Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

is an herbal medicine widely used in the treatment of atrial fibrillation (AF), but the mechanism is unclear.

Objective

To explore the molecular mechanism of against AF.

Methods

The TCMSP was used to screen the active compounds and their targets. Differentially expressed genes (DEGs) for AF were identified using open-access databases. Using Venn diagrams, the cross-targets of , pyroptosis, and AF were obtained. The genes underwent molecular docking as well as gene set enrichment analysis (GSEA). A nomogram based on candidate genes was constructed and evaluated with the clinical impact curve. After that, the immune infiltration of the dataset was analyzed by single sample GSEA (ssGSEA). Finally, microRNAs (miRNAs) and transcription factors (TFs) were predicted based on candidate genes.

Results

Tumor necrosis factor (TNF) and caspase-8 (CASP8) were obtained as candidate genes by taking the intersection of DEGs, targets of , and pyroptosis-related genes. Toll-like receptor (TLR) and peroxisome proliferator-activated receptor (PPAR) signaling pathways were linked to candidate genes. Additionally, immune cell infiltration analysis revealed that CASP8 was associated with natural killer T cells, natural killer cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC), macrophages, CD8 T cells, and CD4 T cells. Finally, miR-34a-5p and several TFs were found to regulate the expression of CASP8 and TNF.

Conclusion

CASP8 and TNF are potential targets of intervention in pyroptosis-related AF, and the TLR/NLRP3 signaling pathway may be associated with this process.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099259071231115072421
2024-01-03
2025-05-25
The full text of this item is not currently available.

References

  1. ChughS.S. HavmoellerR. NarayananK. SinghD. RienstraM. BenjaminE.J. GillumR.F. KimY.H. McAnultyJ.H.Jr ZhengZ.J. ForouzanfarM.H. NaghaviM. MensahG.A. EzzatiM. MurrayC.J.L. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study.Circulation2014129883784710.1161/CIRCULATIONAHA.113.005119 24345399
    [Google Scholar]
  2. KirchhofP. BenussiS. KotechaD. AhlssonA. AtarD. CasadeiB. CastellaM. DienerH.C. HeidbuchelH. HendriksJ. HindricksG. ManolisA.S. OldgrenJ. PopescuB.A. SchottenU. Van PutteB. VardasP. AgewallS. CammJ. Baron EsquiviasG. BudtsW. CarerjS. CasselmanF. CocaA. De CaterinaR. DeftereosS. DobrevD. FerroJ.M. FilippatosG. FitzsimonsD. GorenekB. GuenounM. HohnloserS.H. KolhP. LipG.Y.H. ManolisA. McMurrayJ. PonikowskiP. RosenhekR. RuschitzkaF. SavelievaI. SharmaS. SuwalskiP. TamargoJ.L. TaylorC.J. Van GelderI.C. VoorsA.A. WindeckerS. ZamoranoJ.L. ZeppenfeldK. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS.Europace201618111609167810.1093/europace/euw295 27567465
    [Google Scholar]
