Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Receptor tyrosine kinases (RTKs) are potent oncoproteins in cancer that, when mutated or overexpressed, can cause uncontrolled growth of cells, angiogenesis, and metastasis, making them significant targets for cancer treatment. Vascular endothelial growth factor receptor 2 (VEGFR2), is a tyrosine kinase receptor that is produced in endothelial cells and is the most crucial regulator of angiogenic factors involved in tumor angiogenesis. So, a series of new substituted N-(4-((2-aminopyrimidin-5-yl)oxy)phenyl)-N-phenyl cyclopropane-1,1-dicarboxamide derivatives as VEGFR-2 inhibitors have been designed and synthesized.

Methods

Utilizing H-NMR, C13-NMR, and mass spectroscopy, the proposed derivatives were produced and assessed. HT-29 and COLO-205 cell lines were used for the cytotoxicity tests. The effective compound was investigated further for the Vegfr-2 kinase inhibition assay, cell cycle arrest, and apoptosis. A molecular docking examination was also carried out with the Maestro-12.5v of Schrodinger.

Results

In comparison to the reference drug Cabozantinib (IC = 9.10 and 10.66 μM), compound SP2 revealed promising cytotoxic activity (IC = 4.07 and 4.98 μM) against HT-29 and COLO-205, respectively. The synthesized compound SP2 showed VEGFR-2 kinase inhibition activity with (IC = 6.82 μM) against the reference drug, Cabozantinib (IC = 0.045 μM). Moreover, compound SP2 strongly induced apoptosis by arresting the cell cycle in the G1 phase. The new compounds' potent VEGFR-2 inhibitory effect was noted with key amino acids Asp1044, and Glu883, and the hydrophobic interaction was also observed in the pocket of the VEGFR-2 active site by using a docking study.

Conclusion

The results demonstrate that at the cellular and enzyme levels, the synthetic compounds SP2 are similarly effective as cabozantinib. The cell cycle and apoptosis data demonstrate the effectiveness of the suggested compounds. Based on the findings of docking studies, cytotoxic effects, VEGFR-2 inhibition, apoptosis, and cell cycle arrest, this research has given us identical or more effective VEGFR-2 inhibitors.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099269413231018065351
2024-01-05
2025-01-18
Loading full text...

Full text loading...

References

  1. MarzoukA.A. Abdel-AzizS.A. AbdelrahmanK.S. WanasA.S. GoudaA.M. YoussifB.G.M. Abdel-AzizM. Design and synthesis of new 1,6-dihydropyridine-2-thio derivatives targeting VEGFR-2: Molecular docking and antiproliferative evaluation.Bioorg. Chem.202010210409010.1016/j.bioorg.2020.104090
    [Google Scholar]
  2. BiemarF. FotiM. Global progress against cancer-challenges and opportunities.Cancer Biol. Med.201310418318610.7497/j.issn.2095‑3941.2013.04.00124349827
    [Google Scholar]
  3. WardR.A. FawellS. Floc’hN. FlemingtonV. McKerrecherD. SmithP.D. Challenges and opportunities in cancer drug resistance.Chem. Rev.202112163297335110.1021/acs.chemrev.0c0038332692162
    [Google Scholar]
  4. AroraA. ScholarE.M. Role of tyrosine kinase inhibitors in cancer therapy.J. Pharmacol. Exp. Ther.2005315397197910.1124/jpet.105.08414516002463
    [Google Scholar]
