Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Osteoporosis (OP) is one of the most common diseases in the elderly population. It is mostly treated with medication, but drug research and development have the disadvantage of taking a long time and having a high cost.

Objective

Therefore, we developed a graph neural network with the help of artificial intelligence to provide new ideas for drug research and development for OP.

Methods

In this study, we built a new osteoporosis graph (called OPGraph) and proposed a deep graph neural network (called DeepTransformer) to predict new drugs for OP. OPGraph is a graph data model established by gathering features and their interrelationships from a vast amount of OP data. DeepTransformer uses GraphTransformer as its foundational network and applies residual connections for deep layering.

Results

The analysis and results showed that DeepTransformer outperformed numerous models on OPGraph, with area under the curve (AUC) and area under the precision-recall curve (AUPR) reaching 0.9916 and 0.9911, respectively. In addition, we conducted an validation experiment on two of the seven predicted compounds (Puerarin and Aucubin), and the results corroborated the predictions of our model.

Conclusion

The model we developed with the help of artificial intelligence can effectively reduce the time and cost of OP drug development and reduce the heavy economic burden brought to patient's family by complications caused by osteoporosis.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099266731231115065030
2023-11-27
2025-01-18
Loading full text...

Full text loading...

References

  1. StumpfU. KrausM. LadurnerR. NeuerburgC. BöckerW. Osteoporose: Diagnostik und behandlung.Die Orthopädie202352324625810.1007/s00132‑023‑04351‑z36806953
    [Google Scholar]
  2. KanisJ.A. KanisJ.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report.Osteoporos. Int.19944636838110.1007/BF016222007696835
    [Google Scholar]
  3. SiL. WinzenbergT.M. JiangQ. ChenM. PalmerA.J. Projection of osteoporosis-related fractures and costs in China: 2010–2050.Osteoporos. Int.20152671929193710.1007/s00198‑015‑3093‑225761729
    [Google Scholar]
  4. DiMasiJ.A. GrabowskiH.G. HansenR.W. Innovation in the pharmaceutical industry: New estimates of R&D costs.J. Health Econ.201647203310.1016/j.jhealeco.2016.01.01226928437
    [Google Scholar]
  5. Hassan BaigM. AhmadK. RoyS. Mohammad AshrafJ. AdilM. Haris SiddiquiM. KhanS. Amjad KamalM. ProvazníkI. ChoiI. Computer aided drug design: Success and limitations.Curr. Pharm. Des.201622557258110.2174/138161282266615112500055026601966
    [Google Scholar]
  6. NguyenT. LeH. QuinnT.P. NguyenT. LeT.D. VenkateshS. GraphDTA: Predicting drug–target binding affinity with graph neural networks.Bioinformatics20213781140114710.1093/bioinformatics/btaa92133119053
    [Google Scholar]
  7. YangZ. ZhongW. ZhaoL. Yu-Chian ChenC. MGraphDTA: Deep multiscale graph neural network for explainable drug–target binding affinity prediction.Chem. Sci.202213381683310.1039/D1SC05180F35173947
    [Google Scholar]
  8. DefferrardM. BressonX. VandergheynstP. Convolutional neural networks on graphs with fast localized spectral filtering.Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16)PP.3844-3852, 2016.
    [Google Scholar]
  9. HintonG. DengL. YuD. DahlG. MohamedA. JaitlyN. SeniorA. VanhouckeV. NguyenP. SainathT. KingsburyB. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups.IEEE Signal Process. Mag.2012296829710.1109/MSP.2012.2205597
    [Google Scholar]
  10. ZhaoT. HuY. ValsdottirL.R. ZangT. PengJ. Identifying drug–target interactions based on graph convolutional network and deep neural network.Brief. Bioinform.20212222141215010.1093/bib/bbaa04432367110
    [Google Scholar]
  11. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx103729126136
    [Google Scholar]
  12. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa97133151290
    [Google Scholar]