  3. CammA.J. LipG.Y.H. De CaterinaR. SavelievaI. AtarD. HohnloserS.H. HindricksG. KirchhofP. BaxJ.J. BaumgartnerH. CeconiC. DeanV. DeatonC. FagardR. Funck-BrentanoC. HasdaiD. HoesA. KirchhofP. KnuutiJ. KolhP. McDonaghT. MoulinC. PopescuB.A. ReinerŽ. SechtemU. SirnesP.A. TenderaM. TorbickiA. VahanianA. WindeckerS. VardasP. Al-AttarN. AlfieriO. AngeliniA. Blömstrom-LundqvistC. ColonnaP. De SutterJ. ErnstS. GoetteA. GorenekB. HatalaR. HeidbüchelH. HeldalM. KristensenS.D. KolhP. Le HeuzeyJ-Y. MavrakisH. MontL. FilardiP.P. PonikowskiP. PrendergastB. RuttenF.H. SchottenU. Van GelderI.C. VerheugtF.W.A. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation.Eur. Heart J.201233212719274710.1093/eurheartj/ehs253 22922413
    [Google Scholar]
  4. TrigoP. FischerG.W. Managing atrial fibrillation in the elderly: Critical appraisal of dronedarone.Clin. Interv. Aging20127113 22291468
    [Google Scholar]
  5. HenryL. AdN. The surgical treatment for atrial fibrillation: Ablation technology and surgical approaches.Rambam Maimonides ME.2013431519
    [Google Scholar]
  6. KatzE.S. TsiamtsiourisT. ApplebaumR.M. SchwartzbardA. TunickP.A. KronzonI. Surgical left atrial appendage ligation is frequently incomplete: A transesophageal echocardiographic study.J. Am. Coll. Cardiol.200036246847110.1016/S0735‑1097(00)00765‑8 10933359
    [Google Scholar]
  7. WijesurendraR.S. CasadeiB. Mechanisms of atrial fibrillation.Heart2019105241860186710.1136/heartjnl‑2018‑314267 31444267
    [Google Scholar]
  8. AndradeJ. KhairyP. DobrevD. NattelS. The clinical profile and pathophysiology of atrial fibrillation: Relationships among clinical features, epidemiology, and mechanisms.Circ. Res.201411491453146810.1161/CIRCRESAHA.114.303211 24763464
    [Google Scholar]
  9. KhouryM.K. GuptaK. FrancoS.R. LiuB. Necroptosis in the pathophysiology of disease.Am. J. Pathol.2020190227228510.1016/j.ajpath.2019.10.012 31783008
    [Google Scholar]
  10. ZychlinskyA. PrevostM.C. SansonettiP.J. Shigella flexneri induces apoptosis in infected macrophages.Nature1992358638216716910.1038/358167a0 1614548
    [Google Scholar]
  11. D’SouzaC.A. HeitmanJ. Dismantling the cryptococcus coat.Trends Microbiol.20019311211310.1016/S0966‑842X(00)01945‑4 11303499
    [Google Scholar]
  12. FrankD. VinceJ.E. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk.Cell Death Differ.20192619911410.1038/s41418‑018‑0212‑6 30341423
    [Google Scholar]
  13. MartinonF. BurnsK. TschoppJ. The inflammasome.Mol. Cell200210241742610.1016/S1097‑2765(02)00599‑3 12191486
    [Google Scholar]
  14. XiaS. HollingsworthL.R.IV WuH. Mechanism and regulation of gasdermin-mediated cell death.Cold Spring Harb. Perspect. Biol.2020123a03640010.1101/cshperspect.a036400 31451512
    [Google Scholar]
  15. NewtonK. WickliffeK.E. MaltzmanA. DuggerD.L. RejaR. ZhangY. Roose-GirmaM. ModrusanZ. SagollaM.S. WebsterJ.D. DixitV.M. Activity of caspase-8 determines plasticity between cell death pathways.Nature2019575778467968210.1038/s41586‑019‑1752‑8 31723262
    [Google Scholar]
  16. MoujalledD. StrasserA. LiddellJ.R. Molecular mechanisms of cell death in neurological diseases.Cell Death Differ.20212872029204410.1038/s41418‑021‑00814‑y 34099897
    [Google Scholar]
  17. SharmaB.R. KannegantiT.D. NLRP3 inflammasome in cancer and metabolic diseases.Nat. Immunol.202122555055910.1038/s41590‑021‑00886‑5 33707781
