerV. Quantum mechanics/molecular mechanics studies of the mechanism of cysteine proteases inhibition by dipeptidyl nitroalkenes.Chemistry20202692002201210.1002/chem.20190451331692123
    [Google Scholar]
  34. SchirmeisterT. SchmitzJ. JungS. SchmengerT. Krauth-SiegelR.L. GütschowM. Evaluation of dipeptide nitriles as inhibitors of rhodesain, a major cysteine protease of Trypanosoma brucei.Bioorg. Med. Chem. Lett.2017271455010.1016/j.bmcl.2016.11.03627890381
    [Google Scholar]
  35. JohéP. JaenickeE. NeuweilerH. SchirmeisterT. KerstenC. HellmichU.A. Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes.J. Biol. Chem.202129610056510.1016/j.jbc.2021.10056533745969
    [Google Scholar]
  36. PrevitiS. EttariR. CalcaterraE. Di ChioC. RavichandranR. ZimmerC. HammerschmidtS. WagnerA. BogaczM. CosconatiS. SchirmeisterT. ZappalàM. Development of urea-bond-containing michael acceptors as antitrypanosomal agents targeting rhodesain.ACS Med. Chem. Lett.20221371083109010.1021/acsmedchemlett.2c0008435859868
    [Google Scholar]
  37. KathmanS.G. StatsyukA.V. Covalent tethering of fragments for covalent probe discovery.MedChemComm20167457658510.1039/C5MD00518C27398190
    [Google Scholar]
  38. NascimentoI.J.S. de AquinoT.M. da Silva-JúniorE.F. The new era of drug discovery: The power of computer-aided drug design (CADD).Lett. Drug Des. Discov.2022191195195510.2174/1570180819666220405225817
    [Google Scholar]
  39. dos Santos NascimentoI.J. da Silva Santos-JúniorP.F. de Araújo-JúniorJ.X. da Silva-JúniorE.F. Strategies in medicinal chemistry to discover new hit compounds against ebola virus: Challenges and perspectives in drug discovery.Mini Rev. Med. Chem.202222222896292410.2174/138955752266622040408585835379146
    [Google Scholar]
  40. dos Santos NascimentoI.J. de AquinoT.M. da Silva JúniorE.F. Computer-aided drug design of anti-inflammatory agents targeting microsomal prostaglandin E 2 synthase-1 (mPGES-1).Curr. Med. Chem.202229335397541910.2174/092986732966622031712294835301943
    [Google Scholar]
  41. da Silva-JúniorE.F. dos Santos NascimentoI.J. TNF-α inhibitors from natural compounds: An overview, CADD approaches, and their exploration for anti-inflammatory agents.Comb. Chem. High Throughput Screen.202225142317234010.2174/138620732466621071516594334269666
    [Google Scholar]
  42. NascimentoI.J dos S. de AquinoTM. Silva-JúniorEF da. Structure based drug discovery approaches applied to SARS-CoV-2 (COVID-19).Pharm. Target. CoronavirusesBENTHAM SCIENCE PUBLISHERS202216110.2174/9789815051308122010003
    [Google Scholar]
  43. BERNSTEINF.C. KOETZLETF. WILLIAMSGJB. MEYEREF. BRICEM.D. RODGERSJR. The protein data bank. A computer-based archival file for macromolecular structures.Eur J Biochem197780319324
    [Google Scholar]
  44. VerdonkM.L. ColeJ.C. HartshornM.J. MurrayC.W. TaylorR.D. Improved protein–ligand docking using GOLD.Proteins200352460962310.1002/prot.1046512910460
    [Google Scholar]
  45. LillM.A. DanielsonM.L. Computer-aided drug design platform using PyMOL.J. Comput. Aided Mol. Des.2011251131910.1007/s10822‑010‑9395‑821053052
    [Google Scholar]
  46. GiroudM. DietzelU. AnselmL. BannerD. KuglstatterA. BenzJ. BlancJ.B. GaufreteauD. LiuH. LinX. StichA. KuhnB. SchulerF. KaiserM. BrunR. SchirmeisterT. KiskerC. DiederichF. HaapW. Repurposing a library of human cathepsin L ligands: Identification of macrocyclic lactams as potent rhodesain and trypanosoma brucei inhibitors.J. Med. Chem.20186183350336910.1021/acs.jmedchem.7b0186929590750
    [Google Scholar]