  13. BurleyS.K. BhikadiyaC. BiC. BittrichS. ChenL. CrichlowG.V. ChristieC.H. DalenbergK. Di CostanzoL. DuarteJ.M. DuttaS. FengZ. GanesanS. GoodsellD.S. GhoshS. GreenR.K. GuranovićV. GuzenkoD. HudsonB.P. LawsonC.L. LiangY. LoweR. NamkoongH. PeisachE. PersikovaI. RandleC. RoseA. RoseY. SaliA. SeguraJ. SekharanM. ShaoC. TaoY.P. VoigtM. WestbrookJ.D. YoungJ.Y. ZardeckiC. ZhuravlevaM. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences.Nucleic Acids Res.202149D1D437D45110.1093/nar/gkaa103833211854
    [Google Scholar]
  14. BajuszD. RáczA. HébergerK. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?J. Cheminform.2015712010.1186/s13321‑015‑0069‑326052348
    [Google Scholar]
  15. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  16. YunshengS. ZhengjieH. ShikunF. HuiZ. WenjingW. YuS. Masked label prediction: unified message passing model for semi-supervised classification.Proceedings of the Thirtieth International Joint Conference on Artificial Intelligencepp.1548-1554, 2021.
    [Google Scholar]
  17. VeličkovićP. CucurullG. CasanovaA. RomeroA. LiòP. BengioY. Graph attention networks.6th International Conference on Learning Representations2018Vancouver, Canada
    [Google Scholar]
  18. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.IEEE Conference on Computer Vision and Pattern Recognition2016 Jun770778
    [Google Scholar]
  19. LiG. XiongC. QianG. ThabetA. GhanemB. DeeperGCN: All You Need to Train Deeper GCNs.10th International Conference on Learning Representations2021
    [Google Scholar]
  20. BrodyS. AlonU. YahavE. How attentive are graph attention networks?10th International Conference on Learning Representations2022
    [Google Scholar]
  21. YouJ. YingR. LeskovecJ. Design space for graph neural networks.Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20)pp.17009-17021,2020.
    [Google Scholar]
  22. MontiF. BoscainiD. MasciJ. RodolaE. SvobodaJ. BronsteinM.M. Geometric deep learning on graphs and manifolds using mixture model CNNs.IEEE Conference on Computer Vision and Pattern Recognition2017 Jul5115512410.1109/CVPR.2017.576
    [Google Scholar]
  23. GilmerJ. SchoenholzS.S. RileyP.F. VinyalsO. DahlG.E. Neural message passing for Quantum chemistry.Proceedings of the 34th International Conference on Machine Learningpp.1263-1272, 2017.
    [Google Scholar]
  24. ZhouZ. SunM. TangY. LiangP. LiangD. ChangQ. Screening and activity verification of osteogenic compounds from salvia miltiorrhiza based on virtual screening.J. Jiang/ Univ.2022325113
    [Google Scholar]
  25. SunM. LiangP. ZhouZ. Screening of bone promoting active ingredients in ginkgo bilobaon bioinformatics.Central South Pharmacy.2022203517524
    [Google Scholar]
  26. LiaoY. ZhangX. LiC. QiuF. Research progress on the correlation between traditional Chinese medicine syndrome and bone turnover markers of osteoporosis.Zhongguo Guzhi Shusong Zazhi2022281218231827
    [Google Scholar]
  27. BoseS. SarkarN. Natural medicinal compounds in bone tissue engineering.Trends Biotechnol.202038440441710.1016/j.tibtech.2019.11.00531882304
    [Google Scholar]
  28. FanH. GuoJ. XinB. Analysis of modern molecular pharmacology mechanism and clinical application of puerarin.Gansu Med. J.2020398684690
    [Google Scholar]
  29. LiangQ. LiH. XieJ. Effects of Puerarin on OPG, RANKL and bone tissue in postmenopausal osteoporosis model rats.Zhongguo Laonianxue Zazhi2019391640314034
    [Google Scholar]
  30. ChenH. PangJ. ZhangX. SunJ. ZhouL. LiuB. Effects of puerarin on bone mineral density around the artificial prosthesis of elderly patients after osteoporotic fracture artificial hip joint replacement.Jiyinzuxue Yu Yingyong Shengwuxue2019381256955699
    [Google Scholar]
  31. WangC. SuZ. DongX. Therapeutic effect and the underlying molecular mechanism of aucubin on osteoporosis in castrated rats.Zhej. J. Integ. Trad. Chin. West. Med.2022326511544
    [Google Scholar]
  32. LiY. Study on Aucubin Promotes Osteoblast Differentiation and Inhibits Osteoporosis through Nrf2/Keap1 Signaling Pathway. PhD dissertationChangchun (Jilin Province)Jilin University2019
    [Google Scholar]
/content/journals/cad/10.2174/0115734099266731231115065030
Loading
/content/journals/cad/10.2174/0115734099266731231115065030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test