    [Google Scholar]
  18. ShenH.H. YangY.X. MengX. LuoX.Y. LiX.M. ShuaiZ.W. YeD.Q. PanH.F. NLRP3: A promising therapeutic target for autoimmune diseases.Autoimmun. Rev.201817769470210.1016/j.autrev.2018.01.020 29729449
    [Google Scholar]
  19. ZhaolinZ. GuohuaL. ShiyuanW. ZuoW. Role of pyroptosis in cardiovascular disease.Cell Prolif.2019522e1256310.1111/cpr.12563 30525268
    [Google Scholar]
  20. Alvarez-ErvitiL. CouchY. RichardsonJ. CooperJ.M. WoodM.J.A. Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line.Neurosci. Res.201169433734210.1016/j.neures.2010.12.020 21255620
    [Google Scholar]
  21. SinghP.K. MuqitM.M.K. Parkinson’s: A disease of aberrant vesicle trafficking.Annu. Rev. Cell Dev. Biol.202036123726410.1146/annurev‑cellbio‑100818‑125512 32749865
    [Google Scholar]
  22. MaoZ. LiuC. JiS. YangQ. YeH. HanH. XueZ. The NLRP3 inflammasome is involved in the pathogenesis of Parkinson’s disease in rats.Neurochem. Res.20174241104111510.1007/s11064‑017‑2185‑0 28247334
    [Google Scholar]
  23. HouJ. ZhaoR. XiaW. ChangC.W. YouY. HsuJ.M. NieL. ChenY. WangY.C. LiuC. WangW.J. WuY. KeB. HsuJ.L. HuangK. YeZ. YangY. XiaX. LiY. LiC.W. ShaoB. TainerJ.A. HungM.C. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis.Nat. Cell Biol.202022101264127510.1038/s41556‑020‑0575‑z 32929201
    [Google Scholar]
  24. WeiQ. MuK. LiT. ZhangY. YangZ. JiaX. ZhaoW. HuaiW. GuoP. HanL. Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression.Lab. Invest.2014941526210.1038/labinvest.2013.126 24166187
    [Google Scholar]
  25. YuP ZhangX LiuN TangL PengC ChenX. Pyroptosis: Mechanisms and diseases.Signal Transduct Tar.20216110.1038/s41392‑021‑00507‑5
    [Google Scholar]
  26. XuY.J. ZhengL. HuY.W. WangQ. Pyroptosis and its relationship to atherosclerosis.Clin. Chim. Acta2018476283710.1016/j.cca.2017.11.005 29129476
    [Google Scholar]
  27. YangF. QinY. LvJ. WangY. CheH. ChenX. JiangY. LiA. SunX. YueE. RenL. LiY. BaiY. WangL. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy.Cell Death Dis.2018910100010.1038/s41419‑018‑1029‑4 30250027
    [Google Scholar]
  28. HuY.F. ChenY.J. LinY.J. ChenS.A. Inflammation and the pathogenesis of atrial fibrillation.Nat. Rev. Cardiol.201512423024310.1038/nrcardio.2015.2 25622848
    [Google Scholar]
  29. ZhangJ. QiangC.C. LiW.J. LiuL.J. LinX.X. ChengY.J. TangK. YaoF.J. WuS.H. Effects of Nardostachys chinensis on spontaneous ventricular arrhythmias in rats with acute myocardial infarction.J. Cardiovasc. Pharmacol.201464212713310.1097/FJC.0000000000000096 24662492
    [Google Scholar]
  30. LiM XuX YangX KwongJSW ShangH The cardioprotective and antiarrhythmic effects of Nardostachys chinensis in animal and cell experiments.BMC Complem Altern M.201717110.1186/s12906‑017‑1910‑1
    [Google Scholar]
  31. AbbasiW.M. AhmadS. PerveenS. RehmanT. Preliminary phytochemical analysis and in vivo evaluation of antipyretic effects of hydro-methanolic extract of Cleome scaposa leaves.J. Tradit. Complement. Med.20188114714910.1016/j.jtcme.2017.05.004 29322003
    [Google Scholar]