  5. AwazuY. NakamuraK. MizutaniA. KakoiY. IwataH. YamasakiS. MiyamotoN. ImamuraS. MikiH. HoriA. A novel inhibitor of c-Met and VEGF receptor tyrosine kinases with a broad spectrum of in vivo antitumor activities.Mol. Cancer Ther.201312691392410.1158/1535‑7163.MCT‑12‑101123548264
    [Google Scholar]
  6. RobinsonD.R. WuY.M. LinS.F. The protein tyrosine kinase family of the human genome.Oncogene200019495548555710.1038/sj.onc.120395711114734
    [Google Scholar]
  7. PotenteM. GerhardtH. CarmelietP. Basic and therapeutic aspects of angiogenesis.Cell2011146687388710.1016/j.cell.2011.08.03921925313
    [Google Scholar]
  8. OtrockZ.K. MakaremJ.A. ShamseddineA.I. Vascular endothelial growth factor family of ligands and receptors: Review.Blood Cells Mol. Dis.200738325826810.1016/j.bcmd.2006.12.00317344076
    [Google Scholar]
  9. GarofaloA. FarceA. RavezS. LemoineA. SixP. ChavatteP. GoossensL. DepreuxP. Synthesis and structure-activity relationships of (aryloxy)quinazoline ureas as novel, potent, and selective vascular endothelial growth factor receptor-2 inhibitors.J. Med. Chem.20125531189120410.1021/jm201345322229669
    [Google Scholar]
  10. SanphanyaK. WattanapitayakulS.K. PhowichitS. FokinV.V. VajraguptaO. Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach.Bioorg. Med. Chem. Lett.201323102962296710.1016/j.bmcl.2013.03.04223562241
    [Google Scholar]
  11. BelalA. Abdel GawadN.M. MehanyA.B.M. AbourehabM.A.S. ElkadyH. Al-KarmalawyA.A. IsmaelA.S. Design, synthesis and molecular docking of new fused 1 H -pyrroles, pyrrolo[3,2- d ]pyrimidines and pyrrolo[3,2- e ][1, 4]diazepine derivatives as potent EGFR/CDK2 inhibitors.J. Enzyme Inhib. Med. Chem.20223711884190210.1080/14756366.2022.209601935801486
    [Google Scholar]
  12. TrenkerR. JuraN. Receptor tyrosine kinase activation: From the ligand perspective.Curr. Opin. Cell Biol.20206317418510.1016/j.ceb.2020.01.01632114309
    [Google Scholar]
  13. VerheulH.M.W. PinedoH.M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition.Nat. Rev. Cancer20077647548510.1038/nrc215217522716
    [Google Scholar]
  14. BaeriswylV. ChristoforiG. The angiogenic switch in carcinogenesis.Seminars in Cancer Biology.Elsevier2009329337
    [Google Scholar]
  15. HolmesK. RobertsO.L. ThomasA.M. CrossM.J. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition.Cell. Signal.200719102003201210.1016/j.cellsig.2007.05.01317658244
    [Google Scholar]
  16. BrekkenR.A. OverholserJ.P. StastnyV.A. WaltenbergerJ. MinnaJ.D. ThorpeP.E. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice.Cancer Res.200060185117512411016638
    [Google Scholar]
  17. Claesson-WelshL. WelshM. VEGFA and tumor angiogenesis.J. Int. Med.20132732114127
    [Google Scholar]
  18. GuoY. GaoB. GaoP. FangL. GouS. Novel anilinopyrimidine derivatives as potential EGFRT790M/C797S Inhibitors: Design, Synthesis, biological activity study.Bioorg. Med. Chem.20227011690710.1016/j.bmc.2022.11690735810715
    [Google Scholar]
  19. MotzerR.J. MichaelsonM.D. RedmanB.G. HudesG.R. WildingG. FiglinR.A. GinsbergM.S. KimS.T. BaumC.M. DePrimoS.E. LiJ.Z. BelloC.L. TheuerC.P. GeorgeD.J. RiniB.I. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma.J. Clin. Oncol.2006241162410.1200/JCO.2005.02.257416330672
