Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

ICMT (isoprenylcysteine carboxyl methyltransferase) is an enzyme that plays a key role in the post-translational modification of the K-Ras protein. The carboxyl methylation of this protein by ICMT is important for its proper localization and function. Cysmethynil (2-[5-(3-methylphenyl)-l-octyl-lH-indolo-3-yl] acetamide) causes K-Ras mislocalization and interrupts pathways that control cancer cell growth and division through inhibition of ICMT, but its poor water solubility makes it difficult and impractical for clinical use. This indicates that relatively high amounts of cysmethynil would be required to achieve an effective dose, which could result in significant adverse effects in patients.

Objectives

The general objective of this work was to find virtually new compounds that present high solubility in water and are similar to the pharmacological activity of cysmethynil.

Materials and Methods

Pharmacophore modeling, pharmacophore-based virtual screening, prediction of ADMET properties (absorption, distribution, metabolism, excretion, and toxicity), and water solubility were performed to recover a water-soluble molecule that shares the same chemical characteristics as cysmethynil using Discovery Studio v16.1.0 (DS16.1), SwissADME server, and pkCSM server.

Results

In this study, ten pharmacophore model hypotheses were generated by exploiting the characteristics of cysmethynil. The pharmacophore model validated by the set test method was used to screen the “Elite Library®” and “Synergy Library” databases of Asinex. Only 1533 compounds corresponding to all the characteristics of the pharmacophore were retained. Then, the aqueous solubility in water at 25°C of these 1533 compounds was predicted by the Cheng and Merz model. Among these 1533 compounds, two had the optimal water solubility. Finally, the ADMET properties and Log S water solubility by three models (ESOL, Ali, and SILICOS-IT) of the two compounds and cysmethynil were compared, resulting in compound 2 as a potential inhibitor of ICMT.

Conclusion

According to the results obtained, the identified compound presented a high solubility in water and could be similar to the pharmacological activity of cysmethynil.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099264451231003172217
2024-06-03
2025-05-28
Loading full text...

Full text loading...