  32. HopkinsA.L. Network pharmacology.Nat. Biotechnol.200725101110111110.1038/nbt1007‑1110 17921993
    [Google Scholar]
  33. LiuH. WangJ. ZhouW. WangY. YangL. Systems approaches and polypharmacology for drug discovery from herbal medicines: An example using licorice.J. Ethnopharmacol.2013146377379310.1016/j.jep.2013.02.004 23415946
    [Google Scholar]
  34. KarkiR. KannegantiT.D. Diverging inflammasome signals in tumorigenesis and potential targeting.Nat. Rev. Cancer201919419721410.1038/s41568‑019‑0123‑y 30842595
    [Google Scholar]
  35. ManS.M. KannegantiT.D. Regulation of inflammasome activation.Immunol. Rev.2015265162110.1111/imr.12296 25879280
    [Google Scholar]
  36. XiaX. WangX. ChengZ. QinW. LeiL. JiangJ. HuJ. The role of pyroptosis in cancer: Pro-cancer or pro-“host”?Cell Death Dis.201910965010.1038/s41419‑019‑1883‑8 31501419
    [Google Scholar]
  37. ZhouG. SoufanO. EwaldJ. HancockR.E.W. BasuN. XiaJ. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis.Nucleic Acids Res.201947W1W234-41
    [Google Scholar]
  38. BlaauwY. Van GelderI.C. CrijnsH.J. Treatment of atrial fibrillation.Br. Heart J.200288443243710.1136/heart.88.4.432 12231613
    [Google Scholar]
  39. JiangX. LuoY. WangX. ChenY. WangT. HeJ. XiaY. ZhaoJ. ChaiX. YaoL. LiuC. ChenY. Investigating the efficiency and tolerability of traditional Chinese formulas combined with antiarrhythmic agents for paroxysmal atrial fibrillation: A systematic review and Bayesian network meta-analysis.Phytomedicine20229415383210.1016/j.phymed.2021.153832 34781230
    [Google Scholar]
  40. KalifaJ. AvulaU.M.R. The Chinese herb extract Wenxin Keli: Atrial selectivity from the Far East.Heart Rhythm20129113213310.1016/j.hrthm.2011.11.030 22116050
    [Google Scholar]
  41. LiuY. ZhangZ. YangY. ZhangN. LiG. LiuT. The Chinese herb extract Wenxin Keli: A promising agent for the management of atrial fibrillation.Int. J. Cardiol.201620361461510.1016/j.ijcard.2015.10.211 26580340
    [Google Scholar]
  42. MaJ. YinC. MaS. QiuH. ZhengC. Chen, Q Shensong Yangxin capsule reduces atrial fibrillation susceptibility by inhibiting atrial fibrosis in rats with post-myocardial infarction heart failure.Drug Des. Devel. Ther.2018123407341810.2147/DDDT.S182834
    [Google Scholar]
  43. YangH.J. KongB. ShuaiW. ZhangJ. HuangH. Shensong Yangxin attenuates metabolic syndrome-induced atrial fibrillation via inhibition of ferroportin-mediated intracellular iron overload.Phytomedicine202210115408610.1016/j.phymed.2022.154086 35421806
    [Google Scholar]
  44. ShaliniS. DorstynL. DawarS. KumarS. Old, new and emerging functions of caspases.Cell Death Differ.201522452653910.1038/cdd.2014.216 25526085
    [Google Scholar]
  45. SimpsonC.D. AnyiweK. SchimmerA.D. Anoikis resistance and tumor metastasis.Cancer Lett.2008272217718510.1016/j.canlet.2008.05.029 18579285
    [Google Scholar]
  46. FritschM. GüntherS.D. SchwarzerR. AlbertM.C. SchornF. WerthenbachJ.P. SchiffmannL.M. StairN. StocksH. SeegerJ.M. LamkanfiM. KrönkeM. PasparakisM. KashkarH. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis.Nature2019575778468368710.1038/s41586‑019‑1770‑6 31748744