    [Google Scholar]
  20. WilhelmS. CarterC. LynchM. LowingerT. DumasJ. SmithR.A. SchwartzB. SimantovR. KelleyS. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer.Nat. Rev. Drug Discov.200651083584410.1038/nrd213017016424
    [Google Scholar]
  21. HoT.H. JonaschE. Axitinib in the treatment of metastatic renal cell carcinoma.Future Oncol.20117111247125310.2217/fon.11.10722044199
    [Google Scholar]
  22. WangX. BoveA.M. SimoneG. MaB. Molecular bases of VEGFR-2-mediated physiological function and pathological role.Front. Cell Dev. Biol.2020859928110.3389/fcell.2020.59928133304904
    [Google Scholar]
  23. ModiS.J. KulkarniV.M. Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: Medicinal chemistry perspective.Med. Drug Discov.2019210000910.1016/j.medidd.2019.100009
    [Google Scholar]
  24. SilvaS.R. BowenK.A. RychahouP.G. JacksonL.N. WeissH.L. LeeE.Y. TownsendC.M.Jr EversB.M. VEGFR‐2 expression in carcinoid cancer cells and its role in tumor growth and metastasis.Int. J. Cancer201112851045105610.1002/ijc.2544120473929
    [Google Scholar]
  25. NishidaN. YanoH. NishidaT. KamuraT. KojiroM. Angiogenesis in cancer.Vasc. Health Risk Manag.20062321321910.2147/vhrm.2006.2.3.21317326328
    [Google Scholar]
  26. IgnatowskaJ. Mironiuk-PuchalskaE. GrześkowiakP. WińskaP. WielechowskaM. BretnerM. KaratsaiO. Jolanta RędowiczM. Koszytkowska-StawińskaM. New insight into nucleo α-amino acids - Synthesis and SAR studies on cytotoxic activity of β-pyrimidine alanines.Bioorg. Chem.202010010386410.1016/j.bioorg.2020.10386432446118
    [Google Scholar]
  27. IrshadN. KhanA. Alamgeer KhanS.U.D. IqbalM.S. Antihypertensive potential of selected pyrimidine derivatives: Explanation of underlying mechanistic pathways.Biomed. Pharmacother.202113911156710.1016/j.biopha.2021.11156733848773
    [Google Scholar]
  28. OkamotoS. MiyanoK. ChoshiT. SugisawaN. NishiyamaT. KotougeR. YamamuraM. SakaguchiM. KinoshitaR. TomonobuN. KataseN. SasakiK. NishinaS. HinoK. KuroseK. OkaM. KubotaH. UenoT. HiraiT. FujiwaraH. KawaiC. ItadaniM. MoriharaA. MatsushimaK. KanegasakiS. HoffmanR.M. YamauchiA. KuribayashiF. Inhibition of pancreatic cancer-cell growth and metastasis in vivo by a pyrazole compound characterized as a cell-migration inhibitor by an in vitro chemotaxis assay.Biomed. Pharmacother.202215511373310.1016/j.biopha.2022.11373336271542
    [Google Scholar]
  29. DamarajuV.L. DamarajuS. YoungJ.D. BaldwinS.A. MackeyJ. SawyerM.B. CassC.E. Nucleoside anticancer drugs: The role of nucleoside transporters in resistance to cancer chemotherapy.Oncogene200322477524753610.1038/sj.onc.120695214576856
    [Google Scholar]
  30. FoxM. BoyleJ.M. KinsellaA.R. Nucleoside salvage and resistance to antimetabolite anticancer agents.Br. J. Cancer199164342843610.1038/bjc.1991.3271911182
    [Google Scholar]
  31. CapdevilleR. BuchdungerE. ZimmermannJ. MatterA. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug.Nat. Rev. Drug Discov.20021749350210.1038/nrd83912120256
    [Google Scholar]
  32. KumarS. NarasimhanB. Therapeutic potential of heterocyclic pyrimidine scaffolds.Chem. Cent. J.20181213810.1186/s13065‑018‑0406‑529619583