References

  1. SextonR.E. MpillaG. KimS. PhilipP.A. AzmiA.S. Ras and exosome signaling.Semin. Cancer Biol.20195413113710.1016/j.semcancer.2019.02.004 30769101
    [Google Scholar]
  2. OstremJ.M. PetersU. SosM.L. WellsJ.A. ShokatK.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions.Nature2013503747754855110.1038/nature12796 24256730
    [Google Scholar]
  3. TernetC. KielC. Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage.Cell Commun. Signal.20211913110.1186/s12964‑021‑00712‑3 33691728
    [Google Scholar]
  4. Di NicolantonioF. ArenaS. TaberneroJ. GrossoS. MolinariF. MacarullaT. RussoM. CancelliereC. ZecchinD. MazzucchelliL. SasazukiT. ShirasawaS. GeunaM. FrattiniM. BaselgaJ. GallicchioM. BiffoS. BardelliA. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus.J. Clin. Invest.201012082858286610.1172/JCI37539 20664172
    [Google Scholar]
  5. NussinovR. TsaiC.J. MuratciogluS. JangH. GursoyA. KeskinO. Principles of K-Ras effector organization and the role of oncogenic K-Ras in cancer initiation through G1 cell cycle deregulation.Expert Rev. Proteomics201512666968210.1586/14789450.2015.1100079 26496174
    [Google Scholar]
  6. BuscailL. BournetB. CordelierP. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer.Nat. Rev. Gastroenterol. Hepatol.202017315316810.1038/s41575‑019‑0245‑4 32005945
    [Google Scholar]
  7. GoitreL. TrapaniE. TrabalziniL. RettaS.F. The Ras Superfamily of Small GTPases: The Unlocked Secrets.Ras Signaling: Methods and Protocols; Trabalzini, L. RettaS.F. Totowa, NJHumana Press201411810.1007/978‑1‑62703‑791‑4_1
    [Google Scholar]
  8. TimarJ. KashoferK. Molecular epidemiology and diagnostics of KRAS mutations in human cancer.Cancer Metastasis Rev.20203941029103810.1007/s10555‑020‑09915‑5 32725342
    [Google Scholar]
  9. PalmarocchiM.C. FrattiM. Research progress on KRAS mutations in colorectal cancer.1.J. Cancer Metastasis Treat.20217
    [Google Scholar]
  10. ArringtonA.K. HeinrichE.L. LeeW. DuldulaoM. PatelS. SanchezJ. Garcia-AguilarJ. KimJ. Prognostic and predictive roles of KRAS mutation in colorectal cancer.Int. J. Mol. Sci.20121312121531216810.3390/ijms131012153 23202889
    [Google Scholar]
  11. GorfeA.A. ChoK.J. Approaches to inhibiting oncogenic K-Ras.Small GTPases20211229610510.1080/21541248.2019.1655883 31438765
    [Google Scholar]
  12. SogabeS. KamadaY. MiwaM. NiidaA. SameshimaT. KamauraM. YonemoriK. SasakiS. SakamotoJ. SakamotoK. Crystal Structure of a Human K-Ras G12D Mutant in Complex with GDP and the Cyclic Inhibitory Peptide KRpep-2d.ACS Med. Chem. Lett.20178773273610.1021/acsmedchemlett.7b00128 28740607
    [Google Scholar]
  13. S. Hiraokaet al Laterally Spreading Type of Colorectal Adenoma Exhibits a Unique Methylation Phenotype and K-ras Mutations.Gastroenterology2006131237938910.1053/j.gastro.2006.04.027
    [Google Scholar]
  14. LiuP. WangY. LiX. Targeting the untargetable KRAS in cancer therapy.Acta Pharm. Sin. B20199587187910.1016/j.apsb.2019.03.002 31649840
    [Google Scholar]
  15. OsakaN. HirotaY. ItoD. IkedaY. KamataR. FujiiY. ChirasaniV.R. CampbellS.L. TakeuchiK. SendaT. SasakiA.T. Divergent Mechanisms Activating RAS and Small GTPases Through Post-translational Modification.Front. Mol. Biosci.2021870743910.3389/fmolb.2021.707439 34307463
    [Google Scholar]
  16. Navarro-LéridaI. Sánchez-ÁlvarezM. del PozoM.Á. Post-Translational Modification and Subcellular Compartmentalization: Emerging Concepts on the Regulation and Physiopathological Relevance of RhoGTPases.Cells2021108199010.3390/cells10081990 34440759
    [Google Scholar]
  17. LeonardD.M. Ras farnesyltransferase: A new therapeutic target.J. Med. Chem.199740192971299010.1021/jm970226l 9301658
    [Google Scholar]
  18. ChoK.N. LeeK.I. Chemistry and biology of ras farnesyltransferase.Arch. Pharm. Res.200225675976910.1007/BF02976989 12510823
    [Google Scholar]
  19. WangW. YuanT. QianM. YanF. YangL. HeQ. YangB. LuJ. ZhuH. Post-translational modification of KRAS: Potential targets for cancer therapy.Acta Pharmacol. Sin.20214281201121110.1038/s41401‑020‑00542‑y 33087838
    [Google Scholar]