    [Google Scholar]
  47. MandalR. BarrónJ.C. KostovaI. BeckerS. StrebhardtK. Caspase-8: The double-edged sword. Biochimica et Biophysica Acta (BBA) -.Rev. Can.202018732188357
    [Google Scholar]
  48. NewtonK. WickliffeK.E. DuggerD.L. MaltzmanA. Roose-GirmaM. DohseM. KőművesL. WebsterJ.D. DixitV.M. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis.Nature2019574777842843110.1038/s41586‑019‑1548‑x 31511692
    [Google Scholar]
  49. OrningP. WengD. StarheimK. RatnerD. BestZ. LeeB. BrooksA. XiaS. WuH. KelliherM.A. BergerS.B. GoughP.J. BertinJ. ProulxM.M. GoguenJ.D. KayagakiN. FitzgeraldK.A. LienE. Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death.Science201836264181064106910.1126/science.aau2818 30361383
    [Google Scholar]
  50. CharitakisE. KarlssonL.O. PapageorgiouJ.M. WalfridssonU. CarlhällC.J. Echocardiographic and biochemical factors predicting arrhythmia recurrence after catheter ablation of atrial fibrillation-an observational study.Front. Physiol.201910121510.3389/fphys.2019.01215 31632285
    [Google Scholar]
  51. HiramR. XiongF. NaudP. XiaoJ. SiroisM. TanguayJ.F. TardifJ.C. NattelS. The inflammation-resolution promoting molecule resolvin-D1 prevents atrial proarrhythmic remodelling in experimental right heart disease.Cardiovasc. Res.202111771776178910.1093/cvr/cvaa186 32866246
    [Google Scholar]
  52. KallioliasG.D. IvashkivL.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies.Nat. Rev. Rheumatol.2016121496210.1038/nrrheum.2015.169 26656660
    [Google Scholar]
  53. MicheauO. TschoppJ. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.Cell2003114218119010.1016/S0092‑8674(03)00521‑X 12887920
    [Google Scholar]
  54. LiewR. KhairunnisaK. GuY. TeeN. YinN.O. NaylynnT.M. MoeK.T. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate.Circ. J.20137751171117910.1253/circj.CJ‑12‑1155 23370453
    [Google Scholar]
  55. RenM. LiX. HaoL. ZhongJ. Role of tumor necrosis factor alpha in the pathogenesis of atrial fibrillation: A novel potential therapeutic target?Ann. Med.201547431632410.3109/07853890.2015.1042030 25982799
    [Google Scholar]
  56. YeT. ZhangC. WuG. WanW. LiangJ. LiuX. LiuD. YangB. Pinocembrin attenuates autonomic dysfunction and atrial fibrillation susceptibility via inhibition of the NF-κB/TNF-α pathway in a rat model of myocardial infarction.Int. Immunopharmacol.20197710592610.1016/j.intimp.2019.105926 31704291
    [Google Scholar]
  57. DingS. LiuD. WangL. WangG. ZhuY. Inhibiting MicroRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway.J. Pharmacol. Exp. Ther.2020372112813510.1124/jpet.119.256982 31481517
    [Google Scholar]
  58. LiZ. LiuT. FengY. TongY. JiaY. WangC. PPARγ alleviates sepsis-induced liver injury by inhibiting hepatocyte pyroptosis via inhibition of the ROS/TXNIP/NLRP3 signaling pathway.Oxid. Med. Cell. Longev.2022202211510.1155/2022/8999899
    [Google Scholar]
  59. WangN. KongR. HanW. BaoW. ShiY. YeL. LuJ. Honokiol alleviates ulcerative colitis by targeting PPAR-γ–TLR4–NF-κB signaling and suppressing gasdermin-D-mediated pyroptosis in vivo and in vitro.Int. Immunopharmacol.202211110905810.1016/j.intimp.2022.109058 35901530