    [Google Scholar]
  33. DansenaH. DhongadeH.J. ChandrakarK. Pharmacological potentials of pyrimidine derivative: A review.Asian J. Pharm. Clin. Res.20158171177
    [Google Scholar]
  34. SelvamTP JamesCR DniandevPV ValzitaSK A mini review of pyrimidine and fused pyrimidine marketed drugs.Res. Pharma.201524
    [Google Scholar]
  35. DiaoP.C. LinW.Y. JianX.E. LiY.H. YouW.W. ZhaoP.L. Discovery of novel pyrimidine-based benzothiazole derivatives as potent cyclin-dependent kinase inhibitors with anticancer activity.Eur. J. Med. Chem.2019179196207
    [Google Scholar]
  36. MunikrishnappaC.S. PuranikS.B. KumarG.V.S. PrasadY.R. Part-1: Design, synthesis and biological evaluation of novel bromopyrimidine analogs as tyrosine kinase inhibitors.Eur. J. Med. Chem.20161197082
    [Google Scholar]
  37. ZhuM. MaL. ZhouH. DongB. WangY. WangZ. ZhouJ. ZhangG. WangJ. LiangC. CenS. WangY. Preliminary SAR and biological evaluation of potent HIV-1 protease inhibitors with pyrimidine bases as novel P2 ligands to enhance activity against DRV-resistant HIV-1 variants.Eur. J. Med. Chem.202018511186610.1016/j.ejmech.2019.11186631734023
    [Google Scholar]
  38. MehrabanM.H. YousefiR. KafraniA.T. PanahiF. NezhadA. Binding study of novel anti-diabetic pyrimidine fused heterocycles to b-lactoglobulin as a carrier protein.Coll. Surf. B Biointer.2013112374379
    [Google Scholar]
  39. FarghalyA.M. Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores.Med. Chem. Res.201928360379
    [Google Scholar]
  40. GuptaJ.K. SharmaP.K. DudheR. MondalS.C. ChaudharyA. VermaP.K. Synthesis and analgesic activity of novel pyrimidine derivatives of coumarin moiety.Acta Pol. Pharm.201168785793
    [Google Scholar]
  41. KolmanV. KalcicF. JansaP. ZídekZ. JanebaZ. Influence of the C-5 substitution in polysubstituted pyrimidines on inhibition of prostaglandin E2 production.Eur. J. Med. Chem.2018156295301
    [Google Scholar]
  42. LiuP. YangY. TangY. YangT. SangZ. LiuZ. ZhangT. LuoY. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents.Eur. J. Med. Chem.2019163169182
    [Google Scholar]
  43. FedericoS. MargiottaE. SalmasoV. PastorinG. KachlerS. KlotzK. MoroS. SpallutoG. Spalluto, [1,2,4] Triazolo [1,5-c] pyrimidines as adenosine receptor antagonists: Modifications at the 8 position to reach selectivity towards A3 adenosine receptor subtype.Eur. J. Med. Chem.2018157837851
    [Google Scholar]
  44. FangZ. ZhengS. ChanK. YuanW. GuoQ. WuW. LuiH. LuY. LeungY. ChanT. WongK. SunN. Design, synthesis and antibacterial evaluation of 2,4-disubstituted-6-thiophenyl-pyrimidines.Eur. J. Med. Chem2019161141153
    [Google Scholar]
  45. KaurR. KaurP. SharmaS. SinghaG. MehndirattaS. BediaP.M.S. NepaliaK. Anti-cancer pyrimidines in diverse scaffolds: A review of patent literature, Recent Pat.Anti-Cancer Drug Discov.2015102371
    [Google Scholar]
  46. ChangS. ZhangL. XuS. LuoJ. LuX. ZhangZ. XuT. LiuY. TuZ. XuY. RenX. GengM. DingJ. PeiD. DingK. Design, synthesis, and biological evaluation of novel conformationally constrained inhibitors targeting epidermal growth factor receptor threonine790 / methionine790 mutant.J. Med. Chem.20125527112723
    [Google Scholar]