  20. AhearnI.M. HaigisK. Bar-SagiD. PhilipsM.R. Regulating the regulator: Post-translational modification of RAS.Nat. Rev. Mol. Cell Biol.2012131395110.1038/nrm3255 22189424
    [Google Scholar]
  21. FridayB.B. AdjeiA.A. K-ras as a target for cancer therapy.Biochim. Biophys. Acta Rev. Cancer20051756212714410.1016/j.bbcan.2005.08.001 16139957
    [Google Scholar]
  22. BergoM.O. LeungG.K. AmbroziakP. OttoJ.C. CaseyP.J. YoungS.G. Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-Ras in mammalian cells.J. Biol. Chem.200027523176051761010.1074/jbc.C000079200 10747846
    [Google Scholar]
  23. BergoM.O. GavinoB.J. HongC. BeigneuxA.P. McMahonM. CaseyP.J. YoungS.G. Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf.J. Clin. Invest.2004113453955010.1172/JCI200418829 14966563
    [Google Scholar]
  24. YangW.S. YeoS.G. YangS. KimK.H. YooB.C. ChoJ.Y. Isoprenyl carboxyl methyltransferase inhibitors: A brief review including recent patents.Amino Acids20174991469148510.1007/s00726‑017‑2454‑x 28631011
    [Google Scholar]
  25. RamanujuluP.M. YangT. YapS.Q. WongF.C. CaseyP.J. WangM. GoM.L. Functionalized indoleamines as potent, drug-like inhibitors of isoprenylcysteine carboxyl methyltransferase (Icmt).Eur. J. Med. Chem.20136337838610.1016/j.ejmech.2013.02.007 23514631
    [Google Scholar]
  26. LauH.Y. RamanujuluP.M. GuoD. YangT. WirawanM. CaseyP.J. GoM.L. WangM. An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo. Cancer Biol. Ther.20141591280129110.4161/cbt.29692 24971579
    [Google Scholar]
  27. StudioB.D. BIOVIA, DassaultSystèmes, Discovery Studio Modeling Environment, v16.1.0.San Diego, CABIOVIA Discovery Studio2016
    [Google Scholar]
  28. SterlingT. IrwinJ.J. ZINC 15 – Ligand Discovery for Everyone.J. Chem. Inf. Model.201555112324233710.1021/acs.jcim.5b00559 26479676
    [Google Scholar]
  29. Asinex 2016. Available From: http://www.asinex.com
  30. ChengA. MerzK.M.Jr Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships.J. Med. Chem.200346173572358010.1021/jm020266b 12904062
    [Google Scholar]
  31. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  32. HewittM. CroninM.T.D. EnochS.J. MaddenJ.C. RobertsD.W. DeardenJ.C. In silico prediction of aqueous solubility: The solubility challenge.J. Chem. Inf. Model.200949112572258710.1021/ci900286s 19877720
    [Google Scholar]
  33. AliJ. CamilleriP. BrownM.B. HuttA.J. KirtonS.B. In silico prediction of aqueous solubility using simple QSPR models: The importance of phenol and phenol-like moieties.J. Chem. Inf. Model.201252112950295710.1021/ci300447c 23121381
    [Google Scholar]
  34. DelaneyJ.S. ESOL: Estimating aqueous solubility directly from molecular structure.J. Chem. Inf. Comput. Sci.20044431000100510.1021/ci034243x 15154768
    [Google Scholar]
  35. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  36. KhanA.Q. KuttikrishnanS. SiveenK.S. PrabhuK.S. ShanmugakonarM. Al-Naemi, H.A.; Haris, M.; Dermime, S.; Uddin, S. RAS-mediated oncogenic signaling pathways in human malignancies.Semin. Cancer Biol.20195411310.1016/j.semcancer.2018.03.001 29524560
    [Google Scholar]
  37. GreenhoughA. PatsosH.A. WilliamsA.C. ParaskevaC. The cannabinoid δ 9 ‐tetrahydrocannabinol inhibits RAS‐MAPK and PI3K‐AKT survival signalling and induces BAD‐mediated apoptosis in colorectal cancer cells.Int. J. Cancer2007121102172218010.1002/ijc.22917 17583570
    [Google Scholar]
  38. PantsarT. The current understanding of KRAS protein structure and dynamics.Comput. Struct. Biotechnol. J.20201818919810.1016/j.csbj.2019.12.004 31988705
    [Google Scholar]
  39. LauH.Y. TangJ. CaseyP.J. WangM. Isoprenylcysteine carboxylmethyltransferase is critical for malignant transformation and tumor maintenance by all RAS isoforms.Oncogene201736273934394210.1038/onc.2016.508 28192404
    [Google Scholar]
  40. WangM. TanW. ZhouJ. LeowJ. GoM. LeeH.S. CaseyP.J. A small molecule inhibitor of isoprenylcysteine carboxymethyltransferase induces autophagic cell death in PC3 prostate cancer cells.J. Biol. Chem.200828327186781868410.1074/jbc.M80185520018434300
    [Google Scholar]
/content/journals/cad/10.2174/0115734099264451231003172217
Loading
/content/journals/cad/10.2174/0115734099264451231003172217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test