    [Google Scholar]
  60. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  61. RehmanT. AhmadS. Nardostachys chinensis Batalin: A review of traditional uses, phytochemistry, and pharmacology.Phytother. Res.201933102622264810.1002/ptr.6447 31359527
    [Google Scholar]
  62. LiG.R. WangH.B. QinG.W. JinM.W. TangQ. SunH.Y. DuX.L. DengX.L. ZhangX.H. ChenJ.B. ChenL. XuX.H. ChengL.C. ChiuS.W. TseH.F. VanhoutteP.M. LauC.P. Acacetin, a natural flavone, selectively inhibits human atrial repolarization potassium currents and prevents atrial fibrillation in dogs.Circulation2008117192449245710.1161/CIRCULATIONAHA.108.769554 18458165
    [Google Scholar]
  63. ZhuY. BuJ. ShiS. WangH-Q. NiuX-S. ZhaoZ-F. WuW-D. ZhangX-L. MaZ. ZhangY.J. ZhangH. Acacetin protects against cerebral ischemia-reperfusion injury via the NLRP3 signaling pathway.Neural Regen. Res.201914460561210.4103/1673‑5374.247465 30632500
    [Google Scholar]
  64. BakM.J. HongS.G. LeeJ.W. JeongW.S. Red ginseng marc oil inhibits iNOS and COX-2 via NFκB and p38 pathways in LPS-stimulated RAW 264.7 macrophages.Molecules20121712137691378610.3390/molecules171213769 23174895
    [Google Scholar]
  65. LiW. CaoT. LuoC. CaiJ. ZhouX. XiaoX. LiuS. Crosstalk between ER stress, NLRP3 inflammasome, and inflammation.Appl. Microbiol. Biotechnol.2020104146129614010.1007/s00253‑020‑10614‑y 32447438
    [Google Scholar]
  66. LiuH. ZhanX. XuG. WangZ. LiR. WangY. QinQ. ShiW. HouX. YangR. WangJ. XiaoX. BaiZ. Cryptotanshinone specifically suppresses NLRP3 inflammasome activation and protects against inflammasome-mediated diseases.Pharmacol. Res.202116410538410.1016/j.phrs.2020.105384 33352229
    [Google Scholar]
  67. HanX. WuY.C. MengM. SunQ.S. GaoS.M. SunH. Linarin prevents LPS induced acute lung injury by suppressing oxidative stress and inflammation via inhibition of TXNIP/NLRP3 and NF κB pathways.Int. J. Mol. Med.20184231460147210.3892/ijmm.2018.3710 29845284
    [Google Scholar]
  68. CollR.C. SchroderK. PelegrínP. NLRP3 and pyroptosis blockers for treating inflammatory diseases.Trends Pharmacol. Sci.202243865366810.1016/j.tips.2022.04.003 35513901
    [Google Scholar]
  69. AjoolabadyA. NattelS. LipG.Y.H. RenJ. Inflammasome signaling in atrial fibrillation.J. Am. Coll. Cardiol.202279232349236610.1016/j.jacc.2022.03.379 35680186
    [Google Scholar]
  70. YaoC. VelevaT. ScottL.Jr CaoS. LiL. ChenG. JeyabalP. PanX. AlsinaK.M. Abu-TahaI. GhezelbashS. ReynoldsC.L. ShenY.H. LeMaireS.A. SchmitzW. MüllerF.U. El-ArmoucheA. Tony EissaN. BeetonC. NattelS. WehrensX.H.T. DobrevD. LiN. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation.Circulation2018138202227224210.1161/CIRCULATIONAHA.118.035202 29802206
    [Google Scholar]
  71. ZhangY. ZhangS. LiB. LuoY. GongY. JinX. ZhangJ. ZhouY. ZhuoX. WangZ. ZhaoX. HanX. GaoY. YuH. LiangD. ZhaoS. SunD. WangD. XuW. QuG. BoW. LiD. WuY. LiY. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome.Cardiovasc. Res.2022118378579710.1093/cvr/cvab114 33757127
    [Google Scholar]