  47. BerendsenH.J.C. van der SpoelD. van DrunenR. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  48. CsizmadiaP. MarvinSketch and MarvinView: Molecule Applets for the World Wide Web.Proc. 3rd Int. Electron. Conf. Synth. Org. Chem.Basel, Switzerland: MDPI 1999177510.3390/ecsoc‑3‑01775
    [Google Scholar]
  49. OdaA. OkayasuM. KamiyamaY. YoshidaT. TakahashiO. MatsuzakiH. Evaluation of docking accuracy and investigations of roles of parameters and each term in scoring functions for protein–ligand docking using arguslab software.Bull. Chem. Soc. Jpn.200780101920192510.1246/bcsj.80.1920
    [Google Scholar]
  50. WangQ. HeJ. WuD. WangJ. YanJ. LiH. Interaction of α-cyperone with human serum albumin: Determination of the binding site by using discovery studio and via spectroscopic methods.J. Lumin.2015164818510.1016/j.jlumin.2015.03.025
    [Google Scholar]
  51. ZoeteV. CuendetM.A. GrosdidierA. MichielinO. SwissParam: A fast force field generation tool for small organic molecules.J. Comput. Chem.201132112359236810.1002/jcc.2181621541964
    [Google Scholar]
  52. dos Santos NascimentoI.J. de AquinoT.M. da Silva-JúniorE.F. Molecular docking and dynamics simulation studies of a dataset of NLRP3 inflammasome inhibitors.Rec. Adv. Inflamm. Aller. Drug. Disc.2022152808610.2174/2772270816666220126103909
    [Google Scholar]
  53. Santos NascimentoI.J. AquinoT.M. Silva-JúniorE.F. Repurposing FDA-approved drugs targeting SARS-CoV2 3CL pro : A study by applying virtual screening, molecular dynamics, mm-pbsa calculations and covalent docking.Lett. Drug Des. Discov.202219763765310.2174/1570180819666220106110133
    [Google Scholar]
  54. José dos Santos NascimentoI. Mendonça de AquinoT. da Silva JúniorE.F. Olimpio de MouraR. Insights on microsomal prostaglandin E2 synthase 1 (mPGES-1) Inhibitors using molecular dynamics and mm/pbsa calculations.Lett. Drug Des. Discov.20232010.2174/1570180820666230228105833
    [Google Scholar]
  55. AlbinoS.L. da Silva MouraW.C. ReisM.M.L. SousaG.L.S. da SilvaP.R. de OliveiraM.G.C. BorgesT.K.S. AlbuquerqueL.F.F. de AlmeidaS.M.V. de LimaM.C.A. KuckelhausS.A.S. NascimentoI.J.S. JuniorF.J.B.M. da SilvaT.G. de MouraR.O. ACW-02 an acridine triazolidine derivative presents antileishmanial activity mediated by dna interaction and immunomodulation.Pharmaceuticals202316220410.3390/ph1602020437259353
    [Google Scholar]
  56. GrantB.J. RodriguesA.P.C. ElSawyK.M. McCammonJ.A. CavesL.S.D. Bio3d: An R package for the comparative analysis of protein structures.Bioinformatics200622212695269610.1093/bioinformatics/btl46116940322
    [Google Scholar]
  57. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  58. SarmaH. MattaparthiV.S.K. Structure-based virtual screening of high-affinity atp-competitive inhibitors against human lemur tyrosine kinase-3 (LMTK3) domain: A novel therapeutic target for breast cancer.Interdiscip. Sci.201911352754110.1007/s12539‑018‑0302‑730066129
    [Google Scholar]
  59. WangF. WuF.X. LiC.Z. JiaC.Y. SuS.W. HaoG.F. YangG.F. ACID: A free tool for drug repurposing using consensus inverse docking strategy.J. Cheminform.20191117310.1186/s13321‑019‑0394‑z33430982
    [Google Scholar]
  60. KumariR. KumarR. LynnA. Open Source Drug Discovery Consortium g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m24850022
    [Google Scholar]
  61. KerrI.D. WuP. Marion-TsukamakiR. MackeyZ.B. BrinenL.S. Crystal structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei.PLoS Negl. Trop. Dis.201046e70110.1371/journal.pntd.000070120544024
    [Google Scholar]