  47. BarlaamC.B. DucrayR. KettleG.J. Pyrimidine derivatives 934.W.O. Patent 20090107892009
  48. MahboobiS. DoveS. SellmerA. WinklerM. EichhornE. PongratzH. CiossekT. BaerT. MaierT. BeckersT. Design of chimeric histone deacetylase-and tyrosine kinase-inhibitors: A series of imatinib hybrids as potent inhibitors of wild-type and mutant bcr abl, pdgf-rb, and histone deacetylases.J. Med. Chem.20095222652279
    [Google Scholar]
  49. HawkinsonJ.E. SinvilleR. MudaliarD. ShettyJ. WardT. HerrJ.C. GeorgG.I. Potent pyrimidine and pyrrolopyrimidine inhibitors of testisspecific serine/threonine kinase 2 (TSSK2).ChemMedChem20171218571865
    [Google Scholar]
  50. LongS.A. ThorarensenA. SchnuteM.E. Pyrimidine and pyridine derivatives useful in therapy.W.O. Patent 20130541852013
  51. GengK. LiuH. SongZ. ZhangC. ZhangM. YangH. CaoJ. GengM. ShenA. ZhangA. Design, synthesis and pharmacological evaluation of ALK and Hsp90 dual inhibitors bearing resorcinol and 2,4-diaminopyrimidine motifs.Eur. J. Med. Chem.20181527686
    [Google Scholar]
  52. PassM. 2,4,6-trisubstituted pyrimidines as phosphotidylinositol-3-kinase inhibitors and their use in the treatment of cancer.U.S. Patent 200901433842009
  53. ZhanZ. AiJ. LiuQ. JiY. ChenT. XuY. GengM. DuanW. Discovery of anilinopyrimidines as dual inhibitors of c-MET and vegfr-2: Synthesis, sar, and cellular activity.ACS Med. Chem. Lett.20145667367810.1021/ml500066m24944742
    [Google Scholar]
  54. DongH. StromeS.E. SalomaoD.R. TamuraH. HiranoF. FliesD.B. RocheP.C. LuJ. ZhuG. TamadaK. LennonV.A. CelisE. ChenL. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion.Nat. Med.20028879380010.1038/nm73012091876
    [Google Scholar]
  55. GajewskiT.F. SchreiberH. FuY.X. Innate and adaptive immune cells in the tumor microenvironment.Nat. Immunol.201314101014102210.1038/ni.270324048123
    [Google Scholar]
  56. ZamW. AliL. Immune checkpoint inhibitors in the treatment of cancer.Curr. Rev. Clin. Experimen. Pharmacol.202217210311310.2174/27724336MTE1eMDQh533823768
    [Google Scholar]
  57. KumarP. BhattacharyaP. PrabhakarB.S. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity.J. Autoimmun.201895779910.1016/j.jaut.2018.08.00730174217
    [Google Scholar]
  58. CassettaL. KitamuraT. Macrophage targeting: Opening new possibilities for cancer immunotherapy.Immunology2018155328529310.1111/imm.1297629963704
    [Google Scholar]
  59. SalehR. ElkordE. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.Semin. Cancer Biol.202065132710.1016/j.semcancer.2019.07.01731362073
    [Google Scholar]
  60. UehataT. IwasakiH. VandenbonA. MatsushitaK. Hernandez-CuellarE. KuniyoshiK. SatohT. MinoT. SuzukiY. StandleyD.M. TsujimuraT. RakugiH. IsakaY. TakeuchiO. AkiraS. Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation.Cell201315351036104910.1016/j.cell.2013.04.03423706741
    [Google Scholar]
  61. ShimuA.S. WeiH. LiQ. ZhengX. LiB. The new progress in cancer immunotherapy.Clin. Exp. Med.202223355356710.1007/s10238‑022‑00887‑036109471
    [Google Scholar]
  62. ChristensenJ.G. BurrowsJ. SalgiaR. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention.Cancer Lett.2005225112610.1016/j.canlet.2004.09.04415922853
    [Google Scholar]