  72. LawlorK.E. KhanN. MildenhallA. GerlicM. CrokerB.A. D’CruzA.A. HallC. Kaur SpallS. AndertonH. MastersS.L. RashidiM. WicksI.P. AlexanderW.S. MitsuuchiY. BenetatosC.A. CondonS.M. WongW.W.L. SilkeJ. VauxD.L. VinceJ.E. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL.Nat. Commun.201561628210.1038/ncomms7282 25693118
    [Google Scholar]
  73. ZhouR. JinD. ZhangY. DuanL. ZhangY. DuanY. KangX. LianF. Investigating the mechanisms of pollen typhae in the treatment of diabetic retinopathy based on network pharmacology and molecular docking.Evid. Based Complement. Alternat. Med.2022202211410.1155/2022/5728408 35024051
    [Google Scholar]
  74. ChenH. DengY. GanX. LiY. HuangW. LuL. WeiL. SuL. LuoJ. ZouB. HongY. CaoY. LiuY. ChiW. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma.Mol. Neurodegener.20201512610.1186/s13024‑020‑00372‑w 32295623
    [Google Scholar]
  75. Messaoud-NacerY. CulerierE. RoseS. MailletI. RouxelN. BriaultS. RyffelB. QuesniauxV.F.J. TogbeD. STING agonist diABZI induces PANoptosis and DNA mediated acute respiratory distress syndrome (ARDS).Cell Death Dis.202213326910.1038/s41419‑022‑04664‑5 35338116
    [Google Scholar]
  76. RoyP. OrecchioniM. LeyK. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity.Nat. Rev. Immunol.202222425126510.1038/s41577‑021‑00584‑1
    [Google Scholar]
  77. PoliA. MichelT. ThérésineM. AndrèsE. HentgesF. ZimmerJ. CD56 bright natural killer (NK) cells: An important NK cell subset.Immunology2009126445846510.1111/j.1365‑2567.2008.03027.x 19278419
    [Google Scholar]
  78. ZhangZ. ZhangY. XiaS. KongQ. LiS. LiuX. Gasdermin E suppresses tumour growth by activating anti-tumour immunity.Nature20205797799415420
    [Google Scholar]
  79. KazemN. SulzgruberP. ThalerB. BaumgartnerJ. KollerL. LauferG. SteinlechnerB. HohensinnerP. WojtaJ. NiessnerA. CD8+CD28null T lymphocytes are associated with the development of atrial fibrillation after elective cardiac surgery.Thromb. Haemost.202012081182118710.1055/s‑0040‑1713096 32594507
    [Google Scholar]
  80. HammerA. NiessnerA. SulzgruberP. The impact of CD4+CD28null T lymphocytes on atrial fibrillation: a potential pathophysiological pathway.Inflamm. Res.20217010-121011101410.1007/s00011‑021‑01502‑w 34536081
    [Google Scholar]
  81. JiaoY. ZhangT. ZhangC. JiH. TongX. XiaR. WangW. MaZ. ShiX. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury.Crit. Care202125135610.1186/s13054‑021‑03775‑3 34641966
    [Google Scholar]
  82. SunZ. ZhouD. XieX. WangS. WangZ. ZhaoW. XuH. ZhengL. Cross-talk between macrophages and atrial myocytes in atrial fibrillation.Basic Res. Cardiol.201611166310.1007/s00395‑016‑0584‑z 27660282
    [Google Scholar]
  83. ZhangZ. ZhangD. XieK. WangC. XuF. Luteolin activates Tregs to promote IL-10 expression and alleviating caspase-11-dependent pyroptosis in sepsis-induced lung injury.Int. Immunopharmacol.20219910791410.1016/j.intimp.2021.107914 34246059
    [Google Scholar]
  84. YanW. ZhaoY. XieK. XingY. XuF. Aspergillus fumigatus influences gasdermin-d-dependent pyroptosis of the lung via regulating toll-like receptor 2-mediated regulatory T cell differentiation.J. Immunol. Res.2021202111410.1155/2021/5538612 34222495