  62. MarquesD.N. SiqueiraA.S. GonçalvesE.C. BarrosN.L.F. de SouzaC.R.B. Homology modeling and molecular dynamics simulations of a cassava translationally controlled tumor protein (MeTCTP).Plant Gene20191910018510.1016/j.plgene.2019.100185
    [Google Scholar]
  63. WuT. QinQ. LvR. LiuN. YinW. HaoC. SunY. ZhangC. SunY. ZhaoD. ChengM. Discovery of quinazoline derivatives CZw-124 as a pan-TRK inhibitor with potent anticancer effects in vitro and in vivo.Eur. J. Med. Chem.202223811445110.1016/j.ejmech.2022.11445135617855
    [Google Scholar]
  64. EvrenA.E. NuhaD. DawbaaS. SağlıkB.N. YurttaşL. Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors.Eur. J. Med. Chem.202222911409710.1016/j.ejmech.2021.11409734998057
    [Google Scholar]
  65. EmamiL. KhabnadidehS. FaghihZ. SolhjooA. MalekS. MohammadianA. DivarM. FaghihZ. Novel N ‐substituted isatin‐ampyrone Schiff bases as a new class of antiproliferative agents: Design, synthesis, molecular modeling and in vitro cytotoxic activity.J. Heterocycl. Chem.20225971144115910.1002/jhet.4454
    [Google Scholar]
  66. NunesJ.A. SilvaF.N. SilvaE.B. CostaC.A.C.B. FreitasJ.D. Mendonça-JuniorF.J.B. GiardiniM.A. Siqueira-NetoJ.L. McKerrowJ.H. Rodrigues TeixeiraT. OdeeshoL.W. CaffreyC.R. CardosoS.H. Silva-JúniorE.F. Coumarin-based derivatives targeting Trypanosoma cruzi cruzain and Trypanosoma brucei cathepsin L-like proteases.New J. Chem.20234721101271014610.1039/D2NJ04946E
    [Google Scholar]
  67. BhattacharyaU. PandaS.K. GuptaP.S.S. RanaM.K. Inhibitors of Heptosyltransferase I to prevent heptose transfer against antibiotic resistance of E. coli: Energetics and stability analysis by DFT and molecular dynamics.J. Mol. Struct.2022125313225810.1016/j.molstruc.2021.132258
    [Google Scholar]
  68. BoyenleI.D. AdelusiT.I. OgunlanaA.T. OluwabusolaR.A. IbrahimN.O. TolulopeA. OkikiolaO.S. AdetunjiB.L. AbioyeI.O. Kehinde OyedeleA-Q. Consensus scoring-based virtual screening and molecular dynamics simulation of some TNF-alpha inhibitors.Inform. Med. Unlocked20222810083310.1016/j.imu.2021.100833
    [Google Scholar]
  69. DogancF. CelikI. ErenG. KaiserM. BrunR. GokerH. Synthesis, in vitro antiprotozoal activity, molecular docking and molecular dynamics studies of some new monocationic guanidinobenzimidazoles.Eur. J. Med. Chem.202122111354510.1016/j.ejmech.2021.11354534091216
    [Google Scholar]
  70. Di ChioC. PrevitiS. AmendolaG. RavichandranR. WagnerA. CosconatiS. HellmichU.A. SchirmeisterT. ZappalàM. EttariR. Development of novel dipeptide nitriles as inhibitors of rhodesain of Trypanosoma brucei rhodesiense.Eur. J. Med. Chem.202223611432810.1016/j.ejmech.2022.11432835385806
    [Google Scholar]
  71. MaY. ZhangS. ZhouL. ZhangL. ZhangP. MaS. Exploration of the inhibitory mechanism of PC190723 on FtsZ protein by molecular dynamics simulation.J. Mol. Graph. Model.202211410818910.1016/j.jmgm.2022.10818935453046
    [Google Scholar]
  72. KumariP. PoddarR. A comparative multivariate analysis of nitrilase enzymes: An ensemble based computational approach.Comput. Biol. Chem.20198310709510.1016/j.compbiolchem.2019.10709531442709
    [Google Scholar]
  73. dos Santos NascimentoI.J. De SouzaM. MedeirosD.C. de MouraR.O. Dynamic cross-correlation matrix (dccm) reveals new insights to discover new nlrp3 inhibitors useful as anti-inflammatory drugs.ECMC 2022Basel, SwitzerlandMDPI20228410.3390/ECMC2022‑13306
    [Google Scholar]
  74. AvtiP. ChauhanA. ShekharN. PrajapatM. SarmaP. KaurH. BhattacharyyaA. KumarS. PrakashA. SharmaS. MedhiB. Computational basis of SARS-CoV 2 main protease inhibition: an insight from molecular dynamics simulation based findings.J. Biomol. Struct. Dyn.202240198894890410.1080/07391102.2021.192231033998950