  63. YakesF.M. ChenJ. TanJ. YamaguchiK. ShiY. YuP. QianF. ChuF. BentzienF. CancillaB. OrfJ. YouA. LairdA.D. EngstS. LeeL. LeschJ. ChouY.C. JolyA.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth.Mol. Cancer Ther.201110122298230810.1158/1535‑7163.MCT‑11‑026421926191
    [Google Scholar]
  64. LaiG.M. ChenY.N. MickleyL.A. FojoA.T. BatesS.E. P-glycoprotein expression and schedule dependence of adriamycin cytotoxicity in human colon carcinoma cell lines.Int. J. Cancer199149569670310.1002/ijc.29104905121682280
    [Google Scholar]
  65. CarmichaelJ. DeGraffW.G. GazdarA.F. MinnaJ.D. MitchellJ.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing.Cancer Res.19874749369423802100
    [Google Scholar]
  66. BahugunaA. KhanI. BajpaiV.K. KangS.C. MTT assay to evaluate the cytotoxic potential of a drug.Bangladesh J. Pharmacol.2017122810.3329/bjp.v12i2.30892
    [Google Scholar]
  67. NarayananS. TengQ.X. WuZ.X. NazimU. KaradkhelkarN. AcharekarN. YoganathanS. MansoorN. PingF.F. ChenZ.S. Anticancer effect of indanone-based thiazolyl hydrazone derivative on p53 mutant colorectal cancer cell lines: An in vitro and in vivo study.Front. Oncol.20221294986810.3389/fonc.2022.94986835992866
    [Google Scholar]
  68. MohassabA.M. HassanH.A. AbdelhamidD. GoudaA.M. YoussifB.G.M. TateishiH. FujitaM. OtsukaM. Abdel-AzizM. Design and synthesis of novel quinoline/chalcone/1,2,4-triazole hybrids as potent antiproliferative agent targeting EGFR and BRAFV600E kinases.Bioorg. Chem.2020202010451010.1016/j.bioorg.2020.10451033279248
    [Google Scholar]
  69. YoussifB.G.M. MohamedA.M. OsmanE.E.A. Abou-GhadirO.F. ElnaggarD.H. AbdelrahmanM.H. TreambluL. GomaaH.A.M. 5-Chlorobenzofuran-2-carboxamides: From allosteric CB1 modulators to potential apoptotic antitumor agents.Eur. J. Med. Chem.201917711110.1016/j.ejmech.2019.05.04031128433
    [Google Scholar]
  70. McKinnonK.M. Flow cytometry: An overview.Curr. Protoc. Immunol.201812011.1, 1110.1002/cpim.4029512141
    [Google Scholar]
  71. AdanA. AlizadaG. KirazY. BaranY. NalbantA. Flow cytometry: Basic principles and applications.Crit. Rev. Biotechnol.201737216317610.3109/07388551.2015.112887626767547
    [Google Scholar]
  72. QianF. EngstS. YamaguchiK. YuP. WonK.A. MockL. LouT. TanJ. LiC. TamD. LougheedJ. YakesF.M. BentzienF. XuW. ZaksT. WoosterR. GreshockJ. JolyA.H. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases.Cancer Res.200969208009801610.1158/0008‑5472.CAN‑08‑488919808973
    [Google Scholar]
  73. NormanM.H. LiuL. LeeM. XiN. FellowsI. D’AngeloN.D. DominguezC. RexK. BellonS.F. KimT.S. DussaultI. Structure-based design of novel class II c-Met inhibitors: 1. Identification of pyrazolone-based derivatives.J. Med. Chem.20125551858186710.1021/jm201330u22320343
    [Google Scholar]
  74. BannenLynne al c-met modulators and method of use.W.O. Patent 2005/030140A22005
/content/journals/cad/10.2174/0115734099269413231018065351
Loading
/content/journals/cad/10.2174/0115734099269413231018065351
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): anti-proliferation; apoptosis; cell cycle; molecular modeling; Pyrimidine; VEGFR-2 kinase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test