    [Google Scholar]
  85. ChenY. ChangG. ChenX. LiY. LiH. ChengD. TangY. SangH. IL-6-miR-210 suppresses regulatory T cell function and promotes atrial fibrosis by targeting foxp3.Mol. Cells2020435438447 32345003
    [Google Scholar]
  86. ZhangY. SunD. ZhaoX. LuoY. YuH. ZhouY. GaoY. HanX. DuanY. FangN. DuanX. LiT. ZhangS. GongY. LiY. Bacteroides fragilis prevents aging-related atrial fibrillation in rats via regulatory T cells-mediated regulation of inflammation.Pharmacol. Res.202217710614110.1016/j.phrs.2022.106141 35202820
    [Google Scholar]
  87. DuY. DuL. HeZ. ZhouJ. WenC. ZhangY. Cryptotanshinone ameliorates the pathogenesis of systemic lupus erythematosus by blocking T cell proliferation.Int. Immunopharmacol.20197410567710.1016/j.intimp.2019.105677 31177018
    [Google Scholar]
  88. ZhaoN. DongQ. FuX.X. DuL.L. ChengX. DuY.M. LiaoY.H. Acacetin blocks kv1.3 channels and inhibits human T cell activation.Cell. Physiol. Biochem.20143441359137210.1159/000366343 25301362
    [Google Scholar]
  89. LiuL. YangJ. ZuB. WangJ. ShengK. ZhaoL. XuW. Acacetin regulated the reciprocal differentiation of Th17 cells and Treg cells and mitigated the symptoms of collagen‐induced arthritis in mice.Scand. J. Immunol.2018884e1271210.1111/sji.12712 30176062
    [Google Scholar]
  90. ChenX. ZhangS. XuanZ. GeD. ChenX. ZhangJ. WangQ. WuY. LiuB. The phenolic fraction of mentha haplocalyx and its constituent linarin ameliorate inflammatory response through inactivation of NF-κB and MAPKs in lipopolysaccharide-induced RAW264.7 cells.Molecules201722581110.3390/molecules22050811 28509854
    [Google Scholar]
  91. RenJ. YueB. WangH. ZhangB. LuoX. YuZ. ZhangJ. RenY. ManiS. WangZ. DouW. Acacetin ameliorates experimental colitis in mice via inhibiting macrophage inflammatory response and regulating the composition of gut microbiota.Front. Physiol.20211157723710.3389/fphys.2020.577237 33536931
    [Google Scholar]
  92. ChiouW.F. DonM.J. Cryptotanshinone inhibits macrophage migration by impeding F-actin polymerization and filopodia extension.Life Sci.200781210911410.1016/j.lfs.2007.04.028 17568618
    [Google Scholar]
  93. WangH. ChenY. TaoT. ZhaoX. WangY. LuoJ. GuoY. Identification of microRNA biomarkers in serum of patients at different stages of atrial fibrillation.Heart Lung202049690290810.1016/j.hrtlng.2020.03.021 32482362
    [Google Scholar]
  94. ZhuY. FengZ. ChengW. XiaoY. MicroRNA 34a mediates atrial fibrillation through regulation of Ankyrin B expression.Mol. Med. Rep.20181768457846510.3892/mmr.2018.8873 29658562
    [Google Scholar]
  95. ZhengQ. LinR. ChenY. LvQ. ZhangJ. ZhaiJ. XuW. WangW. SARS-CoV-2 induces “cytokine storm” hyperinflammatory responses in RA patients through pyroptosis.Front. Immunol.202213105888410.3389/fimmu.2022.1058884 36532040
    [Google Scholar]
/content/journals/cad/10.2174/0115734099259071231115072421
Loading
/content/journals/cad/10.2174/0115734099259071231115072421
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test