    [Google Scholar]
  75. ChaudhariA. ChaudhariM. MaheraS. SaiyedZ. NathaniN.M. ShuklaS. PatelD. PatelC. JoshiM. JoshiC.G. In-Silico analysis reveals lower transcription efficiency of C241T variant of SARS-CoV-2 with host replication factors MADP1 and hnRNP-1.Informatics in Medicine Unlocked20212510067010.1016/j.imu.2021.10067034307830
    [Google Scholar]
  76. EttariR. PrevitiS. TamboriniL. CulliaG. GrassoS. ZappalàM. The inhibition of cysteine proteases rhodesain and tbcatb: A valuable approach to treat human african trypanosomiasis.Mini Rev. Med. Chem.201616171374139110.2174/138955751566616050912524327156518
    [Google Scholar]
  77. EhmkeV. WinklerE. BannerD.W. HaapW. SchweizerW.B. RottmannM. KaiserM. FreymondC. SchirmeisterT. DiederichF. Optimization of triazine nitriles as rhodesain inhibitors: Structure-activity relationships, bioisosteric imidazopyridine nitriles, and X-ray crystal structure analysis with human cathepsin L.ChemMedChem20138696797510.1002/cmdc.20130011223658062
    [Google Scholar]
  78. KleinP. JoheP. WagnerA. JungS. KühlbornJ. BarthelsF. TenzerS. DistlerU. WaigelW. EngelsB. HellmichU.A. OpatzT. SchirmeisterT. New cysteine protease inhibitors: electrophilic (het)arenes and unexpected prodrug identification for the trypanosoma protease rhodesain.Molecules2020256145110.3390/molecules2506145132210166
    [Google Scholar]
  79. RoyoS. RodríguezS. SchirmeisterT. KesselringJ. KaiserM. GonzálezF.V. Dipeptidyl enoates as potent rhodesain inhibitors that display a dual mode of action.ChemMedChem20151091484148710.1002/cmdc.20150020426179752
    [Google Scholar]
  80. MottB.T. FerreiraR.S. SimeonovA. JadhavA. AngK.K.H. LeisterW. ShenM. SilveiraJ.T. DoyleP.S. ArkinM.R. McKerrowJ.H. IngleseJ. AustinC.P. ThomasC.J. ShoichetB.K. MaloneyD.J. Identification and optimization of inhibitors of Trypanosomal cysteine proteases: Cruzain, rhodesain, and TbCatB.J. Med. Chem.2010531526010.1021/jm901069a19908842
    [Google Scholar]
  81. da Silva-JuniorE.F. Barcellos FrancaP.H. RibeiroF.F. Bezerra Mendonca-JuniorF.J. ScottiL. ScottiM.T. de AquinoT.M. de Araujo-JuniorJ.X. Molecular docking studies applied to a dataset of cruzain inhibitors.Curr. Computeraided Drug Des.2018141687810.2174/157340991366617051911275828523999
    [Google Scholar]
  82. CostaL. AquinoT. NascimentoI. Virtual screening based on covalent docking and MM-PBSA calculations predict the drugs neratinib, sacubitril, alprostadil, trandolapril, and florbetapir as promising cruzain inhibitors useful against Chagas disease.Proc. MOL2NET’21, Conf. Mol. Biomed. Comput. Sci. Eng.7th edBasel, SwitzerlandMDPI20211164710.3390/mol2net‑07‑11647
    [Google Scholar]
  83. EurtivongC. ZimmerC. SchirmeisterT. ButkinareeC. SaruengkhanphasitR. NiwetmarinW. RuchirawatS. BhambraA.S. A structure-based virtual high-throughput screening, molecular docking, molecular dynamics and MM/PBSA study identified novel putative drug-like dual inhibitors of trypanosomal cruzain and rhodesain cysteine proteases.Mol. Divers.202310.1007/s11030‑023‑10600‑236617352
    [Google Scholar]
  84. SantosL.H. WaldnerB.J. FuchsJ.E. PereiraG.A.N. LiedlK.R. CaffarenaE.R. FerreiraR.S. Understanding structure–activity relationships for trypanosomal cysteine protease inhibitors by simulations and free energy calculations.J. Chem. Inf. Model.201959113714810.1021/acs.jcim.8b0055730532974
    [Google Scholar]
/content/journals/cad/10.2174/0115734099274797231205055827
Loading
/content/journals/cad/10.2174/0115734099274797231205055827
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test